首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

2.
Methane (CH4) uptake by soil can possibly be suppressed more in regions with heavy summer precipitation, such as those under the East Asian monsoon climate, as compared to that in regions with a dry summer. In order to determine how precipitation patterns affect seasonal and spatial variations in CH4 fluxes in temperate forest soils, such fluxes and selected environmental variables were measured on different parts of a hill slope in a cypress forest in central Japan. On the upper and middle parts of the slope, CH4 uptake was observed throughout the year, and the uptake rates increased slightly with soil temperature and decreased with soil water content. The CH4 flux predicted using data for the middle and upper parts of the slope ranged from −1.12 to −0.83 kg-CH4 ha−1 y−1 (i.e. CH4 uptake by soil) and from −2.30 to −2.04 kg-CH4 ha−1 y−1, respectively. In contrast, in the relatively wet lower part of the slope near an in-stream wetland, large CH4 emissions (>2 mg-CH4 m−1 d−1) were observed during the rainy summer. In this wetter plot, the soil functioned as a net annual CH4 source in a rainy year. Hence the variation in CH4 flux with a change in soil water conditions and soil temperature on the lower part of the slope contrasted to that on the upper and middle parts of the slope. The predicted CH4 flux for this lower plot ranged from −0.45 kg-CH4 ha−1 y−1 in a dry year to 1.80 kg-CH4 ha−1 y−1 in a rainy year. Our results suggest that consideration of the soil water conditions across a watershed is important for estimating the CH4 budgets for entire forest watershed, particularly in regions subject to a wet summer.  相似文献   

3.
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential.  相似文献   

4.
Emissions of N2O and CH4 and CH4 oxidation rates were measured from Lolium perenne swards in a short-term study under ambient (36 Pa) and elevated (60 Pa) atmospheric CO2 at the Free Air Carbon dioxide Enrichment experiment, Eschikon, Switzerland. Elevated pCO2 increased (P<0.05) N2O emissions from high N fertilised (11.2 g N m−2) swards by 69%, but had no significant effect on net emissions of CH4. Application of 13C-CH4 (11 μl l−1; 11 at.% excess 13C) to closed chamber headspaces in microplots enabled determination of rates of 13C-CH4 oxidation even when net CH4 fluxes from main plots were positive. We found a significant interaction between fertiliser application rate and atmospheric pCO2 on 13C-CH4 oxidation rates that was attributed to differences in gross nitrification rates and C and N availability. CH4 oxidation was slower and thought to be temporarily inhibited in the high N ambient pCO2 sward. The most rapid CH4 oxidation of 14.6 μg 13C-CH4 m−2 h−1 was measured in the high fertilised elevated pCO2 sward, and we concluded that either elevated pCO2 had a stimulatory effect on CH4 oxidation or inhibition of oxidation following fertiliser application was lowered under elevated pCO2. Application of 14NH415NO3 and 15NH415NO3 (10 at.% excess 15N) to different replicates enabled determination of the respective contributions of nitrification and denitrification to N2O emissions. Inhibition of CH4 oxidation in the high fertilised ambient pCO2 sward, due to competition between NH3 and CH4 for methane monooxygenase enzymes or toxic effects of NH2OH or NO2 produced during nitrification, was hypothesised to increase gross nitrification (12.0 mg N kg dry soil−1) and N2O emissions during nitrification (327 mg 15N-N2O m−2 over 11 d). Our results indicate that increasing atmospheric concentrations of CO2 may increase emissions of N2O by denitrification, lower nitrification rates and either increase or decrease the ability of soil to act as a sink for atmospheric CH4 depending on fertiliser management.  相似文献   

5.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

6.
Although information regarding the spatial variability of soil respiration is important for understanding carbon cycling and developing a suitable sampling design for estimating average soil respiration, it remains relatively understudied compared to temporal changes. In this study, soil respiration was measured at 35 locations by season on a slope of Japanese cedar forest in order to examine temporal changes in the spatial distribution of soil respiration. Spatial variability of soil respiration varied between seasons, with the highest coefficient variation in winter (42%) and lowest in summer (26%). Semivariogram analysis and kriged maps revealed different patterns of spatial distribution in each season. Factors affecting the spatial variability were relief index (autumn), soil hardness of the A layer (winter), soil hardness at 50 cm depth (spring) and the altitude and relief index (summer). Annual soil respiration (average: 39 mol m−2 y−1) varied from 26 mol m−2 y−1 to 55 mol m−2 y−1 between the 35 locations and was higher in the upper part of the slope and lower in the lower part. The average Q10 value was 2.3, varying from 1.3 to 3.0 among the locations. These findings suggest that insufficient information on the spatial variability of soil respiration and imbalanced sampling could bias estimates of current and future carbon budgets.  相似文献   

7.
Tropical savanna ecosystems are a major contributor to global CO2, CH4 and N2O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N2O and CH4 exchange. We measured soil CO2, CH4 and N2O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1-2 years). There was no seasonal change and no fire effect upon soil N2O exchange. Soil N2O fluxes were very low, generally between −1.0 and 1.0 μg N m−2 h−1, and often below the minimum detection limit. There was an increase in soil NH4+ in the months after the 2008 fire event, but no change in soil NO3. There was considerable nitrification in the early wet season but minimal nitrification at all other times.Savanna soil was generally a net CH4 sink that equated to between −2.0 and −1.6 kg CH4 ha−1 y−1 with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH4 uptake. There were short periods of soil CH4 emission, up to 20 μg C m−2 h−1, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO2 fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH4 fluxes, but a much stronger relationship with soil CO2 fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N2O source, and possibly even a sink. Annual soil CH4 flux measurements suggest that the 1.9 million km2 of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO2-e per year. This sink estimate would offset potentially 10% of Australian transport related CO2-e emissions. This CH4 sink estimate does not include concurrent CH4 emissions from termite mounds or ephemeral wetlands in Australian savannas.  相似文献   

8.
To determine the sum of ‘direct’ and ‘indirect’ effects of climatic change on enchytraeid activity and C fluxes from an organic soil we assessed the influence of temperature (4, 10 and 15 °C incubations) on enchytraeid populations and soil CO2 and CH4 fluxes over 116 days. Moisture was maintained at 60% of soil dry weight during the experimental period and measurements of enchytraeid biomass and numbers, and CO2 and CH4 fluxes were made after 3, 16, 33, 44, 65, 86 and 116 days. Enchytraeid population numbers and biomass increased in all temperature treatments with the greatest increase produced at 15 °C (to over threefold initial values by day 86). Results also showed that enchytraeid activity increased CO2 fluxes by 10.7±4.5, 3.4±4.0 and 26.8±2.6% in 4, 10 and 15 °C treatments, respectively, with the greatest CO2 production observed at 15 °C for the entire 116 day incubation period (P<0.05). The soil respiratory quotient analyses at lower temperatures (i.e. 4-10 °C) gave a Q10 of 1.7 and 1.9 with and without enchytraeids, respectively. At temperatures above 10 °C (i.e. 10-15 °C) Q10 significantly increased (P<0.01) and was 25% greater in the presence of enchytraeids (Q10=3.4) than without (Q10=2.6). In contrast to CO2 production, no significant relationships were observed between net CH4 fluxes and temperature and only time showed a significant effect on CH4 production (P<0.01).Total soil CO2 production was positively linked with enchytraeid biomass and mean soil CO2-C production was 77.01±6.05 CO2-C μg mg enchytraeid tissue−1 day−1 irrespective of temperature treatment. This positive relationship was used to build a two step regression model to estimate the effects of temperature on enchytraeid biomass and soil CO2 respiration in the field. Predictions of potential CO2 production were made using enchytraeid biomass data obtained in the field from two upland grassland sites (Sourhope and Great Dun Fell at the Moor House Nature Reserve, both in the UK). The findings of this work suggest that a 5 °C increase in atmospheric temperature above mean ambient temperature could have the potential to produce a significant increase in enchytraeid biomass resulting in a near twofold increase in soil CO2 release from both soil types. The interaction between temperature and soil biology will clearly be an important determinant of soil respiration responses to global warming.  相似文献   

9.
Lead tolerance in individuals of the earthworm species Aporrectodea rosea collected from a clay pigeon shooting site was investigated. Lead concentrations in the shooting site soil and the un-shot control site were 6410±2250 and 296±98 mgPb kg−1 dry weight, respectively. Of these concentrations 1050±240 and 12±9 mgPb kg−1 dry weight were suggested to be available, using ammonium acetate (1 M), respectively. With respect to earthworm body burdens of lead the shooting site earthworms had a body burden of 6.1±1.2 mgPb g−1 dry weight while the uncontaminated site earthworms had almost a 1000-times lower body burden of 7.1±9.0 μgPb g−1 dry weight. Lead tolerance was assessed in uncontaminated soil that had been augmented with lead, using lead nitrate solutions, to obtain lead concentrations in soil of 0.5, 5 and 50 mgPb kg−1 dry weight. Earthworms were exposed for 28 days during which time a semi-qualitative assessment was made of their condition. Results showed no decrease in condition in the shooting site earthworms with increasing exposure time or concentration. In contrast, earthworms collected from an uncontaminated site showed a significant (p<0.05) decrease in condition when exposed to lead concentrations above, and including, a concentration of 5 mg kg−1 dry weight soil. These results suggested lead tolerance in the shooting site earthworms.  相似文献   

10.
To evaluate the pathways and dynamics of inorganic nitrogen (N) deposition in previously N-limited ecosystems, field additions of 15N tracers were conducted in two mountain ecosystems, a forest dominated by Norway spruce (Picea abies) and a nearby meadow, at the Alptal research site in central Switzerland. This site is moderately impacted by N from agricultural and combustion sources, with a bulk atmospheric deposition of 12 kg N ha−1 y−1 equally divided between NH4+ and NO3. Pulses of 15NH4+ and 15NO3 were applied separately as tracers on plots of 2.25 m2. Several ecosystem pools were sampled at short to longer-term intervals (from a few hours to 1 year), above and belowground biomass (excluding trees), litter layer, soil LF horizon (approx. 5-0 cm), A horizon (approx. 0-5 cm) and gleyic B horizon (5-20 cm). Furthermore, extractable inorganic N, and microbial N pools were analysed in the LF and A horizons. Tracer recovery patterns were quite similar in both ecosystems, with most of the tracer retained in the soil pool. At the short-term (up to 1 week), up to 16% of both tracers remained extractable or entered the microbial biomass. However, up to 30% of the added 15NO3 was immobilised just after 1 h, and probably chemically bound to soil organic matter. 16% of the NH4+ tracer was also immobilised within hours, but it is not clear how much was bound to soil organic matter or fixed between layers of illite-type clay. While the extractable and microbial pools lost 15N over time, a long-term increase in 15N was measured in the roots. Otherwise, differences in recovery a few hours after labelling and 1 year later were surprisingly small. Overall, more NO3 tracer than NH4+ tracer was recovered in the soil. This was due to a strong aboveground uptake of the deposited NH4+ by the ground vegetation, especially by mosses.  相似文献   

11.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   

12.
Methane oxidation in temperate soils: effects of inorganic N   总被引:1,自引:0,他引:1  
Additions of inorganic nitrogen (N) to an oak soil with significant potential for methane (CH4) oxidation resulted in differential reduction in CH4 oxidation capacity depending on N species added. Nitrate, rather than nitrite or ammonium, proved to be the strongest inhibitor of CH4 oxidation in oak soil. Both high (CH4 at 10 μl l−1) and low (CH4 at 5 ml l−1) affinity CH4 oxidation in oak soil was completely inhibited at a nitrate concentration similar to that present in an alder soil from the same experimental site. The alder soil showed no capacity for low affinity CH4 oxidation. A ‘low nitrate’ forest soil (oak) showed high affinity, low capacity CH4 oxidation upto around 1 ml l−1 CH4, above which both high and low affinity CH4 oxidation became apparent following a lag phase, indicating either an induced high affinity uptake mechanism or the existence of distinct low affinity and high affinity methanotroph populations. High affinity CH4 oxidation became saturated at CH4 concentrations >500 μl l−1, while low affinity CH4 oxidation became saturated at ∼30 ml l−1 CH4. In a ‘high nitrate’ forest soil (alder), CH4 oxidation appeared to be due to high affinity CH4 oxidation only and became undetectable at CH4 concentrations >5 ml l−1.  相似文献   

13.
There is now clear evidence for a prolonged increase in atmospheric CO2 concentrations and enrichment of the biosphere with N. Understanding the fate of C in the plant-soil system under different CO2 and N regimes is therefore of considerable importance in predicting the environmental effects of climate change and in predicting the sustainability of ecosystems. Swards of Lolium perenne were grown from seed in a Eutric Cambisol at either ambient (ca. 350 μmol mol−1) or elevated (700 μmol mol−1) atmospheric pCO2 and subjected to two inorganic N fertilizer regimes (no added N and 70 kg N ha−1 month−1). After germination, soil solution concentrations of dissolved organic C (DOC), dissolved inorganic N (DIN), dissolved organic N (DON), phenolics and H+ were measured at five depths down the soil profile over 3 months. The exploration of soil layers down the soil profile by roots caused transient increases in soil solution DOC, DON and phenolic concentrations, which then subsequently returned to lower quasi-stable concentrations. In general, the addition of N tended to increase DOC and DON concentrations while exposure to elevated pCO2 had the opposite effect. These treatment effects, however, gradually diminished over the duration of the experiment from the top of the soil profile downwards. The ambient pCO2 plus added N regime was the only treatment to maintain a notable difference in soil solution solute concentration, relative to other treatments. This effect on soil solution chemistry appeared to be largely indirect resulting from increased plant growth and a decrease in soil moisture content. Our results show that although plant growth responses to elevated pCO2 are critically dependent upon N availability, the organic chemistry of the soil solution is relatively insensitive to changes in plant growth once the plants have become established.  相似文献   

14.
Emission of N2O and CH4 oxidation rates were measured from soils of contrasting (30-75%) water-filled pore space (WFPS). Oxidation rates of 13C-CH4 were determined after application of 10 μl 13C-CH4 l−1 (10 at. % excess 13C) to soil headspace and comparisons made with estimates from changes in net CH4 emission in these treatments and under ambient CH4 where no 13C-CH4 had been applied. We found a significant effect of soil WFPS on 13C-CH4 oxidation rates and evidence for oxidation of 2.2 μg 13C-CH4 d−1 occurring in the 75% WFPS soil, which may have been either aerobic oxidation occurring in aerobic microsites in this soil or anaerobic CH4 oxidation. The lowest 13C-CH4 oxidation rate was measured in the 30% WFPS soil and was attributed to inhibition of methanotroph activity in this dry soil. However, oxidation was lowest in the wetter soils when estimated from changes in concentration of 12+13C-CH4. Thus, both methanogenesis and CH4 oxidation may have been occurring simultaneously in these wet soils, indicating the advantage of using a stable isotope approach to determine oxidation rates. Application of 13C-CH4 at 10 μl 13C-CH4 l−1 resulted in more rapid oxidation than under ambient CH4 conditions, suggesting CH4 oxidation in this soil was substrate limited, particularly in the wetter soils. Application of and (80 mg N kg soil−1; 9.9 at.% excess 15N) to different replicates enabled determination of the respective contributions of nitrification and denitrification to N2O emissions. The highest N2O emission (119 μg 14+15N-N2O kg soil−1 over 72 h) was measured from the 75% WFPS soil and was mostly produced during denitrification (18.1 μg 15N-N2O kg soil−1; 90% of 15N-N2O from this treatment). Strong negative correlations between 14+15N-N2O emissions, denitrified 15N-N2O emissions and 13C-CH4 concentrations (r=−0.93 to −0.95, N2O; r=−0.87 to −0.95, denitrified 15N-N2O; P<0.05) suggest a close relationship between CH4 oxidation and denitrification in our soil, the nature of which requires further investigation.  相似文献   

15.
In soil incubation experiments we examined if there are differences in the kinetic parameters of atmospheric methane (CH4) oxidation in soils of upland forests and forested peatlands. All soils showed net uptake of atmospheric CH4. One of the upland forests included also managed (clear-cut with or without previous liming or N-fertilization) study plots. The CH4 oxidation in the forested peat soil had a higher Km (510 μl l−1) and Vmax (6.2 nmol CH4 cm−3 h−1) than the upland forest soils (Km from 5 to 18 μl l−1 and Vmax from 0.15 to 1.7 nmol CH4 cm−3 h−1). The forest managements did not affect the Km-values. At atmospheric CH4 concentration, the upland forest soils had a higher CH4 oxidation activity than the forested peat soil; at high CH4 concentrations the reverse was true. Most of the soils oxidised CH4 in the studied pH range from 3 to 7.5. The pH optimum for CH4 oxidation varied from 4 to 7.5. Some of the soils had a pH optimum for CH4 oxidation that was above their natural pH. The CH4 oxidation in the upland forest soils and in the peat soil did not differ in their sensitivities to (NH4)2SO4 or K2SO4 (used as a non-ammonium salt control). Inhibition of CH4 oxidation by (NH4)2SO4 resulted mainly from a general salt effect (osmotic stress) though NH4+ did have some additional inhibitory properties. Both salts were better inhibitors of CH4 oxidation than respiration. The differences in the CH4 oxidation kinetics in the forested peat soil and in the upland forest soils reveal that there are differences in the physiologies of the CH4 oxidisers in these soils.  相似文献   

16.
Increased root exudation and a related stimulation of rhizosphere-microbial growth have been hypothesised as possible explanations for a lower nitrogen- (N-) nutritional status of plants grown under elevated atmospheric CO2 concentrations, due to enhanced plant-microbial N competition in the rhizosphere. Leguminous plants may be able to counterbalance the enhanced N requirement by increased symbiotic N2 fixation. Only limited information is available about the factors determining the stimulation of symbiotic N2 fixation in response to elevated CO2.In this study, short-term effects of elevated CO2 on quality and quantity of root exudation, and on carbon supply to the nodules were assessed in Phaseolus vulgaris, grown in soil culture with limited (30 mg N kg−1 soil) and sufficient N supply (200 mg N kg−1 soil), at ambient (400 μmol mol−1) and elevated (800 μmol mol−1) atmospheric CO2 concentrations.Elevated CO2 reduced N tissue concentrations in both N treatments, accelerated the expression of N deficiency symptoms in the N-limited variant, but did not affect plant biomass production. 14CO2 pulse-chase labelling revealed no indication for a general increase in root exudation with subsequent stimulation of rhizosphere microbial growth, resulting in increased N-competition in the rhizosphere at elevated CO2. However, a CO2-induced stimulation in root exudation of sugars and malate as a chemo-attractant for rhizobia was detected in 0.5-1.5 cm apical root zones as potential infection sites. Particularly in nodules, elevated CO2 increased the accumulation of malate as a major carbon source for the microsymbiont and of malonate with essential functions for nodule development. Nodule number, biomass and the proportion of leghaemoglobin-producing nodules were also enhanced. The release of nod-gene-inducing flavonoids (genistein, daidzein and coumestrol) was stimulated under elevated CO2, independent of the N supply, and was already detectable at early stages of seedling development at 6 days after sowing.  相似文献   

17.
We quantified the relationship between water table position and CO2 emissions by manipulating water table levels for two summers in microcosms installed in a Colorado subalpine fen. Water levels were manipulated in the microcosms by either adding water or removing water and ranged from +10 cm above the soil surface to 40 cm below the soil surface, with ambient water levels in the fen averaging +3 and +2 cm above the soil surface during 1998 and 1999, respectively. Microcosm installation had no significant effect on CO2 efflux; the 2 year means of natural and reference CO2 efflux were 205.4 and 213.9 mg CO2-C m−2 h−1, respectively (p=0.80). Mean CO2 emissions were lowest at the highest water tables (water +6 to +10 cm above the soil surface), averaging 133.8 mg CO2-C m−2 h−1, increased to 231.3 mg CO2-C m−2 h−1 when the water table was +1 to +5 cm above the soil surface and doubled to 453.7 mg CO2-C m−2 h−1, when the water table was 0-5 cm below the soil surface. However, further lowering of the water table had little additional effect on CO2 emissions, which averaged 470.3 and 401.1 mg CO2-C m−2 h−1 when the water table was 6-10 cm, and 11-40 cm beneath the soil surface, respectively. The large increase in CO2 emissions as we experimentally lowered the water table beneath the soil surface, coupled with no increase in CO2 emissions as we furthered lowered water tables beneath the soil surface, suggest the presence of an easily oxidized labile carbon pool near the soil surface.  相似文献   

18.
Legumes increase the plant-available N pool in soil, but might also increase NO3 leaching to groundwater. To minimize NO3 leaching, N-release processes and the contribution of legumes to NO3 concentrations in soil must be known. Our objectives were (1) to quantify NO3-N export to >0.3 m soil depth from three legume monocultures (Medicago x varia Martyn, Onobrychis viciifolia Scop., Lathyrus pratensis L.) and from three bare ground plots. Furthermore, we (2) tested if it is possible to apply a mixing model for NO3 in soil solution based on its dual isotope signals, and (3) estimated the contribution of legume mineralization to NO3 concentrations in soil solution under field conditions. We collected rainfall and soil solution at 0.3 m soil depth during 1 year, and determined NO3 concentrations and δ15N and δ18O of NO3 for >11.5 mg NO3-N l−1. We incubated soil samples to assess potential N release by mineralization and determined δ15N and δ18O signals of NO3 derived from mineralization of non-leguminous and leguminous organic matter.Mean annual N export to >0.3 m soil depth was highest in bare ground plots (9.7 g NO3-N m−2; the SD reflects the spatial variation) followed by Medicago x varia monoculture (6.0 g NO3-N m−2). The O. viciifolia and L. pratensis monocultures had a much lower mean annual N export (0.5 and 0.3 g NO3-N m−2). The averaged NO3-N leaching during 70 days was not significantly different between field estimates and incubation for the Medicago x varia Martyn monoculture.The δ15N and δ18O values in NO3 of rainfall (δ15N: 3.3±0.8‰; δ18O: 30.8±4.7‰), mineralization of non-leguminous SOM (9.3±0.9‰; 6.7±0.8‰), and mineralization of leguminous SOM (1.5±0.6‰; 5.1±0.9‰) were markedly different. Applying a linear mixing model based on these three sources to δ15N and δ18O values in NO3 of soil solution during winter 2003, we calculated 18-41% to originate from rainfall, 38-57% from mineralization of non-leguminous SOM, and 18-40% from mineralization of leguminous SOM.Our results demonstrate that (1) even under legumes NO3-N leaching was reduced compared to bare ground, (2) the application of a three-end-member mixing model for NO3 based on its dual isotope signals produced plausible results and suggests that under particular circumstances such models can be used to estimate the contributions of different NO3 sources in soil solution, and (3) in the 2nd year after establishment of legumes, they contributed approximately one-fourth to NO3-N loss.  相似文献   

19.
Elevated pCO2 increases the net primary production, C/N ratio, and C input to the soil and hence provides opportunities to sequester CO2-C in soils to mitigate anthropogenic CO2. The Swiss 9 y grassland FACE (free air carbon-dioxide enrichment) experiment enabled us to explore the potential of elevated pCO2 (60 Pa), plant species (Lolium perenne L. and Trifolium repens L.) and nitrogen fertilization (140 and 540 kg ha−1 y−1) on carbon sequestration and mineralization by a temperate grassland soil. Use of 13C in combination with respired CO2 enabled the identification of the origins of active fractions of soil organic carbon. Elevated pCO2 had no significant effect on total soil carbon, and total soil carbon was also independent of plant species and nitrogen fertilization. However, new (FACE-derived depleted 13C) input of carbon into the soil in the elevated pCO2 treatments was dependent on nitrogen fertilization and plant species. New carbon input into the top 15 cm of soil from L. perennne high nitrogen (LPH), L. perenne low nitrogen (LPL) and T. repens low nitrogen (TRL) treatments during the 9 y elevated pCO2 experiment was 9.3±2.0, 12.1±1.8 and 6.8±2.7 Mg C ha−1, respectively. Fractions of FACE-derived carbon in less protected soil particles >53 μm in size were higher than in <53 μm particles. In addition, elevated pCO2 increased CO2 emission over the 118 d incubation by 55, 61 and 13% from undisturbed soil from LPH, LPL and TRL treatments, respectively; but only by 13, 36, and 18%, respectively, from disturbed soil (without roots). Higher input of new carbon led to increased decomposition of older soil organic matter (priming effect), which was driven by the quantity (mainly roots) of newly input carbon (L. perenne) as well as the quality of old soil carbon (e.g. higher recalcitrance in T. repens). Based on these results, the potential of well managed and established temperate grassland soils to sequester carbon under continued increasing concentrations of atmospheric CO2 appears to be rather limited.  相似文献   

20.
The annual carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) dynamics were measured with static chambers on two organic agricultural soils with different soil characteristics. Site 1 had a peat layer of 30 cm, with an organic matter (OM) content of 74% in the top 20 cm. Site 2 had a peat layer of 70 cm but an OM content of only 40% in the top 20 cm. On both sites there were plots under barley and grass and also plots where the vegetation was removed. All soils were net sources of CO2 and N2O, but they consumed atmospheric CH4. Soils under barley had higher net CO2 emissions (830 g CO2-C m−2 yr−1) and N2O emissions (848 mg N2O-N m−2 yr−1) than those under grass (395 g CO2-C m−3 yr−1 and 275 mg N2O-N m−2 yr−1). Bare soils had the highest N2O emissions, mean 2350 mg N2O-N m−2 yr−1. The mean CH4 uptake rate from vegetated soils was 100 mg CH4-C m−3 yr−1 and from bare soils 55 mg CH4-C m−2 yr−1. The net CO2 emissions were higher from Site 2, which had a high peat bulk density and a low OM content derived from the addition of mineral soil to the peat during the cultivation history of that site. Despite the differences in soil characteristics, the mean N2O emissions were similar from vegetated peat soils from both sites. However, bare soils from Site 2 with mineral soil addition had N2O emissions of 2-9 times greater than those from Site 1. Site 1 consumed atmospheric CH4 at a higher rate than Site 2 with additional mineral soil. N2O emissions during winter were an important component of the N2O budget even though they varied greatly, ranging from 2 to 99% (mean 26%) of the annual emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号