首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transition period of at least 2 years is required for annual crops before the produce may be certified as organically grown. There is a need to better understand the various management options for a smooth transition from conventional to organic production. The purpose of this study was to evaluate the effects of different organic amendments and biofertilizers (BFs) on productivity and profitability of a bell pepper–french bean–garden pea system as well as soil fertility and enzymatic activities during conversion to organic production. For this, the following six treatments were established in fixed plots: composted farmyard manure (FYMC, T1); vermicompost (VC, T2); poultry manure (PM, T3) along with biofertilizers (BF) [Rhizobium/Azotobacter + phosphorus solubilizing bacteria (Pseudomonas striata)]; mix of three amendments (FYMC + PM + VC + BF, T4); integrated nutrient management (FYMC + NPK, T5); and unamended control (T6). The yields of bell pepper and french bean under organic nutrient management were markedly lower (25.2–45.9% and 29.5–46.2%, respectively) than with the integrated nutrient management (INM). Among the organic treatments, T4 and T1 produced greater yields of both bell pepper (27.96 Mg ha?1) and french bean (3.87 Mg ha?1) compared with other treatments. In garden pea, however, T4 gave the greatest pod yield (7.27 Mg ha?1) and was significantly superior to other treatments except T5 and T1. The latter treatment resulted in the lowest soil bulk density (1.19 Mg m?3) compared with other treatments. Similarly, soil organic C was significantly greater in all the treatments (1.21–1.30%) except T2 compared to T6 (1.06%). Plots under INM, however, had greater levels of available nitrogen–phosphorus–potassium (NPK) than those under organic amendments. T1 plots showed greater dehydrogenase and acid phosphatase activities compared with other treatments. However, T4 and T5 plots had greater activities of β-glucosidase and urease activities, respectively. The cost of cultivation was greater under organic nutrient management (except T2) compared with INM. The latter treatment gave greater gross margin and benefit/cost (B/C) ratio for all vegetables, except that T2 gave greater B/C ratio in garden pea compared with other treatments. We conclude that T1 and T4 were more suitable for enhancing the productivity of bell pepper–french bean–garden pea system, through improved soil properties, during transition to organic production.  相似文献   

2.
Field experiments were conducted at the fields of Crop Research and Seed Multiplication Farm of Burdwan University, Burdwan, West Bengal, India during the winter seasons of 2005–2006, 2006–2007, and 2007–2008 in old alluvial soil (pH-6-7) to evaluate the influence of integrated nutrient management on soil physicochemical and biological properties under mustard (Brassica campestris cv. ‘B9’) cropping system. In the first year (2005–2006), seven varieties of mustard were cultivated under recommended dose of chemical fertilizer (100:50:50). In the second year of the experiment (2006–2007), six different doses of biofertilizer and chemical fertilizer were applied. In the third year (2007–2008), six different level of compost along with a combined dose of biofertilizer and chemical fertilizer (T3-3/4 Chemical fertilizer: 1/4 biofertilizer) were applied. The results indicated significant improvement in the soil quality by increasing soil porosity and water holding capacity significantly, as well as gradual build-up of soil macronutrient status after harvesting of the crop. Applications of biofertilizers have contributed significantly toward higher soil organic matter, nitrogen (N), available phosphorus (P), and potassium (K). The use of biofertilizers and compost have mediated higher availability of iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), and boron (B) in soil. The use of biofertilizers and compost significantly improved soil bacterial and fungal population count in the soil, thereby increasing the soil health.  相似文献   

3.
Soil degradation in the semi-arid tropics (SAT) is mainly responsible for low crop and water productivity. In Madhya Pradesh and Rajasthan states in India, the soil analyses of farmers’ fields revealed widespread deficiencies of S (9–96%), B (17–100%) and Zn (22–97%) along with that of P (25–92%). Soil organic C was deficient in 7–84% fields indicating specifically N deficiencies and poor soil health in general. During on-farm evaluations in rainy seasons 2010 and 2011, the soil test based addition of deficient nutrient fertilizers as balanced nutrition (BN) increased crop yields by 6–40% (benefit to cost ratios of 0.81–4.28) through enhanced rainwater use efficiency. The integrated nutrient management (INM), however, decreased the use of chemical fertilizers in BN by up to 50% through on-farm produced vermicompost and recorded yields at par or more than BN with far better benefit to cost ratios (2.26–10.2). Soybean grain S and Zn contents improved with INM. Applied S, B, Zn and vermicompost showed residual benefits as increased crop yields for succeeding three seasons. Hence, results showed INM/BN was economically beneficial for producing more food, while leading to resilience building of SAT production systems.  相似文献   

4.
A field experiment was conducted for 5 years (2004–2005 to 2009–2010) covering 10 crop seasons [five wet (WS; Kharif) and five dry (DS; Rabi)] at the Directorate of Rice Research farm, Hyderabad, India, to compare the influence of organic and conventional farming systems on productivity of fine grain rice varieties, cumulative partial nutrient balance, and soil health/quality in terms of nutrient availability, physical and biological properties, and sustainability index. Two main plot treatments were with and without plant protection measures, and four subplot treatments were (1) control (CON), (2) inorganic fertilizers (CF), (3) organics (OF), and (4) inorganics + organics (integrated nutrient management, INM). During wet season, grain yields with CF and INM were near stable (5.0 to 5.5 t ha?1) and superior to organics by 15–20% during the first 2 years, which improved with OF (4.8 to 5.4 t ha?1) in the later years to comparable levels with CF and INM. However, during DS, CF and INM were superior to OF for 4 consecutive years and OF recorded yields on par with CF and INM in the fifth year. The partial nutrient balance over 10 crop seasons for N and P was positive and greater with OF and INM over CF and for K it was positive with OF alone and negative with CF and INM. There were increases in SOC and available N, P, and K by 50–58%, 3–10%, 10–30%, and 8–25% respectively, with OF, over CF at the end of 5 years. The sustainability index (SI) of the soil system was maximum with organics (1.63) and CF recorded 1.33, which was just above the minimum sustainability index of 1.30 after 5 years. Thus, organic farming needs more than 2 years to stabilize rice productivity and bring about perceptible improvement in soil quality and sustainability in irrigated rice.  相似文献   

5.
Balh Valley in the northwestern Himalayas in India is well known for cultivation of high-value cash crops and vegetables. The Indo-German Agricultural Project executed four decades ago in the valley has been the driving force for agrarian development in the valley, but crops are still grown under nutrient-starved conditions, giving low productivity compared to national averages. To demonstrate and disseminate the integrated nutrient management (INM) technology in the irrigated ecosystem of Balh Valley, efforts were funded by the Indian Farmers' Fertilizers Cooperative Limited (IFFCO) to develop sustainable crop production systems under cash crops and vegetables following an appropriate technology transfer model by Krishi Vigyan Kendra (KVK), Sundernagar, India. For effective technology transfer, field demonstrations, method demonstrations, farmers' training camps, field days, and numerous field conventions were organized in addition to extending soil testing, literature supply, promotional seed and fertilizer input supply, and training of agro-cooperative society personnel who deal with seed and fertilizer input supply in the region. The greater extension gaps in tomato–blackgram and potato–Kharif onion crop sequences indicated need for effective technology transfer tools for high adoption of technology in these production systems in the valley. Potato–Kharif onion cropping system using INM technology resulted in greater system productivity in terms of blackgram equivalent yield (76.7q ha?1) and gross (3,06,920 ha?1) and net returns (2,22,295 ha?1), followed by tomato–blackgram and green pea–okra production systems, respectively, using an appropriate technology transfer model. The study also revealed improvement in available nitrogen (N)–phosphorus (P)–potassium (K) and organic carbon (C) pool of the soils besides crop productivity and profitability in field trials under INM practices over farmers' practiced plots. Knowledge before the study about soil testing, dose and time of application of organics, chemical fertilizers, and their integrated use ranged from 9 to 41%, whereas knowledge increases after the study ranged between 55 to 88%. The INM technology adoption rate after 1 year of project completion ranged between 66 to 70%, whereas soil testing was done by only 35% of farmers. Thus, INM technology adoption rate was greater following the appropriate technology transfer model based on critical analyses of fertilizer use, existing production systems, and appropriate interventions for technology transfer. This comprehensive study under the IFFCO-KVK Collaborative Project attempts to highlight that an effective technology transfer model can play a key role in adoption of INM technology for sustainable production systems in the developing world, especially for resource- and knowledge-poor farmers of collateral socioagroeconomic environments of developing nations.  相似文献   

6.
Crop performance on degraded soil needs special management practices to overcome soil quality limitations. In a 2-year(from summer 2006 to winter 2007–2008) field trial on a moderately degraded Alfisol in Swabi District(34°7′12′′N, 72°28′20′′E), Pakistan,the effects of three cropping patterns, cereal-cereal(CC), cereal-legume(CL), and cereal-cereal and legume intercrop(CLI), were tested in main plots under four fertilization treatments in sub-plots, including no fertilization(control), farmers' practice(FP, 60:45 kg ha~(-1) N:P_2O_5), recommended dose(RD, 120:90:60 kg ha~(-1) N:P_2O_5:K_2O), and integrated nutrient management(INM, 20 t ha~(-1) farmyard manure integrated with 50% N, 100% P, and K of recommended dose), using a split-plot randomized complete block design. The performance of CL was superior than CC in plant height, leaf area index(LAI), cob length, grain yield, biological yield, and grain protein(8%, 26%, 8%, 5%, 10%, and 8% increases, respectively), while CLI confirmed significant improvement only in LAI(25%) over CC. Response to nutrient inputs from all sources was in the order of INM RD FP control, and the maximum net economic return by INM(23% and 2.5 times higher than RD and FP, respectively) indicated severe deficiency of both macro-and micro-nutrients in the soil as well as degraded physical properties. Increases in soil organic matter, total N, total mineral N, available P and K, total porosity, and available water-holding capacity by 6%, 34%, 24%, 50%, 13%, 5%, and 7%, respectively, and decrease in soil bulk density by 4% after four crop seasons indicated optimistic changes in soil quality as a result of the combined effects of fertilization from organic and inorganic sources and legumes within crop rotation. This study suggests that keeping the soil covered under cereal-legume rotation crops all year round and treatment with INM(50% N from organic source and 50% from inorganic source) are the best management practice for sustained production on degraded Alfisols.  相似文献   

7.
Soil nutrient contents were determined in 802 surface soil samples (0–15 cm deep) collected from farmers' fields that support extensive cultivation of soybean (Glycine max L.) and finger millet (Eleusine coracana G.), spread across three districts, in the semi-arid regions of Karnataka, India. Following soil analysis, on-farm crop trials were conducted during 2005–2007 to study the crop response to the soil application of nitrogen (N), phosphorus (P), sulfur (S), boron (B), and zinc (Zn) fertilizers. Analyses of soil samples revealed that 4–83% fields were deficient in N, 34–65% in P, 83–93% in extractable S, 53–96% in B, and 34–88% of farmers' fields were deficient in Zn. On-farm trials conducted during the three rainy seasons (2005, 2006, and 2007) significantly (P ≤ 0.05) enhanced crop productivity indices such as yields of grain, stover, and total biomass in soybean and finger millet crops. Integrated management of deficient nutrients in finger millet and soybean crops significantly enhanced the grain and straw uptake of N, P, K, S, and Zn.  相似文献   

8.
To promote conservation tillage in organic farming systems, weed control and ley removal within arable-ley rotations need to be optimized. A long-term field trial was thus established in Frick, Switzerland in 2002 on a clayey soil and with a mean precipitation of 1000 mm/year. The tillage experiment distinguished between conventional tillage with mouldboard ploughing (CT, 15 cm depth) and reduced tillage (RT), including a chisel plough (15 cm) and a stubble cleaner (5 cm). Results of a 2-year grass-clover ley (2006/2007) and silage maize (2008) are presented. Due to dry conditions, mean grass-clover yields were 25% higher in RT than in CT, indicating better water retention of RT soils. Clover cover and mineral contents of the fodder mixture were also higher in RT. The ley was successfully removed in autumn 2007 in RT plots, and a winter pea catch crop was sown before maize. In CT, ploughing took place in spring 2008. Maize yields were 34% higher in RT than in CT, despite a two- to three-fold higher but still tolerable weed infestation. Maize in RT plots benefited from an additional 61.5 kg of easily decomposable organic N/ha incorporated into the soil via the pea mulch. Measurement of arbuscular mycorrhizal colonization of maize roots indicated a similar mechanical disturbance of the topsoil through the reduced ley removal system compared with ploughing. It is suggested that RT is applicable in organic farming, even in arable-ley rotations, but long-term effects need further assessment.  相似文献   

9.
A field experiment was conducted for 2 years on a clayey Vertisol to compare the organic and conventional methods of rice farming. Two main plot treatments were with and without plant protection and four subplot treatments were (1) control (CON); (2) inorganic fertilizers (CF); (3) organics (OF), and (4) inorganics + organics (integrated nutrient management, INM). The organics were green manure, paddy straw, and poultry manure. After 2 years, the main plot effects were not significant in terms of crop productivity though there was a reduction in soil biological parameters. Increase in grain yield was larger with inorganics and INM as compared to the organics because of the higher panicle number. However, organics increased the microbial populations, biomass carbon, nitrogen, enzyme activities, and soil fertility as compared to inorganics. Thus, organics improved the nutrient availability by influencing the soil biological activity although it did not reflect in greater yields.  相似文献   

10.
Present investigation evaluates the effect of organic fertilization (OF), integrated nutrient management (INM) practice, and recommended dose of chemical fertilization (CF) on changes in soil organic phosphorus (P) and its fractions under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system. The 4-year experiment (2009–2013), under split-plot design, showed that OF did not increase the total P or total organic P content of soil under either of the test crops. However, OF maintained the higher level of labile organic P and moderately labile organic P in soil under wheat the moderately stable organic P and highly stable organic P was highest in paddy soil under CF practices (11.34 and 7.77 μg g?1, respectively) followed by wheat. The P concentration in organically grown rice or wheat grain was increased significantly compared with their CF counterparts. The productivity economics for rice and wheat crops showed INM fertilization to be more economical than OF.  相似文献   

11.
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India.  相似文献   

12.
A five-year cotton–wheat rotation field experiment was conducted on two alkaline-calcareous soils, i.e., Awagat (coarse loamy) and Shahpur (fine silty), to investigate the impact of integrated nutrient and crop residue management on soil and crop productivity. Apparent nitrogen (N) balances were developed. Minimum five-year mean yield (Mg ha?1), obtained with Farmers’ Fertilizer Use (FFU) treatment was: cotton – Awagat, 2.19; Shahpur, 2.45; wheat – Awagat, 3.03; Shahpur, 3.94. With Balance Nutrient Management (BNM), yields increased (P ≤ 0.05) for cotton, 24% in Awagat and 18% in Shahpur soil; and wheat, 37% in Awagat and 24% in Shahpur soil. Maximum crop yields were obtained with Integrated Nutrient Management (INM), i.e., 3–5% higher than with BNM. Crop residue recycling increased the yields further, cotton by 2?7% and wheat by 2–10%. All nutrient management treatments, except for FFU without crop residue recycling, resulted in positive apparent N balances. INM improved SOM and NO3-N, contents.  相似文献   

13.
The greatest challenge for tropical agriculture is land degradation and reduction in soil fertility for sustainable crop and livestock production.Associated problems include soil erosion,nutrient mining,competition for biomass for multiple uses,limited application of inorganic fertilizers,and limited capacity of farmers to recognize the decline in soil quality and its consequences on productivity.Integrated soil fertility management(ISFM) is an approach to improve crop yields,while preserving sustainable and long-term soil fertility through the combined judicious use of fertilizers,recycled organic resources,responsive crop varieties,and improved agronomic practices,which minimize nutrient losses and improve the nutrient-use efficiency of crops.Soil fertility and nutrient management studies in Ethiopia under on-station and on-farm conditions showed that the combined application of inorganic and organic fertilizers significantly increased crop yields compared to either alone in tropical agro-ecosystems.Yield benefits were more apparent when fertilizer application was accompanied by crop rotation,green manuring,or crop residue management.The combination of manure and NP fertilizer could increase wheat and faba bean grain yields by 50%–100%,whereas crop rotation with grain legumes could increase cereal grain yields by up to 200%.Although organic residues are key inputs for soil fertility management,about 85% of these residues is used for livestock feed and energy;thus,there is a need for increasing crop biomass.The main incentive for farmers to adopt ISFM practices is economic benefits.The success of ISFM also depends on research and development institutions to provide technical support,technology adoption,information dissemination,and creation of market incentives for farmers in tropical agro-ecosystems.  相似文献   

14.
This paper investigates effects of cropping abandonment and perennial grass growing on soil organic C and N pools and aggregate stability, by comparing soils under native grassland, crop cultivation, perennial grass growing and cropping abandonment, in degraded cropland at a sub‐alpine site in north‐western China. The pools of total and particulate organic C (115 and 37 Mg ha−1) in the 0–30 cm soil layer of native grassland were reduced by 31 and 54% after 30 years of crop cultivation. After 4 years of conversion from cropland to perennial grass growing total and particulate organic C pools were increased by 29 and 56%, whereas 4 year cropping abandonment increased particulate organic C by 36%. Rapid increases in total and particulate N were also found in perennial grass growing and cropping abandonment soils. The native grassland soil and soils of cropping abandonment and perennial grass growing had higher carbohydrate C concentrations in the 0–10 cm layer than the cropped soil. The rapid recovery of particulate organic fraction and carbohydrates in the re‐vegetated soils were probably due to higher plant biomass inputs and lower organic matter decomposition compared with those in the cropped soil. Aggregate stability of the 0–30 cm soil layer was significantly decreased by crop cultivation but showed a good recovery after 4 year re‐vegetations. This study suggests that reduction of soil organic matter and aggregate stability under crop cultivation may be remedied by cropping abandonment or perennial grass growing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Impact of integrated nutrient and crop residue management on crop productivity, phosphorus (P) uptake and apparent P balances was investigated in a 5-year field experiment on two calcareous soils, i.e., Awagat (coarse loamy) and Shahpur (fine silty) in cotton-wheat sequence. Minimum mean P uptake (kg ha?1) by cotton with Farmers’ Fertilizer Use (FFU) treatment was 8.89 in Awagat and 11.54 in Shahpur soil. Corresponding maximum mean P uptake was 15.30 and 17.01 kg ha?1 with Integrated Nutrient Management (INM), respectively. Nutrient treatments effect on P uptake by wheat was similar to cotton. Phosphorus uptake was further enhanced by crop residue recycling. Phosphorus uptake trend by cotton was negative under FFU without residue recycling and was positive with residue recycling. While P uptake trends were positive under all other treatments. INM yielded positive apparent P balances (kg ha?1) of 56–306 in Awagat and 24–288 in Shahpur soil.  相似文献   

16.
Abstract. Sugarcane yields in the Herbert Valley in North Queensland have been declining over the past 15 years. Better yields are obtained where crops are grown on previously unused land. Soils under cane are more compacted, more acid, contain less organic matter and are lower in cation exchange capacity and exchangeable cations. These differences reflect soil degradation caused by intensive cultivation.
Contributing factors to the degradation of soils include soil compaction and structural breakdown occurring during harvest and cultivation operations, losses of organic matter due to burning of crop residues and acidification of soils due to large applications of nitrogen fertilizers.
Soil management practices should aim to increase soil organic matter levels, provide a more favourable biological environment, reduce physical damage to soils during harvesting and cultivation, reduce soil acidity and improve the effectiveness of fertilizing practices.  相似文献   

17.
《Soil Use and Management》2018,34(3):335-342
This study investigates the effect of different crop rotation systems on carbon (C) and nitrogen (N) in root biomass as well as on soil organic carbon (SOC ). Soils under spring barley and spring barley/pea mixture were sampled both in organic and conventional crop rotations. The amounts of root biomass and SOC in fine (250–253 μ m), medium (425–250 μ m) and coarse (>425 μ m) soil particulate organic matter (POM ) were determined. Grain dry matter (DM ) and the amount of N in harvested grain were also quantified. Organic systems with varying use of manure and catch crops had lower spring barley grain DM yield compared to those in conventional systems, whereas barley/pea showed no differences. The largest benefits were observed for grain N yields and grain DM yields for spring barley, where grain N yield was positively correlated with root N. The inclusion of catch crops in organic rotations resulted in higher root N and SOC (g C/m2) in fine POM in soils under barley/pea. Our results suggest that manure application and inclusion of catch crops improve crop N supply and reduce the yield gap between conventional and organic rotations. The observed positive correlation between root N and grain N imply that management practices aimed at increasing grain N could also increase root N and thus enhance N supply for subsequent crops.  相似文献   

18.
为探究有机栽培对稻田土壤养分及不同食味型水稻产量和品质形成的影响,本研究以味优高产型粳稻(南粳46和苏香粳100)和味中高产型粳稻(常农粳8号和淮香粳15号)为材料,设置有机和常规2种栽培模式,对多个关键生育期(分蘖期、抽穗期、灌浆结实期和成熟期)的0~10 cm和10~20 cm土层养分含量及不同食味型粳稻的产量和品质进行比较。结果表明,分蘖期到成熟期,0~10 cm和10~20 cm土层速效磷和速效钾含量均表现为常规栽培<有机栽培;除成熟期外,有机栽培下0~10 cm和10~20 cm土层碱解氮和有机质含量在各生育时期均显著大于常规栽培。有机栽培较常规栽培降低了2种食味型粳稻的穗数,降幅均为20%左右,但提高了味中高产粳稻每穗粒数,分别提高了5.60%和6.35%,并降低了味优高产粳稻每穗粒数,分别降低了2.17%和2.52%。通径分析表明,栽培方式和品种对穗数均表现为负效应,其中栽培方式影响最大,品种较栽培方式对千粒重和结实率的影响最大。另外,有机栽培显著改善了2种食味型粳稻的外观品质、食味品质和RVA谱特征值。相关性分析表明,土壤碱解氮含量与直链淀粉含量呈显著负相关、与蛋白质含量呈显著正相关;而速效磷和速效钾含量均与直链淀粉和蛋白质含量呈显著负相关。本研究结果为优化水稻有机栽培技术、提高稻米的产量和品质提供了理论依据。  相似文献   

19.
To achieve higher yields and better soil quality under rice–legume–rice (RLR) rotation in a rainfed production system, we formulated integrated nutrient management (INM) comprised of Azospirillum (Azo), Rhizobium (Rh), and phosphate-solubilizing bacteria (PSB) with phosphate rock (PR), compost, and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and balance of N, P, and Zn, changes in water stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms, and bacterial community composition using denaturing gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made against the prevailing farmers’ nutrient management practices [N/P2O5/K2O at 40:20:20 kg ha−1 for rice and 20:30:20 kg ha−1 for legume as urea/single super-phosphate/MOP (urea/SSP/MOP)]. Cumulative grain yields of crops increased by 7–16% per RLR rotation and removal of N and P by six crops of 2 years rotation increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots over that in compost alone or urea/SSP/MOP plots. Apparent loss of soil total N and P at 0–15 cm soil depth was minimum and apparent N gain at 15–30 cm depth was maximum in Azo/Rh plus PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate-extractable Zn content in soil increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Total organic C content in soil declined at 0–15 cm depth and increased at 15–30 cm depth in all nutrient management plots after a 2-year crop cycle; however, bacterial bioinoculants-based INM plots showed minimum loss and maximum gain of total organic C content in the corresponding soil depths. Water-stable aggregation and distribution of soil aggregates in 53–250- and 250–2,000 μm classes increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Fungal/bacterial biomass C ratio seems to be a more reliable indicator of C and N dynamics in acidic soils than total microbial biomass C. Compost alone or Azo/Rh plus PSB dual INM plots showed significantly (P < 0.05) higher numbers of earthworms’ casts compared to urea/SSP/MOP alone and bacterial bioinoculants with urea or SSP-applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles revealed changes in bacterial community composition in soils due to differences in nutrient management, and these changes were seen to occur according to the states of C and N dynamics in acidic soil under RLR rotation.  相似文献   

20.
Abstract. Four management systems combining high and low livestock densities (0.7 and 1.4 livestock units ha−1) and different types of organic manure (slurry and straw based FYM) were applied to an organic dairy crop rotation (undersown barley – grass–clover – grass–clover – barley/pea – oats – fodder beet) between 1998 and 2001. The effects of the management systems on crop yields and nitrate leaching were measured. In all four years, nitrate leaching, as determined using ceramic suction cups, was higher in the three crops following ploughing of grass–clover than under the barley or grass–clover. Overall, no significant differences in nitrate leaching were observed between the management systems. However, the replacement of the winter wheat crop used in the earlier experimental period (1994–97) by spring oats with catch crops in both the preceding and succeeding winters reduced nitrate leaching compared with the earlier rotation. Increasing the livestock density, which increased manure application by c. 60 kg total N ha−1, increased crop yields by 7 and 9% on average for FYM and slurry, respectively. Yields were 3–5% lower where FYM was used instead of slurry. The experiment confirmed the overriding importance of grassland N management, particularly the cultivation of the ley, in organic dairy crop rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号