首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the sum of ‘direct’ and ‘indirect’ effects of climatic change on enchytraeid activity and C fluxes from an organic soil we assessed the influence of temperature (4, 10 and 15 °C incubations) on enchytraeid populations and soil CO2 and CH4 fluxes over 116 days. Moisture was maintained at 60% of soil dry weight during the experimental period and measurements of enchytraeid biomass and numbers, and CO2 and CH4 fluxes were made after 3, 16, 33, 44, 65, 86 and 116 days. Enchytraeid population numbers and biomass increased in all temperature treatments with the greatest increase produced at 15 °C (to over threefold initial values by day 86). Results also showed that enchytraeid activity increased CO2 fluxes by 10.7±4.5, 3.4±4.0 and 26.8±2.6% in 4, 10 and 15 °C treatments, respectively, with the greatest CO2 production observed at 15 °C for the entire 116 day incubation period (P<0.05). The soil respiratory quotient analyses at lower temperatures (i.e. 4-10 °C) gave a Q10 of 1.7 and 1.9 with and without enchytraeids, respectively. At temperatures above 10 °C (i.e. 10-15 °C) Q10 significantly increased (P<0.01) and was 25% greater in the presence of enchytraeids (Q10=3.4) than without (Q10=2.6). In contrast to CO2 production, no significant relationships were observed between net CH4 fluxes and temperature and only time showed a significant effect on CH4 production (P<0.01).Total soil CO2 production was positively linked with enchytraeid biomass and mean soil CO2-C production was 77.01±6.05 CO2-C μg mg enchytraeid tissue−1 day−1 irrespective of temperature treatment. This positive relationship was used to build a two step regression model to estimate the effects of temperature on enchytraeid biomass and soil CO2 respiration in the field. Predictions of potential CO2 production were made using enchytraeid biomass data obtained in the field from two upland grassland sites (Sourhope and Great Dun Fell at the Moor House Nature Reserve, both in the UK). The findings of this work suggest that a 5 °C increase in atmospheric temperature above mean ambient temperature could have the potential to produce a significant increase in enchytraeid biomass resulting in a near twofold increase in soil CO2 release from both soil types. The interaction between temperature and soil biology will clearly be an important determinant of soil respiration responses to global warming.  相似文献   

2.
A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2-12 °C)>Q10(12-22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2-12 °C)<Q10(12-22 °C)) in the control samples. Metabolic quotient and the positive relationship between skeletal muscle tissue mass loss and cumulative CO2 evolution suggest that tissue decomposition was most efficient at 2 °C. These phenomena may be due to lower microbial catabolic requirements at lower temperature.  相似文献   

3.
Temperature is an important factor controlling CH4 production in rice field soils. However, it is unknown which step in the methanogenic degradation of organic matter is the limiting one that is controlled by temperature. Soil slurries prepared from Italian rice field soil were anaerobically incubated in the dark at six different temperatures between 10 and 37 °C until quasi-steady state was reached. Then, the potential and actual rates of polysaccharide hydrolysis and of CH4 production from different immediate (acetate, H2) and distal (glucose, propionate) methanogenic substrates were determined. Potential activities of exo-glucanase and glucosidase were always higher than the actual rates of polysaccharide hydrolysis indicating that the availability of the polysaccharide substrate was limiting at all temperatures. The actual rates of CH4 production were always lower than those predicted from glucose release during polysaccharide hydrolysis indicating that a substantial amount of the released glucose was assimilated into microbial biomass. Addition of the different methanogenic substrates stimulated CH4 production at all temperatures >10 °C, but only at >20 °C to values higher than rates of polysaccharide hydrolysis. Under steady state conditions, however, hydrolysis of organic polymers was the rate-limiting step at all temperatures >10 °C.  相似文献   

4.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

5.
Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm−3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g−1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate of CH4 oxidation and that summer droughts may increase the soil CH4 sink of temperate forest soils.  相似文献   

6.
We examined the CO2 exchange of a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau using a chamber system. CO2 efflux from the ecosystem was strongly dependence on soil surface temperature. The CO2 efflux-temperature relationship was identical under both light and dark conditions, indicating that no photosynthesis could be detected under light conditions during the measurement period. The temperature sensitivity (Q10) of the CO2 efflux showed a marked transition around −1.0 °C; Q10 was 2.14 at soil surface temperatures above and equal to −1.0 °C but was 15.3 at temperatures below −1.0 °C. Our findings suggest that soil surface temperature was the major factor controlling winter CO2 flux for the alpine meadow ecosystem and that freeze-thaw cycles at the soil surface layer play an important role in the temperature dependence of winter CO2 flux.  相似文献   

7.
The thermodynamic parameters of the enzymes catalase, dehydrogenase, casein-protease, α-N-benzoyl-l-argininamide (BAA)-protease, urease, Carboxymethyl (CM)-cellulase, invertase, β-glucosidase and arylsulphatase, were investigated in grassland soils from a European temperate-humid zone (Galicia, NW Spain). The effect of temperature on enzyme activity was determined at 5, 18, 27, 37, 57 and 70 °C. The temperature-dependence of the rate of substrate hydrolysis varied depending on the enzyme and soil. In general, the soil containing the least amount of organic matter (OM) showed the lowest enzyme activity for all temperatures and enzymes, whereas soils with similar OM contents showed similar levels of activity for the entire temperature range. Temperature had a noteworthy effect on the activity of oxidoreductases. Product formation in the reaction catalyzed by dehydrogenase increased with increasing temperature until 70 °C, which was attributed to chemical reduction of iodonitrotetrazolium violet (INT) at high temperatures. Catalase activity was not affected above 37 °C, which may be explained either by non-enzymatic decomposition of hydrogen peroxide or by the fact that catalase has reached kinetic perfection, and is therefore not saturated with substrate.The Arrhenius equation was used to determine the activation energy (Ea) and the temperature coefficient (Q10) for all enzymes. The values of Ea and Q10 for each enzyme differed among soils, although in general the differences were small, especially for those enzymes that act on substrates of low molecular weight. In terms of the values of Ea and Q10 and the differences established among soils, the results obtained for those enzymes that act on substrates of high molecular weight differed most from those corresponding to the other enzymes. Thus the lowest Ea and Q10 values corresponded to BAA-protease, and the highest values to CM-cellulase and casein-protease. Except for catalase in one of the soils, the values of Ea and Q10 for the oxidoreductases were similar to those of most of the hydrolases. In general, the effect of temperature appeared to be more dependent on the type of enzyme than on the characteristics of the soil.  相似文献   

8.
Knowledge of seasonal trends and controls of soil CO2 emissions to the atmosphere is important for simulating atmospheric CO2 concentrations and for understanding and predicting the global carbon cycle. This is particularly the case for high arctic soils subject to extreme fluctuating environmental conditions. Based on field measurements of soil CO2 efflux, temperature, water content, pore gas composition in soil and frozen cores as well as detailed temperature experiments performed in the laboratory, we evaluated seasonal controls of CO2 effluxes from a well-drained tundra heath site in NE-Greenland. During the growing season, near-surface temperatures correlated well with observed CO2 effluxes (r2>0.9). However, during intensive thawing of near-surface layers we observed up to 1.5-fold higher effluxes than expected due to temperature alone. These high rates were consistent with high CO2 concentrations in frozen soil (>10% CO2) and suggested a spring burst event during soil thawing and a corresponding trapping of produced CO2 during winter. Laboratory experiments revealed that microbial soil respiration continued down to a least −18 °C and that up to 80% of the produced CO2 was trapped in soil at temperatures between 0 and −9 °C. The trapping of CO2 in frozen soil was positively correlated with soil moisture (r2=0.85) and led to an abrupt change of the temperature sensitivity (Q10) observed for soil CO2 release at 0 °C with Q10 values below 0 °C being up to 100-fold higher than above 0 °C. The results of sub-zero CO2 production allowed us to predict the microbial soil respiration throughout the year and to evaluate to what extent burst events during thawing can be explained by the release of CO2 being produced and trapped during winter. Taking only the upper 20 cm of the soil into account, winter soil respiration accounted for about 40% of the annual soil respiration. At least 14% of the winter CO2 production was trapped during the winter 2000-2001 and observed to be released upon thawing. Thus, the site-specific winter soil respiration is an important part of the annual C cycle and CO2 trapping should be accounted for in future field and modelling studies of soil respiration dynamics in arctic ecosystems. In conclusion, we have discovered a soil moisture dependent uncoupling of CO2 production and release in frozen soils with important implications for future field studies of Arctic C cycling.  相似文献   

9.
Abrupt increases in the temperature sensitivity of soil respiration below 0 °C have been interpreted as a change in the dominance of other co-dependent environmental controls, such as the availability of liquid-state water. Yet the relationship between unfrozen water content and soil respiration at sub-zero temperatures has received little attention because of difficulties in measuring unfrozen water contents. Using a recently-developed semi-solid 2H NMR technique the unfrozen water content present in seasonally frozen boreal forest soils was quantified and related to biotic CO2 efflux in laboratory microcosms maintained at temperatures between −0.5 and −8 °C. In both soils the unfrozen water content had an exponential relationship with temperature and was increased by addition of KCl solutions of defined osmotic potential. Approximately 13% unfrozen water was required to release the dependence of soil respiration on unfrozen water content. Depending on the osmotic potential of soil solution, this threshold unfrozen water content was associated with temperatures down to −6 °C; yet if temperature were the predictor of CO2 efflux, then the abrupt increase in the temperature sensitivity of CO2 efflux was associated with −2 °C, except in soils amended with −1500 kPa KCl which did not show any abrupt changes in temperature sensitivity. The KCl-amendments also had the effect of decreasing Q10 values and activation energies (Ea) by factors of 100 and three, respectively, to values comparable with those for soil respiration in unfrozen soil. The disparity between the threshold temperatures and the reductions in Q10 values and activation energies after KCl amendment indicates the significance of unfrozen water availability as an environmental control of equal importance to temperature acting on sub-zero soil respiration. However, this significance was diminished when soils were supplied with abundant labile C (sucrose) and the influences of other environmental controls, allied to the solubility and diffusion of respiratory substrates and gases, are considered to increase.  相似文献   

10.
The Antarctic dry valleys are characterized by extremely low temperatures, dry conditions and lack of conspicuous terrestrial autotrophs, but the soils contain organic C, emit CO2 and support communities of heterotrophic soil organisms. We have examined the role of modern lacustrine detritus as a driver of soil respiration in the Garwood Valley, Antarctica, by characterizing the composition and mineralization of both lacustrine detritus and soil organic matter, and relating these properties to soil respiration and the abiotic controls on soil respiration. Laboratory mineralization of organic C in soils from different, geomorphically defined, landscape elements at 10 °C was comparable with decomposition of lacustrine detritus (mean residence times between 115 and 345 d for the detritus and 410 and 1670 d for soil organic matter). The chemical composition of the detritus (C-to-N ratio=9:1-12:1 and low alkyl-C-to-O-alkyl-C ratio in solid-state 13C nuclear magnetic resonance spectroscopy) indicated that it was a labile, high quality resource for micro-organisms. Initial (0-6 d at 10 °C) respiratory responses to glucose, glycine and NH4Cl addition were positive in all the soils tested, indicating both C and N limitations on soil respiration. However, over the longer term (up to 48 d at 10 °C) differential responses occurred. Glucose addition led to net C mineralization in most of the soils. In the lake shore soils, which contained accumulated lacustrine organic matter, glucose led to substantial priming of the decomposition of the indigenous organic matter, indicating a C or energetic limitation to mineralization in that soil. By contrast, over 48 d, glycine addition led to no net C mineralization in all soils except stream edge and lake shore soils, indicating either substantial assimilation of the added C (and N), or no detectable utilization of the glycine. The Q10 values for basal respiration over the −0.5-20 °C temperature range were between 1.4 and 3.3 for the different soils, increasing to between 3.4 and 6.9 for glucose-induced respiration, and showed a temperature dependence with Q10 increasing with declining temperature. Taken together, our results strongly support contemporaneous lacustrine detritus, blown from the lake shore, as an important driver of soil respiration in the Antarctic dry valley soils.  相似文献   

11.
A 49-day incubation experiment was carried out with the addition of field-grown maize stem and leaf residues to soil at three different temperatures (5, 15, and 25 °C). The aim was to study the effects of two transgenic Bt-maize varieties in comparison to their two parental non-Bt varieties on the mineralization of the residues, on their incorporation into the microbial biomass and on changes in the microbial community structure. The stem and leaf residues of Novelis-Bt contained 3.9 μg g−1 dry weight of the Bt toxin Cry1Ab and those of Valmont-Bt only 0.8 μg g−1. The residues of the two parental non-Bt varieties Nobilis and Prelude contained higher concentrations of ergosterol (+220%) and glucosamine (+190%) and had a larger fungal C-to-bacterial C ratio (+240%) than the two Bt varieties. After adding the Bt residues, an initial peak in respiration of an extra 700 μg CO2-C g−1 soil or 4% of the added amount was observed in comparison to the two non-Bt varieties at all three temperatures. On average of the four varieties, 19-38% of the maize C added was mineralized during the 49-day incubation at the three different temperatures. The overall mean increase in total maize-derived CO2 evolution corresponded to a Q10 value of 1.4 for both temperature steps, i.e. from 5 to 15 °C and from 15 to 25 °C. The addition of maize residues led to a strong increase in all microbial properties analyzed. The highest contents were always measured at 5 °C and the lowest at 25 °C. The variety-specific contents of microbial biomass C, biomass N, ATP and adenylates increased in the order Novelis-Bt ? Prelude<Valmont-Bt ? Nobilis. The mineralization of Novelis-Bt residues with the highest Bt concentration and lowest N concentration and their incorporation into the microbial biomass was significantly reduced compared to the parental non-Bt variety Nobilis. These negative effects increased considerably from 5 to 25 °C. The transgenic Bt variety Valmont did not show further significant effects except for the initial peak in respiration at any temperature.  相似文献   

12.
Carbon isotopic composition of soils subjected to C3-C4 vegetation change is a suitable tool for the estimation of C turnover in soil organic matter (SOM) pools. We hypothesized that the biological availability of SOM pools is inversely proportional to their thermal stability. Soil samples from a field plot with 10.5 years of cultivation of the C4 plant Miscanthus×gigantheus and from a reference plot under C3 grassland vegetation were analysed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). According to differential weight losses (dTG) and energy release or consumption (DSC), five SOM pools with increasing thermal stability were distinguished: (I) 20-190 °C, (II) 190-310 °C, (III) 310-390 °C, (IV) 390-480 °C, and (V) 480-1000 °C. Their δ13C values were analysed by EA-IRMS. The weight losses in pool I were connected with water evaporation, since no significant C losses were measured and δ13C values remained unchanged. The δ13C of pools II and III in soil samples under Miscanthus were closer to the δ13C of the Miscanthus plant tissues (−11.8‰) compared to the thermally stable SOM pool V (−19.5‰). The portion of the Miscanthus-derived C4-C in total SOM in 0-5 cm reached 55.4% in the 10.5 years. The C4-C contribution in pool II was 60% and decreased down to 6% in pool V. The mean residence times (MRT) of SOM pools II, III, and IV were similar (11.6, 12.2, and 15.4 years, respectively), while pool V had a MRT of 163 years. Therefore, we concluded that the biological availability of thermal labile SOM pools (<480 °C) was higher, than that of the thermal stable pool decomposed above 480 °C. However, the increase of SOM stability with rising temperature was not gradual. Therefore, the applicability of the TG-DSC for the separation of SOM pools with different biological availability is limited.  相似文献   

13.
To compare factors that control methane flux in forest soils, we studied three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in Chubu district, central Japan. The three sites are located at different altitudes: 630 m (SET), 1010 m (INB), and 1350 m (OSK). Methane was absorbed at every site. The highest uptake rate was observed in the middle-altitude soil (INB, 5.89 mg CH4 m−2 d−1), which was the only site where methane uptake rate was correlated with air and soil surface temperatures. Methane flux in the field was not correlated with water content, inorganic N content, or water-soluble organic carbon. C/N ratio was correlated with methane flux (r=0.64,p<0.001). The results suggest that some organic inhibitors might be produced through decomposition of organic matter. There was a negative correlation between methane uptake rate and water-soluble Al (r=−0.63,p<0.001). Inhibition of methane consumption by 1 and 5 mM Al solutions was observed in laboratory incubation. This result suggests that water-soluble Al may be a factor controlling methane uptake. Multiple regression with a backward-elimination procedure identified three variables that were significantly associated with methane flux in the field (p<0.05): air temperature, C/N ratio, and the concentration of water-soluble Al.  相似文献   

14.
Quantification of microbial activities involved in soil organic carbon (SOC) decomposition is critical for the prediction of the long-term impact of climate change on soil respiration (SR) and SOC stock. Although the temperature sensitivity of SR is especially critical in semi-arid regions, such as North West Tunisia, where the SOC stock is low, little research has been carried out in these environments. More needs to be known about factors, such as SOC availability that influence temperature sensitivity. In this study, soil samples were incubated with and without glucose addition for 28 days after a 28-day pre-incubation period. Pre-incubation and incubation was carried out at 20 °C, 30 °C, 40 °C and 50 °C. Respiration measurements were taken with temperature, glucose addition and incubation time as independent variables. The highest pre-incubation temperature reduced the temperature sensitivity of SR during the subsequent incubation period, both with and without glucose addition. Soil samples pre-incubated at 50 °C had the lowest SR at all subsequent incubation temperatures and the lowest temperature sensitivity of SR, even after glucose addition. However, after glucose addition, the effect of a high pre-incubation temperature on soil respiration lasted only two days. Measuring the water-soluble carbon (WSC) in soil samples suggested that the high pre-incubation temperature may have killed part of the microbial biomass, modified microbial communities or solubilized SOC. For quantifying the possible effect of global warming, in particular heat waves, on soil respiration in the soil studied, the results indicate a moderate response of soil respiration to temperature at high temperatures, as shown by Q10 close to 1.7, even in the range 40-50 °C.  相似文献   

15.
Pseudomonas sp. 30-3, a toluene degrading microorganism isolated from oil-contaminated Antarctic soils, was shown to form aggregated flocs of cells when exposed to temperatures of 22 and 4 °C, with an increase in aggregation at 4 °C. This was speculated to be due to the secretion of an extracellular polymeric substance (EPS), thus protecting the organism from cold or frost damage. The flocs of cells were stained with the Live/Dead BacLight Bacterial Viability kit and found to be viable cells. The EPS was identified by lectin binding analysis to consist of N-acetyl-d-glucosamine and N-acetylneuraminic acid. An enzyme-linked lectinosorbent assay was also carried out to quantify the amount of EPS produced at 37, 22 and 4 °C. Results showed that at 37 °C the amount of EPS secreted was low, but there was little difference in the amount of EPS secreted at 22 and 4 °C by Pseudomonas sp. 30-3.  相似文献   

16.
Dimethyl sulphoxide (DMSO) at 14 mM inhibits CH4 oxidation in forest soil, but the inhibition mechanism is unknown. When soil slurries are incubated in gas tight flasks, there is a lag of about 45 h before DMSO inhibits CH4 oxidation. We tried to determine if some metabolic compound derived from DMSO, as a result of microbial activity, is responsible for the inhibition. Dimethyl sulphide (DMS) accumulated in the sealed flasks up to 5-83 μl l−1 in the headspace during a 2-week period. DMS at 1 μl l−1 in the headspace (0.64 μM in soil-water slurry) had a negligible effect on CH4 oxidation but 50 μl l−1 DMS (32 μM) inhibited CH4 oxidation completely. However, the inhibition by DMSO was already evident after 45 h, when DMS concentrations were generally non-inhibiting (0.1-0.7 μl l−1). DMSO was also shown to inhibit CH4 oxidation when the DMS produced was continuously removed. Results suggest that the production of DMS from DMSO makes a minor contribution to the inhibition of CH4 oxidation by DMSO with incubation times relevant in CH4 oxidation studies.  相似文献   

17.
Methane oxidation in temperate soils: effects of inorganic N   总被引:1,自引:0,他引:1  
Additions of inorganic nitrogen (N) to an oak soil with significant potential for methane (CH4) oxidation resulted in differential reduction in CH4 oxidation capacity depending on N species added. Nitrate, rather than nitrite or ammonium, proved to be the strongest inhibitor of CH4 oxidation in oak soil. Both high (CH4 at 10 μl l−1) and low (CH4 at 5 ml l−1) affinity CH4 oxidation in oak soil was completely inhibited at a nitrate concentration similar to that present in an alder soil from the same experimental site. The alder soil showed no capacity for low affinity CH4 oxidation. A ‘low nitrate’ forest soil (oak) showed high affinity, low capacity CH4 oxidation upto around 1 ml l−1 CH4, above which both high and low affinity CH4 oxidation became apparent following a lag phase, indicating either an induced high affinity uptake mechanism or the existence of distinct low affinity and high affinity methanotroph populations. High affinity CH4 oxidation became saturated at CH4 concentrations >500 μl l−1, while low affinity CH4 oxidation became saturated at ∼30 ml l−1 CH4. In a ‘high nitrate’ forest soil (alder), CH4 oxidation appeared to be due to high affinity CH4 oxidation only and became undetectable at CH4 concentrations >5 ml l−1.  相似文献   

18.
The effect of aluminium on methane oxidation was examined from incubation experiments involving the addition of several concentrations of Al solution (0.1, 0.2, 0.5, 1, 3 and 5 mM) to two soil samples that possessed different CH4 oxidation potential. Atmospheric CH4 oxidation activity was inhibited by the addition of as little as 0.1 mM Al solution (approximately 0.5 μg of Al per gram dry weight soil) to a forest soil that contained low water-soluble Al and possessed a high CH4 oxidation potential. Our results indicate that Al inhibition of CH4 oxidation activity is concentration-dependant after a certain time and the inhibition increases gradually over time until at least 96 h have elapsed. We also found that relatively small amounts of Al additions, such as 10-20 μg per gram dry weight of soil, halved the CH4 oxidation rate compared to the control, regardless of the original CH4 oxidation potential of the soil. Since the Al concentrations used in our experiment are often observed in forest soils, we can assume that Al acts as an important inhibitor of CH4 oxidation in forest soils under natural conditions. The sharp falls and a continuous decrease in CH4 oxidation rate in other forest samples with the addition of deionized water implies that the water-soluble Al contained in soils contributes to the inhibition of CH4 oxidation rate. This result suggests that precipitation causes a relatively prolonged inhibition of CH4 oxidation in soils containing a high concentration of water-soluble Al.  相似文献   

19.
Emission of N2O and CH4 oxidation rates were measured from soils of contrasting (30-75%) water-filled pore space (WFPS). Oxidation rates of 13C-CH4 were determined after application of 10 μl 13C-CH4 l−1 (10 at. % excess 13C) to soil headspace and comparisons made with estimates from changes in net CH4 emission in these treatments and under ambient CH4 where no 13C-CH4 had been applied. We found a significant effect of soil WFPS on 13C-CH4 oxidation rates and evidence for oxidation of 2.2 μg 13C-CH4 d−1 occurring in the 75% WFPS soil, which may have been either aerobic oxidation occurring in aerobic microsites in this soil or anaerobic CH4 oxidation. The lowest 13C-CH4 oxidation rate was measured in the 30% WFPS soil and was attributed to inhibition of methanotroph activity in this dry soil. However, oxidation was lowest in the wetter soils when estimated from changes in concentration of 12+13C-CH4. Thus, both methanogenesis and CH4 oxidation may have been occurring simultaneously in these wet soils, indicating the advantage of using a stable isotope approach to determine oxidation rates. Application of 13C-CH4 at 10 μl 13C-CH4 l−1 resulted in more rapid oxidation than under ambient CH4 conditions, suggesting CH4 oxidation in this soil was substrate limited, particularly in the wetter soils. Application of and (80 mg N kg soil−1; 9.9 at.% excess 15N) to different replicates enabled determination of the respective contributions of nitrification and denitrification to N2O emissions. The highest N2O emission (119 μg 14+15N-N2O kg soil−1 over 72 h) was measured from the 75% WFPS soil and was mostly produced during denitrification (18.1 μg 15N-N2O kg soil−1; 90% of 15N-N2O from this treatment). Strong negative correlations between 14+15N-N2O emissions, denitrified 15N-N2O emissions and 13C-CH4 concentrations (r=−0.93 to −0.95, N2O; r=−0.87 to −0.95, denitrified 15N-N2O; P<0.05) suggest a close relationship between CH4 oxidation and denitrification in our soil, the nature of which requires further investigation.  相似文献   

20.
Few studies have examined the kinetics of gross nitrogen (N) mineralization, immobilization, and nitrification rates in soil at temperatures above 15 °C. In this study, 15N isotopic pool dilution was used to evaluate the influence of retaining standing crop residues after harvest versus burning crop residues on short-term gross N transformation rates at constant temperatures of 5, 10, 15, 20, 30, and 40 °C. Gross N mineralization rates calculated per unit soil organic carbon were between 1 and 7 times lower in stubble burnt treatments than in stubble retained treatments. In addition, significant declines in soil microbial biomass (P=0.05) and CO2-C evolution (P<0.001) were associated with stubble burning. Immobilization rates were of similar magnitude to gross N mineralization rates in stubble retained and burnt treatments incubated between 5 and 20 °C, but demonstrated significant divergence from gross N mineralization rates at temperatures between 20 and 40 °C. Separation in the mineralization immobilization turnover (MIT) in soil at high temperatures was not due to a lack of available C substrate, as glucose-C was added to one treatment to test this assumption. Nitrification increased linearly with temperature (P<0.001) and dominated over immobilization for available ammonium in soil incubated at 5 °C, and above 20 °C indicating that nitrification is often the principal process controlling consumption in a semi-arid soil. These findings illustrate that the MIT at soil temperatures above 20 °C is not tightly coupled, and consequently that the potential for loss of N (as nitrate) is considerably greater due to increased nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号