首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
Nutrient mobilisation in the rhizosphere is driven by soil microorganisms and controlled by the release of available C compounds from roots. It is not known how the quality of release influences this process in situ. Therefore, the present study was conducted to investigate the amount and turnover of rhizodeposition, in this study defined as root-derived C or N present in the soil after removal of roots and root fragments, released at different growth stages of peas (Pisum sativum L.) and oats (Avena sativa L.). Plants were grown in soil columns placed in a raised bed under outdoor conditions and simultaneously pulse labelled in situ with a 13C-glucose-15N-urea solution using a stem feeding method. After harvest, 13C and 15N was recovered in plant parts and soil pools, including the microbial biomass. Net rhizodeposition of C and N as a percentage of total plant C and N was higher in peas than in oats. Moreover, the C-to-N ratio of the rhizodeposits was lower in peas, and a higher proportion of the microbial biomass and inorganic N was derived from rhizodeposition. These results suggest a positive plant-soil feedback shaping nutrient mobilisation. This process is driven by the C and N supply of roots, which has a higher availability in peas than in oats.  相似文献   

2.
The turnover of N derived from rhizodeposition of faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) and the effects of the rhizodeposition on the subsequent C and N turnover of its crop residues were investigated in an incubation experiment (168 days, 15 °C). A sandy loam soil for the experiment was either stored at 6 °C or planted with the respective grain legume in pots. Legumes were in situ 15N stem labelled during growth and visible roots were removed at maturity. The remaining plant-derived N in soil was defined as N rhizodeposition. In the experiment the turnover of C and N was compared in soils with and without previous growth of three legumes and with and without incorporation of crop residues. After 168 days, 21% (lupin), 26% (faba bean) and 27% (pea) of rhizodeposition N was mineralised in the treatments without crop residues. A smaller amount of 15–17% was present as microbial biomass and between 30 and 55% of mineralised rhizodeposition N was present as microbial residue pool, which consists of microbial exoenzymes, mucous substances and dead microbial biomass. The effect of rhizodeposition on the C and N turnover of crop residues was inconsistent. Rhizodeposition increased the crop residue C mineralisation only in the lupin treatment; a similar pattern was found for microbial C, whereas the microbial N was increased by rhizodeposition in all treatments. The recovery of residual 15N in the microbial and mineral N pool was similar between the treatments containing only labelled crop residues and labelled crop residues + labelled rhizodeposits. This indicates a similar decomposability of both rhizodeposition N and crop residue N and may be attributable to an immobilisation of both N sources (rhizodeposits and crop residues) as microbial residues and a subsequent remineralisation mainly from this pool.Abbreviations C or Ndec C or N decomposed from residues - C or Nmic microbial C or N - C or Nmicres microbial residue C or N - C or Nmin mineralised C or N - C or Ninput added C or N as crop residues and/or rhizodeposits - dfr derived from residues - dfR derived from rhizodeposition - Ndfr N derived from residues - NdfR N derived from rhizodeposition - Nloss losses of N derived from residues - SOM soil organic matter - WHC water holding capacity  相似文献   

3.
Grain legumes in crop rotations cause significant increases in yield for succeeding non-legumes, which cannot be explained simply by the small effect that legumes have on the soil nitrogen balance, as found in the analysis of N in crop residues. Besides known positive non-N-effects, other effects, mainly rhizodeposition and its contribution to the N balance and nitrogen dynamics after harvesting the grain, are poorly understood. In this study, N rhizodeposition, defined as root-derived N in the soil after removal of visible roots, was measured in faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.). In a pot experiment the legumes were pulse labelled in situ with 15N urea using a cotton wick method. About 84% of the applied 15N was recovered for the three legume species at maturity. The 15N was comparatively uniformly distributed among plant parts. The N rhizodeposition constituted 13% of total plant N for faba bean and pea and 16% for white lupin at maturity, about 80% of below ground plant N, respectively. Some 7% (lupin)-31% (pea) of the total N rhizodeposits were recovered as micro-roots by wet sieving (200 μm) the soil after all visible roots had been removed. Only 14-18% of the rhizodeposition N was found in the microbial biomass and a very small amount of 3-7% was found in the mineral N fraction. In pea, 48% and in lupin 72% of N rhizodeposits could not be recovered in the mentioned pools and a major part of the unrecovered N was probably immobilised in microbial residues. The results of this study clearly indicate that N rhizodeposition from grain legumes represent a significant pool for N balance and N dynamics in crop rotations.  相似文献   

4.
The objective of the present review was to present the current knowledge on nitrogen (N) rhizodeposition, including techniques for 15N labelling of agricultural plants, amounts of N rhizodeposition and its fate in soil. Rhizodeposition is the process of release of organic and inorganic compounds from living plant roots. It is often quantified in terms of carbon (C) and less often as N derived from rhizodeposition (NdfR). Rhizodeposition of N can be estimated by labelling plants with 15N and following its fate in soil. Most methods used for labelling plants with 15N can only be applied after appearance of the first leaf and only allow pulse or multiple pulse labelling. Only the split-root technique and the application of gaseous 15N allow continuous labelling. All methods available at present have their flaccidities mostly due to the fact that the application of N is not following its physiological pathway of assimilation or by using artificial conditions. In the studies reviewed, amounts of N rhizodeposits ranged from 4% to 71% of total assimilated plant N. In legumes the median was 16% and in cereals it was 14%. Rhizodeposits were 15–96% of the below-ground plant biomass (BGP). In legumes the median was 73% and in cereal it was 57%. The high variability of these results shows the need for more investigations on N rhizodeposition looking especially on the factors influencing the amounts released in different plant species under field conditions.  相似文献   

5.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

6.
A deeper understanding of the contribution of carbon (C) released by plant roots (rhizodeposition) to soil organic matter (SOM) can help to increase our knowledge of global C-cycling. These insights can eventually lead to sustainable management of SOM especially in agricultural systems. This study was conducted to determine the fate of 13C labelled rhizodeposit-C of maize and wheat plants. They were grown in a greenhouse in permeable nylon bags filled with upper soil material from two agricultural soils of the same location, but with different crop yields. The bags were placed into pots, which were also filled with soil surrounding the bags. Soil inside the bags was considered as rhizosphere soil, wheras the one outside the bags represented bulk soil. The contributions of rhizodeposits to water extractable organic carbon (WEOC), microbial biomass-C (MB-C), CO2-C evolution, and total organic carbon (Corg) were investigated during a 7-week growing period. The WEOC, MB-C, CO2-C, Corg contents and the respective δ13C values were determined regularly, and a newly developed method for determining δ13C values in soil extracts was applied.In both soils, regardless of crop yield potential, significant incorporation of rhizodeposition-derived C was observed in the MB-C, CO2-C, and Corg pool, but not in the WEOC. The pattern of C incorporation into the different pools was the same for both soils with both plants, and rhizodeposit-derived C was recovered in the order MB-C<Corg<CO2-C. This showed that rhizodeposits were mainly respired, but since Corg was the second largest pool of the overall balances, they were also stabilized in the soils at least in the short term. It is suggested that the increased SOM mineralization observed in this study (positive priming effects) was probably induced by C exchange processes between the soil matrix and soluble rhizodeposits. Moreover, soluble rhizodeposit-C was detected in MB-C and CO2-C evolved outside the direct root zone, showing the availability of these C-components in the bulk soil.  相似文献   

7.
Summary Leptochloa fusca (L.) Kunth (kallar grass) has previously been found to exhibit high rates of nitrogen fixation. A series of experiments to determine the level of biological nitrogen fixation using 15N isotopic dilution were carried out in nutrient solution and saline soil. In the nutrient solution, E. coli inoculated plants were taken as non-nitrogen-fixing control. It was observed that nearly 60%–80% of the plant N was derived from atmospheric fixation. Estimations based on the N difference method gave much lower values (18%–35%). In experiments with saline soil which was initially sterilized with chloroform fumigation, a mixed culture of N2-fixing rhizospheric isolates from kallar grass roots was inoculated and planted to kallar grass. Uninoculated treatments were regarded as controls. The soil was previously labelled with 15N by adding cellulose and (15NH4)2SO4. The results of these studies showed fixation values of 6%–32% when estimated by 15N dilution, whereas by the N difference method 54% of the plant N was estimated to be derived from fixation. This discrepancy is due to the increase in root proliferation due to inoculation, which results in greater uptake of soil N. The distribution of 15N in different fractions of the soil-N indicted isotopic dilution due to bacterial fixation of atmospheric N2.  相似文献   

8.
A greenhouse rhizobox experiment was carried out to quantify the incorporation of 13C- and 15N-labelled rhizodeposits into different soil pools, especially into the rhizosphere microbial biomass, with increasing distances to the root surface of Lolium perenne. Five layers were analysed over 0-4.2 mm distance to an artificial root surface. C and N derived from rhizodeposition were 4.2% of total C and 2.8% of total N in soil at 0-1.0 mm distance and decreased rapidly with increasing distance. Microbial biomass C and N increased significantly towards the roots. At 0-1.0 mm distance microbial biomass C and N accounted for 66% and 29% of C and N derived from rhizodeposition, respectively. These percentages declined with increasing distance to the roots, but were still traceable up to 4.2 mm distance. Only small amounts of root released C and N were found in the 0.05 M K2SO4-extractable fraction. Extractable C and N derived from rhizodeposition varied around means of 4% of total C and N derived from rhizodeposition and increased only marginally with increasing distance to the roots. C derived from rhizodeposition in the non-extractable soil organic matter increased from 65 to 89% of total C derived from rhizodeposition at 0-3.4 mm distance. Conversely, microbial biomass C derived from rhizodeposition decreased from 33 to 4%. N derived from rhizodeposition in the non-extractable soil organic matter increased from 61 to 79% of total N derived from rhizodeposition at 0-2.6 mm distance, followed by a decline to roughly 55% in the two outer layers. Microbial biomass N decreased from 37 to 16% at 0-2.6 mm distance, followed by an increase to roughly 41% in the two outer layers. The C/N ratio of total C and N derived from rhizodeposition as well as that of extractable C and N derived from rhizodeposition increased with increasing distance to the roots to values above 30. In contrast, the C/N ratio of incorporated rhizodeposition C and N into the microbial biomass decreased to values less than 5 at 2.6-4.2 mm distance. The data indicate differential microbial response to C and N derived from rhizodeposition at a high spatial resolution from the root surface. The turnover of C and N derived from rhizodeposition in the rhizosphere as a function of the distance to the root surface is discussed.  相似文献   

9.
Summary In two field experiments, plant materials labelled with 15N were buried separately within mesh bags in soil, which was subsequently sown with barley. In the first experiment, different parts of white clover (Trifolium repens), red clover (T. pratense), subterranean clover (T. subterraneum), field bean (Vicia faba), and timothy (Phleum pratense) were used, and in the second, parts of subterranean clover of different maturity. The plant materials were analysed for their initial concentrations of total N, 15N, C, ethanol-soluble compounds, starch, hemicellulose, cellulose, lignin, and ash. After the barley had been harvested, the bags were collected and analysed for their total N and 15N. In the first experiment the release of N was highest from white clover stems + petioles (86%) and lowest from field bean roots (20%). In stepwise regression analysis, the release of N was explained best by the initial concentrations of lignin, cellulose, hemicellulose, and N (listed according to decreasing partial correlations). Although the C/N ratio of the plant materials varied widely (11–46), statistically the release of N was not significantly correlated with this variable. The results of the second experiment using subterranean clover of different maturity confirmed those of the first experiment.  相似文献   

10.
Some plants respond to Fe‐deficiency stress by inducing Fe‐solubilizing reactions at or near the root surface. In their ability to solubilize Fe, dicotyledonous plants are more effective than monocotyledonous plants. In this study we determined how representative plants differ in their response when subjected to Fe‐deficiency stress in a calcareous soil and in nutrient solutions. Iron‐inefficient genotypes of tomato, soybean, oats, and corn all developed Fe chlorosis when grown in soil, whereas Fe‐efficient genotypes of these same species remained green. The same genotypes were grown in complete nutrient solutions and then transferred to nutrient solutions containing N (as NO3 ) and no Fe.

The T3238 FER tomato (Lycopersican esculentum Mill.) Fe‐efficient) was the only genotype that released significant amounts of H from the roots (the pH was lowered to 3.9) and concomitantly released reductants. Under similar conditions, Hawkeye soyhean [Glycine max (L.) Merr.] released reductants but the solution pH was not lowered. Both Fe‐inefficient and Fe‐efficient genotypes of oats (Avena sativa L.) and corn (Zea mays L.) released insufficient H or reductant from their roots to solubilize Fe; as a result, each of these genotypes developed Fe‐deficiency (chlorosis).

The marked differences observed among these genotypes illustrate the genetic variability inherent within many plant species. A given species or genotype may accordingly not be adapted to a particular soil. Conversely, a given species or genotype may be found (or developed) that is precisely suited for a particular soil. In this event, the need for soil amendments may be reduced or eliminated.  相似文献   

11.
Abstract. Field peas (Pisum sativum L.) were grown in sequence with winter wheat (Triticum aestivum L.) or spring barley (Hordeum vulgare L.) in large outdoor lysimeters. The pea crop was harvested either in a green immature state or at physiological maturity and residues returned to the lysimeters after pea harvest. After harvest of the pea crop in 1993, pea crop residues (pods and straw) were replaced with corresponding amounts of 15N‐labelled pea residues grown in an adjacent field plot. Reference lysimeters grew sequences of cereals (spring barley/spring barley and spring barley/winter wheat) with the straw removed. Leaching and crop offtake of 15N and total N were measured for the following two years. These treatments were tested on two soils: a coarse sand and a sandy loam. Nitrate concentrations were greatest in percolate from lysimeters with immature peas. Peas harvested at maturity also raised the nitrate concentrations above those recorded for continuous cereal growing. The cumulative nitrate loss was 9–12 g NO3‐N m–2 after immature peas and 5–7 g NO3‐N m–2 after mature peas. Autumn sown winter wheat did not significantly reduce leaching losses after field peas compared with spring sown barley. 15N derived from above‐ground pea residues accounted for 18–25% of the total nitrate leaching losses after immature peas and 12–17% after mature peas. When compared with leaching losses from the cereals, the extra leaching loss of N from roots and rhizodeposits of mature peas were estimated to be similar to losses of 15N from the above‐ground pea residues. Only winter wheat yield on the coarse sand was increased by a previous crop of peas compared to wheat following barley. Differences between barley grown after peas and after barley were not statistically significant. 15N lost by leaching in the first winter after incorporation accounted for 11–19% of 15N applied in immature pea residues and 10–15% of 15N in mature residues. Another 2–5% were lost in the second winter. The 15N recovery in the two crops succeeding the peas was 3–6% in the first crop and 1–3% in the second crop. The winter wheat did not significantly improve the utilization of 15N from the pea residues compared with spring barley.  相似文献   

12.
Summary We studied the effect of three successive cuttings on N uptake and fixation and N distribution in Leucaena leucocephala. Two isolines, uninoculated or inoculated with three different Rhizobium strains, were grown for 36 weeks and cut every 12 weeks. The soil was labelled with 50 ppm KNO3 enriched with 10 atom % 15N excess soon after the first cutting. Except for the atom % 15N excess in branches of K28 at the second cutting, both the L. leucocephala isolines showed similar patterns of total N, fixed N2, and N from fertilizer distribution in different parts of the plant at each cutting. The Rhizobium strain did not influence the partitioning of 15N among the different plant parts. Significant differences in 15N enrichment occurred in different parts. Live nodules of both isolines showed the lowest atom % 15N excess values (0.087), followed by leaves (0.492), branches (0.552), stems (0.591), and roots (0.857). The roots contained about 60% of the total plant N and about 70% of the total N derived from fertilizer over the successive cuttings. The total N2 fixed in the roots was about 60% of that fixed in the whole plant, while the shoots contained only 20% of the fixed N2. We conclude that N reserves in roots and nodules constitute another N source that must be taken into account when estimating fixed N2 or the N balance after pruning or cutting plants. 15N enrichment declined up to about fivefold in the reference and the N2-fixing plants over 24 weeks following the 15N application. The proportion and the amounts of N derived from fertilizer decreased, while the amount derived from N2 fixation increased with time although its proportion remained constant.  相似文献   

13.
Abstract

Nine biennial field experiments, 2000–2004, in south Sweden, 55–56°N, with winter wheat following winter oilseed rape, peas, and oats, were used to estimate the impact of a future milder climate on winter wheat production in central Sweden, 58–60°N. The trials included studies 1) on losses during winter of soil mineral nitrogen (Nmin, 0–90 cm soil), accumulated after the preceding crops in late autumn, 2) on soil N mineralisation (Nnet) during the growing season of the wheat (early spring to ripeness) and 3) on grain yield and optimum N fertilisation (Opt-N rate) of the wheat. Average Nmin in late autumn following winter oilseed rape, peas, and oats was 68, 64, and 45 kg ha?1, respectively, but decreased until early spring. Increased future losses of Nmin during the winter in central Sweden due to no or very short periods with soil frost should enhance the demand for fertiliser N and reduce the better residual N effect of winter oilseed rape and peas, compared with oats. Their better N effect will then mainly depend on larger Nnet (from March to maturity during the winter wheat year). Owing to more plant-available soil N (mainly as Nnet) Opt-N rates were lower after oilseed rape and peas than after oats despite increased wheat yields (700 kg ha?1) at optimum N fertilisation. In addition to these break crop effects, a milder climate should increase winter wheat yields in central Sweden by 2000–3000 kg ha?1 and require about 30–45 kg ha?1 more fertiliser N at optimum N fertilisation than the present yield levels. Increased losses and higher N fertilisation to the subsequent winter wheat in future indicates a need for an estimation of the residual N effect at the individual sites, rather than using mean values as at present, to increase N efficiency.  相似文献   

14.
Nitrogen (N) rhizodeposition is defined as the release of N from living plant roots into the soil and root turnover. The proportion of N in the soil derived from rhizodeposition (NdfR) is usually determined using 15N labelling of the plant. This isotope approach assumes that i) the enrichment of rhizodeposits is equal to the root enrichment and that ii) the root remains homogeneously enriched over space and iii) over time. The aim of this study was to quantify the bias resulting from a possible violation of the mentioned assumptions and to study the causative factors of bias.We conducted two experiments with single-pulse 15N-urea leaf-labelled red clover (Trifolium pratense L.). In the rhizodeposition experiment, we simultaneously observed the changes in substrate N concentration to obtain the mass-based rhizodeposits and determined the isotope-predicted rhizodeposits using the isotope approach. By comparing isotope-predicted to mass-based rhizodeposits we quantified the bias of the isotope approach for a period of 6 weeks. In the root distribution experiment, we observed the root 15N enrichment over space and time (4 weeks) by sampling roots grown within certain periods relative to the labelling. In both experiments we monitored the 15N distribution between shoots and roots.We observed violations of the three assumptions of the isotope approach. The average root enrichment increased over time in the root distribution experiment, but remained constant in the rhizodeposition experiment. Significant long-term translocation of 15N from shoot to root during the whole experiment (over)-compensated for growth dilution. Spatial root enrichment varied within a factor of 3, peaking in roots grown 2–8 days after labelling (d.a.l.). We observed a significant leakage of 0.5 ± 0.2% of the applied 15N within the first day after labelling corresponding to an overestimation of first-day rhizodeposits by 1100 ± 800% which translates to a calculated enrichment of 9 ± 6 atom% 15N excess for first-day rhizodeposits compared to 0.77 ± 0.09 atom% 15N excess of the root.The leaked 15N together with ordinary rhizodeposits (rhizodeposits released after the first day of labelling) led to an overestimation of N rhizodeposition by 70 ± 30% at the end of the six weeks lasting experiment using the isotope approach. The observed 15N distribution in roots and long-term 15N translocation from shoots to roots did not correspond to the expected distribution following classical pulse labelling. Thus, leaf-labelling with 15N-urea should not be considered a pure pulse-labelling method.  相似文献   

15.
The phenomenon that rhizosphere processes significantly control soil organic matter (SOM) decomposition, also termed rhizosphere priming effect (RPE), is now increasingly recognized as significant as the effects of soil temperature and moisture on SOM decomposition. However, the exact mechanisms responsible for RPE remain largely unknown. Particularly, some reports have suggested that the quality of rhizodeposits may play a significant role in causing different levels of RPE among various plant species. However, direct evidence for the “rhizodeposit quality hypothesis” has been lacking. Here we tested the hypothesis by investigating RPE on soil carbon (C) and nitrogen (N) mineralization of two soybean (Glycine max L. Merr.) isolines differing only in their ability to form nodules and to fix N2, and thus differing in tissue N concentration and rhizodeposit quality. We used a continuous 13C-labeling method for measuring RPE on soil organic C decomposition, and employed an N-budgeting method for quantifying RPE on soil net N mineralization. We found that the rhizodeposits from nodulated soybean produced a stronger RPE (53% vs. 26%) on soil organic C decomposition than the rhizodeposits from non-nodulated soybean at the maturity stage when nodulated soybean had significantly higher plant tissue N concentration but similar plant biomass, while both soybean isolines produced a similar RPE (33–34%) at the vegetative stage when there was no difference in plant tissue N concentration or plant biomass. The levels of RPE on soil net N mineralization were similar between the two isolines, ranging from 25% at the vegetative stage to 38–46% at the maturity stage. Moreover, RPE on soil organic C decomposition was not linearly proportional to RPE on soil net N mineralization. These results indicate that higher rhizodeposit quality is one of the most likely causes to the higher RPE of the nodulated soybean compared to the non-nodulated soybean. Further investigations of rhizodeposit quality and quantity between the two soybean isolines are warranted to further test this rhizodeposit quality hypothesis.  相似文献   

16.
Nitrogen and carbon dynamics in paddy and upland soils for rice cultivation and in upland soil for corn cultivation was investigated by using 13C and 15N dual-labeled cattle manure compost (CMC). In a soil with low fertility, paddy and upland rice took up carbon and nitrogen from the CMC at rates ranging from 0.685 to 1.051% of C and 17.6–34.6% of N applied. The 13C concentration was much higher in the roots than in the plant top, whereas the 15N concentration differed slightly between them, indicating that organic carbon taken up preferentially accumulated in roots. The 13C recovery in the plant top tended to be higher in upland soil than in paddy soil, whereas 15N applied was recovered at the same level in both paddy and upland soils. In the experiment with organic farming soil, paddy rice took up C and N from the CMC along with plant growth and the final recovery rates of 13C and 15N were 2.16 and 17.2% of C and N applied. In the corn experiment, a very large amount of carbon from the CMC was absorbed, accounting for at least 7 times value for rice. The final uptake rates of 13C and 15N reached about 13 and 10% of C and N applied, respectively. Carbon emission from the CMC sharply increased by 2 weeks after transplanting and the nitrogen emission was very low. It is concluded that rice and corn can take up an appreciable level of carbon and nitrogen from the CMC through roots.  相似文献   

17.
Summary Biological N2 fixation was estimated in a field experiment following the addition of NH4Cl or KNO3 to unconfined microplots (1.5 m2) at 2.5 g N m-2 (10 atom% 15N). A model of total N and 15N accumulation in lupins and decreasing 15N enrichment in the KCl-extractable soil-N pool (0–0.15 m depth) was used to estimate the proportion of N in lupins derived from biological N2 fixation. Estimates of N2 fixation derived from the model were compared with 15N isotope-dilution estimates obtained using canola, annual ryegrass, and wheat as nonfixing reference plants. Biomass, total N accumulation, or 15N enrichment in the lupin and reference crops did not differ whether NH inf4 sup+ or NO inf3 sup- was added as the labelled inorganic-N source. The decrease in soil 15N enrichment was described by first-order kinetics, whereas total N and 15N accumulation in the lupins were described by logistical equations. Using these equations, the uptake of soil N by lupins was estimated and was then used to calculate fixed N2. Estimates of N2 fixation derived from the model increased from 0 at 50 days after sowing to a maximum of 0.79 at 190 days after sowing. Those based on the 15N enrichment of the NO inf3 sup- pool were 10% higher than those based on the mineral-N pool. 15N isotope-dilution estimates of N2 fixation ranged from 0.37 to 0.55 at 68 days after sowing and from 0.71 to 0.77 at 190 days after sowing. Reference plant-derived values of N2 fixation were all higher than modelled estimates during the early states of growth, but were similar to modelled estimates at physiological maturity. The use of the model to estimate N2 derived from the atmosphere has the intrinsic advantage that the need for a non-fixing reference plant is avoided.  相似文献   

18.
Summary The common bean (Phaseolus vulgaris L.) is generally regarded as a poor N2 fixer. This study assessed the sources of N (fertilizer, soil, and fixed N), N partitioning and mobilization, and soil N balance under field conditions in an indeterminate-type climbing bean (P. vulgaris L. cv. Cipro) at the vegetative, early pod-filling, and physiological maturity stages, using the A-value approach. This involved the application of 10 and 100 kg N ha-1 of 15N-labelled ammonium sulphate to the climbing bean and a reference crop, maize (Zea mays L.). At the late pod-filling stage (75 days after planting) the climbing bean had accumulated 119 kg N ha-1, 84% being derived from fixation, 16% from soil, and only 0.2% from the 15N fertilizer. N2 fixation was generally high at all stages of plant growth, but the maximum fixation (74% of the total N2 fixed) occurred during the interval between early (55 days after planting) and late podfilling. The N2 fixed between 55 and 75 days after planting bas a major source (88%) of the N demand of the developing pod, and only about 11% was contributed from the soil. There was essentially no mobilization of N from the shoots or roots for pod development. The cultivation of common bean cultivars that maintain a high N2-fixing capacity especially during pod filling, satisfying almost all the N needs of the developing pod and thus requiring little or no mobilization of N from the shoots for pod development, may lead to a net positive soil N balance.  相似文献   

19.
Most studies showing potential organic nitrogen uptake were conducted with amino acids. They conclude that, in some ecosystems, amino acids significantly contribute to the N demand of plants and that roots have special transporters to re-uptake amino acids released into the rhizosphere. However, the relevance of the uptake of organic N compounds can only be evaluated by comparing the uptake of N-containing and N-free organic substances. We compared the uptake of alanine, glucose and acetate labelled with 14C by maize. Additionally, the N uptake was estimated by 15N labelled alanine and KNO3. We found a similar uptake of 14C from alanine, glucose and acetate, amounting for the whole plant less than 1% of 14C input. These results show that maize did not prefer N-containing to N-free organic substances. The uptake of 15N by maize exceeded that of 14C (10- to 50-fold), irrespective of the 15N source. However, plant uptake of nitrate (23.6–35.2% of 15N input) always exceeded the uptake of N from alanine (9.6–28.8%). The uptake of organically bound N by maize growing in soil occurred mainly by transpiration flow – as dissolved organics. The contribution of specific amino acid transporters was minor.  相似文献   

20.
Quantification of root biomass through the conventional root excavation and washing method is inefficient. A pot experiment was conducted to estimate root-derived carbon (C) in soil. Spring wheat (Triticum aestivum L. cv. ‘Quantum’) was grown in plastic containers (6 L) filled with sterilized sandy soil in a greenhouse. Plants were enriched with 13CO2 in a glass chamber twice at growth stages GS-37 and GS-59 for 70 min at each time. In one treatment, roots were separated from soil at crop maturity, washed and dried for the determination of biomass. Isotope ratios were then separately analyzed for roots and soil. In a second treatment, roots were thoroughly mixed with the whole soil and representative samples were analyzed for 13C abundance at crop maturity. Control plants were untreated with 13C, in which roots were separated from soil. The root biomass was calculated based on the root-derived C, which was measured through 13C abundance in the soil and root mixed samples. A substantial amount of root-derived C (24%) was unaccounted while separating the roots from soil. Similarly, about 36% of the root biomass was underestimated if conventional root excavation and washing method is used. It has been shown that root biomass can be estimated more accurately from the root-derived C using 13C tracer method than the estimates made by the conventional excavation and washing method. We propose this as an alternative method for the estimation of root-derived C in soil, based on which root biomass can be estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号