首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The robustness of the assumption of equilibrium between native and added N during 15N isotope dilution has recently been questioned by Watson et al. (Soil Biol Biochem 32 (2000) 2019-2030). We re-analyzed their raw data using equations that consider the added and native NH4+ and NO3 pools as separate state variables. Gross mineralization rates and first-order rate constants for NH4+ and NO3 consumption were obtained by combining analytical integration of the differential equations with a non-linear fitting procedure. The first-order rate constants for NH4+ consumption and NO3 immobilization for the added NH4+ and NO3 pool were used to estimate gross mineralization rates and first-order rate constants for nitrification of native NH4+. The latter were 2-4 times lower than the first-order rate constants derived from the added N pool. This discrepancy between first-order rate constants for nitrification implies that one or more process rates estimated for the added N pools cannot be applied to the native N pools. Preferential use of the added N resulted in an overestimation of the gross mineralization by 1.5-2.5-fold, emphasizing the need for critical evaluation of the assumption of equilibrium before gross mineralization rates are calculated.  相似文献   

2.
Organic N solubilized by NH3(aq) was extracted from 15N-labelled or unlabelled soil, concentrated and added to non-extracted soil, which was incubated under aerobic conditions at 27±1°C. Gross N mineralization, gross N immobilization, and nitrification in soils with or without addition of unlabelled soluble organic N were estimated by models based on the dilution of the NH 4 + or NO inf3 sup- pools, which were labelled with 15N at the beginning of incubation. Mineralization of labelled organic N was measured by the appearance of label in the mineral N pool. Although gross N mineralization and gross N immobilization were increased in two soils between day 0 and day 7 following addition of unlabelled organic N solubilized by NH3(aq), there was no increase in net N mineralization. Solubilization of 15N-labelled organic N increased and the 15N enrichment of the soluble organic N decereased as the concentration of NH3(aq) added increased. A constant proportion of approximately one-quarter of the labelled organic N added at different rates to non-extracted soil was recovered in the mineral N pool after an incubation period of 14 days, and the availability ratios calculated from net N mineralization data were 1.1:1 and 2.1:1 for 111 and 186 mg added organic-N kg-1 soil, respectively, indicating that the mineralization of organic N was increased by solubilization.  相似文献   

3.
The effects of repeated synthetic fertilizer or cattle slurry applications at annual rates of 50, 100 or 200 m3 ha−1 yr−1 over a 38 year period were investigated with respect to herbage yield, N uptake and gross soil N dynamics at a permanent grassland site. While synthetic fertilizer had a sustained and constant effect on herbage yield and N uptake, increasing cattle slurry application rates increased the herbage yield and N uptake linearly over the entire observation period. Cattle slurry applications, two and four times the recommended rate (50 m3 ha−1 yr−1, 170 kg N ha−1), increased N uptake by 46 and 78%, respectively after 38 years. To explain the long-term effect, a 15N tracing study was carried out to identify the potential change in N dynamics under the various treatments. The analysis model evaluated process-specific rates, such as mineralization, from two organic-N pools, as well as nitrification from NH4+ and organic-N oxidation. Total mineralization was similar in all treatments. However, while in an unfertilized control treatment more than 90% of NH4+ production was related to mineralization of recalcitrant organic-N, a shift occurred toward a predominance of mineralization from labile organic-N in the cattle slurry treatments and this proportion increased with the increase in slurry application rate. Furthermore, the oxidation of recalcitrant organic-N shifted from a predominant NH4+ production in the control treatment, toward a predominant NO3 production (heterotrophic nitrification) in the cattle slurry treatments. The concomitant increase in heterotrophic nitrification and NH4+ oxidation with increasing cattle slurry application rate was mainly responsible for the increase in net NO3 production rate. Thus the increase in N uptake and herbage yield on the cattle slurry treatments could be related to NO3 rather than NH4+ production. The 15N tracing study was successful in revealing process-specific changes in the N cycle in relationship to long-term repeated amendments.  相似文献   

4.
We compared gross N fluxes by 15N pool dilution in a coarse-textured agricultural soil when 15N was applied to the soil NH4+ pool by either: (i) mixing a 15NH4NO3 solution into disturbed soil or (ii) injection of 15NH3 gas into intact soil cores. The two techniques produced similar results for gross N mineralization rates indicating that NH4+ production in soil was not altered by soil disturbance, method of application (gas vs. solution), or amount of N applied. This was not the case for immobilization rates, which were twofold higher when 15N label was applied to the soil NH4+ pool with the mixing technique compared to the injection technique. This was attributed to the fact that more NH4+ was applied with the mixing technique. Estimates of gross nitrification were accompanied by large error terms meaning differences between 15N labeling methods could not be accurately assessed for this process rate.  相似文献   

5.
Measurements of N transformation rates in tropical forest soils are commonly conducted in the laboratory from disturbed or intact soil cores. On four sites with Andisol soils under old-growth forests of Panama and Ecuador, we compared N transformation rates measured from laboratory incubation (at soil temperatures of the sites) of intact soil cores after a period of cold storage (at 5 °C) with measurements conducted in situ. Laboratory measurements from stored soil cores showed lower gross N mineralization and NH4+ consumption rates and higher gross nitrification and NO3 immobilization rates than the in-situ measurements. We conclude that cold storage and laboratory incubation change the soils to such an extent that N cycling rates do not reflect field conditions. The only reliable way to measure N transformation rates of tropical forest soils is in-situ incubation and mineral N extraction in the field.  相似文献   

6.
We investigated the relationship between soil organic matter (SOM) content and N dynamics in three grassland soils (0-10 and 10-20 cm depth) of different age (6, 14 and 50 y-old) with sandy loam textures. To study the distribution of the total C and N content the SOM was fractionated into light, intermediate and heavy density fractions of particulate macro-organic matter (150-2000 μm) and the 50-150 μm and <50 μm size fractions. The potential gross N transformation rates (mineralisation, nitrification, NH4+ and NO3 immobilization) were determined by means of short-term, fully mirrored 15N isotope dilution experiments (7-d incubations). The long-term potential net N mineralisation and gross N immobilization rates were measured in 70-d incubations. The total C and N contents mainly tended to increase in the 0-10 cm layer with increasing age of the grassland soils. Significant differences in total SOM storage were detected for the long-term (50 y-old) conversion from arable land to permanent grassland. The largest relative increase in C and N contents had occurred in the heavy density fraction of the macro-organic matter, followed by the 50-150 and <50 μm fractions. Our results suggest that the heavy density fraction of the macro-organic matter could serve as a good indicator of early SOM accumulation, induced by converting arable land to permanent grassland. Gross N mineralisation, nitrification, and (long-term) gross N immobilization rates tended to increase with increasing age of the grasslands, and showed strong, positive correlations with the total C and N contents. The calculated gross N mineralisation rates (7-d incubations) and net N mineralisation rates (70-d incubations) corresponded with a gross N mineralisation of 643, 982 and 1876 kg N ha−1 y−1, and a net N mineralisation of 195, 208 and 274 kg N ha−1 y−1 in the upper 20 cm of the 6, 14 and 50 y-old grassland soils, respectively. Linear regression analysis showed that 93% of the variability of the gross N mineralisation rates could be explained by variation in the total N contents, whereas total N contents together with the C-to-N ratios of the <50 μm fraction explained 84% of the variability of the net N mineralisation rates. The relationship between long-term net N mineralisation rates and gross N mineralisation rates could be fitted by means of a logarithmic equation (net m=0.24Ln(gross m)+0.23, R2=0.69, P<0.05), which reflects that the ratio of gross N immobilization-to-gross N mineralisation tended to increase with increasing SOM contents. Microbial demand for N tended to increase with increasing SOM content in the grassland soils, indicating that potential N retention in soils through microbial N immobilization tends to be limited by C availability.  相似文献   

7.
The impact of land-use change on soil nitrogen (N) transformations was investigated in adjacent native forest (NF), 53 y-old first rotation (1R) and 5 y-old second rotation (2R) hoop pine (Araucaia cunninghamii) plantations. The 15N isotope dilution method was used to quantify gross rates of N transformations in aerobic and anaerobic laboratory incubations. Results showed that the land-use change had a significant impact on the soil N transformations. Gross ammonification rates in the aerobic incubation ranged between 0.62 and 1.78 mg N kg−1 d−1, while gross nitrification rates ranged between 2.1 and 6.6 mg N kg−1 d−1. Gross ammonification rates were significantly lower in the NF and the 1R soils than in the 2R soils, however gross nitrification rates were significantly higher in the NF soils than in the plantation soils. The greater rates of gross nitrification found in the NF soil compared to the plantation soils, were related to lower soil C:N ratios (i.e. more labile soil N under NF). Nitrification was found to be the dominant soil N transformation process in the contrasting forest ecosystems. This might be attributed to certain site conditions which may favour the nitrifying community, such as the dry climate and tree species. There was some evidence to suggest that heterotrophic nitrifiers may undertake a significant portion of nitrification.  相似文献   

8.
Heterotrophic and autotrophic nitrification in two acid pasture soils   总被引:1,自引:0,他引:1  
Laboratory incubation experiments, using 15N-labeling techniques and simple analytical models, were conducted to measure heterotrophic and autotrophic nitrification rates in two acid soils (pH 4.8-5.3; 1/5 in H2O) with high organic carbon contents (6.2-6.8% in top 5 cm soil). The soils were from pastures located near Maindample and Ruffy in the Northeast Victoria, Australia. Gross rates of N mineralization, nitrification and immobilization were measured. The gross rates of autotrophic nitrification were 0.157 and 0.119 μg N g−1 h−1 and heterotrophic nitrification rates were 0.036 and 0.009 μg N g−1 h−1 for the Maindample and Ruffy soils, respectively. Heterotrophic nitrification accounted for 19% and 7% of the total nitrification in the Maindample and Ruffy soils, respectively. The heterotrophic nitrifiers used organic N compounds and no as the substrate for nitrification.  相似文献   

9.
The turnover of native and applied C and N in undisturbed soil samples of different texture but similar mineralogical composition, origin and cropping history was evaluated at −10 kPa water potential. Cores of structurally intact soil with 108, 224 and 337 g clay kg−1 were horizontially sliced and 15N-labelled sheep faeces was placed between the two halves of the intact core. The cores together with unamended treatments were incubated in the dark at 20 °C and the evolution of CO2-C determined continuously for 177 d. Inorganic and microbial biomass N and 15N were determined periodically. Net nitrification was less in soil amended with faeces compared with unamended soil. When adjusted for the NO3-N present in soil before faeces was applied, net nitrification became negative indicating that NO3-N had been immobilized or denitrified. The soil most rich in clay nitrified least N and 15N. The amounts of N retained in the microbial biomass in unamended soils increased with clay content. A maximum of 13% of the faeces 15N was recovered in the microbial biomass in the amended soils. CO2-C evolution increased with clay content in amended and unamended soils. CO2-C evolution from the most sandy soil was reduced due to a low content of potentially mineralizable native soil C whereas the rate constant of C mineralization rate peaked in this soil. When the pool of potentially mineralizable native soil C was assumed proportional to volumetric water content, the three soils contained similar proportions of potentially mineralizable native soil C but the rate constant of C mineralization remained highest in the soil with least clay. Thus although a similar availability of water in the three soils was ensured by their identical matric potential, the actual volume of water seemed to determine the proportion of total C that was potentially mineralizable. The proportion of mineralizable C in the faeces was similar in the three soils (70% of total C), again with a higher rate constant of C mineralization in the soil with least clay. It is hypothesized that the pool of potentially mineralizable C and C rate constants fluctuate with the soil water content.  相似文献   

10.
The response of terrestrial ecosystems to elevated atmospheric CO2 is related to the availability of other nutrients and in particular to nitrogen (N). Here we present results on soil N transformation dynamics from a N-limited temperate grassland that had been under Free Air CO2 Enrichment (FACE) for six years. A 15N labelling laboratory study (i.e. in absence of plant N uptake) was carried out to identify the effect of elevated CO2 on gross soil N transformations. The simultaneous gross N transformation rates in the soil were analyzed with a 15N tracing model which considered mineralization of two soil organic matter (SOM) pools, included nitrification from NH4+ and from organic-N to NO3 and analysed the rate of dissimilatory NO3 reduction to NH4+ (DNRA). Results indicate that the mineralization of labile organic-N became more important under elevated CO2. At the same time the gross rate of NH4+ immobilization increased by 20%, while NH4+ oxidation to NO3 was reduced by 25% under elevated CO2. The NO3 dynamics under elevated CO2 were characterized by a 52% increase in NO3 immobilization and a 141% increase in the DNRA rate, while NO3 production via heterotrophic nitrification was reduced to almost zero. The increased turnover of the NH4+ pool, combined with the increased DNRA rate provided an indication that the available N in the grassland soil may gradually shift towards NH4+ under elevated CO2. The advantage of such a shift is that NH4+ is less prone to N losses, which may increase the N retention and N use efficiency in the grassland ecosystem under elevated CO2.  相似文献   

11.
LAN Ting  HAN Yong  CAI Zu-Cong 《土壤圈》2017,27(1):112-120
Although to date individual gross N transformations could be quantified by ~(15)N tracing method and models,studies are still limited in paddy soil.An incubation experiment was conducted using topsoil(0-20 cm) and subsoil(20-60 cm) of two paddy soils,alkaline and clay(AC) soil and neutral and silt loam(NSL) soil,to investigate gross N transformation rates.Soil samples were labeled with either ~(15)NH4_NO_3 or NH_4~(15)NO_3,and then incubated at 25 °C for 168 h at 60%water-holding capacity.The gross N mineralization(recalcitrant and labile organic N mineralization) rates in AC soil were 1.6 to 3.3 times higher than that in NSL soil,and the gross N nitrification(autotrophic and heterotrophic nitrification) rates in AC soil were 2.4 to 4.4 times higher than those in NSL soil.Although gross NO_3~- consumption(i.e.,NO_3~- immobilization and dissimilatory NO_3~- reduction to NH_4~+ rates increased with increasing gross nitrification rates,the measured net nitrification rate in AC soil was approximately 2.0 to 5.1 times higher than that in NSL soil.These showed that high NO_3~- production capacity of alkaline paddy soil should be a cause for concern because an accumulation of NO_3~- can increase the risk of NO_3~- loss through leaching and denitrification.  相似文献   

12.
Abstract

A micro-plot 15N-tracer experiment was established in three different soils of a long-term soil fertility field experiment. The nutrient-poor loam sand has been subjected to various treatments over the years and this has resulted in different organic C (0.35% – 0.86%), microbial biomass (38.3 – 100.0 µg C mic g?1 soil), clay and fine silt contents. Using the 15N-pool dilution technique, we assessed gross N-transfer rates in the field. Gross N mineralization rates varied strongly among the three plots and ranged between 0.4 and 4.2 µg N g?1 soil d?1. Gross nitrification rates were estimated to be between 0 and 2.1 µg N g?1 soil d?1. No correlation between gross N mineralization rates and the organic matter content of the soils was established. However, gross nitrate consumption rates increased with increasing soil C content. The 15N-pool dilution technique was successfully used to measure gross N transfer rates directly in the field.  相似文献   

13.
Determination of gross N mineralization rate in soil, by use of the isotopic pool dilution approach implies that 15NH4+ is applied homogeneously to soil. Since the labeling is applied to the product of the mineralization, the application of 15NH4+ should in theory not alter the mineralization rate. However, recent studies have indicated inverse relation between the amounts of 15NH4+ applied and the determined gross N mineralization rates, due to overestimated rates when ‘low’ amounts of 15NH4+ were added, as a result of preferential 15NH4+ consumption. We present here results from a similar study. We observed no effect from the amount of applied NH4+ on the measured gross N mineralization rates. Our results indicate, that the inverse relation as described earlier, probably was due to underestimated rates when ‘high’ amounts of 15NH4+ were added, as a result of preferential 14NH4+ consumption, when the applied 15NH4+ was incomplete distribution in the soil.  相似文献   

14.
Nutrient addition has a significant impact on plant growth and nutrient cycling. Yet, the understanding of how the addition of nitrogen (N) or phosphorus (P) significantly affects soil gross N transformations and N availability in temperate desert steppes is still limited. Therefore, a 15N tracing experiment was conducted to study these processes and their underlying mechanism in a desert steppe soil that had been supplemented with N and P for 4 years in northwestern China. Soil N mineralization was increased significantly by P addition, and N and P additions significantly promoted soil autotrophic nitrification, rather than NH4+-N immobilization. The addition of N promoted dissimilatory NO3 reduction to NH4+, while that of P inhibited it. Soil NO3-N production was greatly increased by N added alone and by that of N and P combined, while net NH4+-N production was decreased by these treatments. Soil N mineralization was primarily mediated by pH, P content or organic carbon, while soil NH4+-N content regulated autotrophic nitrification mainly, and this process was mainly controlled by ammonia-oxidizing bacteria rather than archaea and comammox. NH4+-N immobilization was mainly affected by functional microorganisms, the abundance of narG gene and comammox Ntsp-amoA. In conclusion, gross N transformations in the temperate desert steppe largely depended on soil inorganic N, P contents and related functional microorganisms. Soil acidification plays a more key role in N mineralization than other environmental factors or functional microorganisms.  相似文献   

15.
 The 15N isotope dilution method was combined with a field incubation technique to provide simultaneous measurements of gross and net rates of N turnover in three long-term swards: unfertilized (Z) or receiving N either from N fixation as clover (C), or as 200 kg fertilizer N ha–1 year–1 (F). Uniform N enrichment of soil microplots was achieved with a multi-point soil injector to measure mineralization/immobilization turnover and nitrification over a 4-day incubation. Net rates of mineralization ranged between 0.6 and 2.9 μg N g–1 day–1 and in all three treatments were approximately half the gross rates. Nitrification rates (gross) were between 1.0 and 1.6 μg N g–1 day–1. In the F treatment, the turnover of NH4 +-N and NO3 -N pools was on a 2- and 4-day cycle, respectively, whereas in the N-limited treatments (C and Z) turnover rates were faster, with the NO3 -N pools turning over twice as fast as the NH4 +-N pools. Therefore, available N was recycled more efficiently in the C and Z treatments, whereas in the F treatment a higher N pool size was maintained which would be more vulnerable to leakage. A large proportion of the added 15N was recovered in the soil microbial biomass (SMB), which represented a 4–5 times larger sink for N than the plant biomass. Although the C treatment had a significantly lower SMB than the grass-only treatments, there were no differences in microbial activity. Gross rates of nitrification increased along the gradient of N input intensity (i.e. Z<C<F), and the addition of a nitrification inhibitor (C2H2) tended to increase microbial immobilization, but did not influence plant N uptake. In this study, the value of combining different techniques to verify net rates was demonstrated and the improved methodology for 15N labelling of soil enabled measurements to be obtained from relatively undisturbed soil under natural field conditions. Received: 25 May 1999  相似文献   

16.
Urine deposition by grazing livestock causes an immediate increase in nitrous oxide (N2O) emissions, but the responsible mechanisms are not well understood. A nitrogen-15 (15N) labelling study was conducted in an organic grass-clover sward to examine the initial effect of urine on the rates and N2O loss ratio of nitrification (i.e. moles of N2O-N produced per moles of nitrate produced) and denitrification (i.e. moles of N2O produced per moles of N2O+N2 produced). The effect of artificial urine (52.9 g N m−2) and ammonium solution (52.9 g N m−2) was examined in separate experiments at 45% and 35% water-filled pore space (WFPS), respectively, and in each experiment a water control was included. The N2O loss derived from nitrification or denitrification was determined in the field immediately after application of 15N-labelled solutions. During the next 24 h, gross nitrification rates were measured in the field, whereas the denitrification rates were measured in soil cores in the laboratory. Compared with the water control, urine application increased the N2O emission from 3.9 to 42.3 μg N2O-N m−2 h−1, whereas application of ammonium increased the emission from 0.9 to 6.1 μg N2O-N m−2 h−1. In the urine-affected soil, nitrification and denitrification contributed equally to the N2O emission, and the increased N2O loss resulted from a combination of higher rates and higher N2O loss ratios of the processes. In the present study, an enhanced nitrification rate seemed to be the most important factor explaining the high initial N2O emission from urine patches deposited on well-aerated soils.  相似文献   

17.
Agricultural systems that receive high amounts of inorganic nitrogen (N) fertilizer in the form of either ammonium (NH4+), nitrate (NO3) or a combination thereof are expected to differ in soil N transformation rates and fates of NH4+ and NO3. Using 15N tracer techniques this study examines how crop plants and soil microbes vary in their ability to take up and compete for fertilizer N on a short time scale (hours to days). Single plants of barley (Hordeum vulgare L. cv. Morex) were grown on two agricultural soils in microcosms which received either NH4+, NO3 or NH4NO3. Within each fertilizer treatment traces of 15NH4+ and 15NO3 were added separately. During 8 days of fertilization the fate of fertilizer 15N into plants, microbial biomass and inorganic soil N pools as well as changes in gross N transformation rates were investigated. One week after fertilization 45-80% of initially applied 15N was recovered in crop plants compared to only 1-10% in soil microbes, proving that plants were the strongest competitors for fertilizer N. In terms of N uptake soil microbes out-competed plants only during the first 4 h of N application independent of soil and fertilizer N form. Within one day microbial N uptake declined substantially, probably due to carbon limitation. In both soils, plants and soil microbes took up more NO3 than NH4+ independent of initially applied N form. Surprisingly, no inhibitory effect of NH4+ on the uptake and assimilation of nitrate in both, plants and microbes, was observed, probably because fast nitrification rates led to a swift depletion of the ammonium pool. Compared to plant and microbial NH4+ uptake rates, gross nitrification rates were 3-75-fold higher, indicating that nitrifiers were the strongest competitors for NH4+ in both soils. The rapid conversion of NH4+ to NO3 and preferential use of NO3 by soil microbes suggest that in agricultural systems with high inorganic N fertilizer inputs the soil microbial community could adapt to high concentrations of NO3 and shift towards enhanced reliance on NO3 for their N supply.  相似文献   

18.
The rates of mineralization, immobilization and oxidation of N in an aerobic soil, an Andosol Brown, from the farm of the Hokkaido National Agricultural Experiment Station were simultaneously determined in the presence and absence of acetylene using a 15NH+4 dilution technique. C2H2 inhibited nitrification, but did not directly affect mineralization and immobilization. Denitrification and immobilization of NO3?-N were negligible. Mineralization proceeded much faster than did immobilization. Net mineralization accounted for 22–59% of gross mineralization. The rates of N transformation at a water content of 60% were higher than those at 40%. The Q10 values for mineralization, immobilization and nitrification were estimated, between 11° and 29°C, to be 2.0, 1.9 and 1.7, respectively.  相似文献   

19.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

20.
An arable soil with organic matter formed from C3-vegetation was amended initially with maize cellulose (C4-cellulose) and sugarcane sucrose (C4-sucrose) in a 67-day laboratory incubation experiment with microcosms at 25 °C. The amount and isotopic composition (13C/12C) of soil organic C, CO2 evolved, microbial biomass C, and microbial residue C were determined to prove whether the formation of microbial residues depends on the quality of the added C source adjusted with NH4NO3 to the same C/N ratio of 15. In a subsequent step, C3-cellulose (3 mg C g−1 soil) was added without N to soil to determine whether the microbial residues formed initially from C4-substrate are preferentially decomposed to maintain the N-demand of the soil microbial community. At the end of the experiment, 23% of the two C4-substrates added was left in the soil, while 3% and 4% of the added C4-cellulose and C4-sucrose, respectively, were found in the microbial biomass. The addition of the two C4-substrates caused a significant 100% increase in C3-derived CO2 evolution during the 5-33 day incubation period. The addition of C3-cellulose caused a significant 50% increase in C4-derived CO2 evolution during the 38-67 day incubation period. The decrease in microbial biomass C4-C accounted for roughly 60% of this increase. Cellulose addition promoted microorganisms strongly able to recycle N immediately from their own tissue by “cryptic growth” instead of incorporating NO3 from the soil solution. The differences in quality of the microbial residues produced by C4-cellulose and C4-sucrose decomposing microorganisms are also reflected by the difference in the rates of CO2 evolution, but not in the rates of net N mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号