首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fresh-cut iceberg lettuce dipped in either 5 or 47 degrees C water for 2 min was packaged in modified atmosphere film bags and then exposed to 0, 0.5, 1, or 2 kGy gamma-radiation. Dipping cut lettuce in 47 degrees C water for 2 min prior to irradiation reduced antioxidant and phenolic accumulations induced by irradiation. Irradiation at 2 kGy increased cellular leakage and sogginess of cut lettuce dipped in both temperatures. Samples irradiated at 0.5 and 1 kGy had similar firmness and vitamin C and antioxidant contents as the controls after 14 and 21 days of storage except 1 kGy samples dipped at 47 degrees C had lower antioxidant contents than controls at 14 days of storage. Lettuce dipped at 47 degrees C and irradiated at 0.5 and 1 kGy had better overall visual quality and less tissue browning than corresponding irradiated samples dipped at 5 degrees C. These results suggest lettuce treated with warm water and irradiated at 0.5 or 1 kGy had the best sensory quality without significant loss in texture, vitamin C, or total antioxidants.  相似文献   

2.
Ionizing radiation is an effective processing technology for pathogen inactivation on various foods. However, the generation of off-odor is a concern for some irradiated meats. This study was conducted to investigate volatile sulfur compounds of precooked ready-to-eat turkey breast as functions of radiation dose and subsequent storage. Precooked turkey breast was exposed to 0, 1, 2, 3, 4, and 5 kGy of gamma radiation and stored for 14 days at 5 degrees C. Volatile sulfur compounds were extracted using solid phase microextraction (SPME), followed by gas chromatographic separation and pulsed flame photometric detection. Irradiation dramatically increased concentrations of hydrogen sulfide, sulfur dioxide, methanethiol, and dimethyl disulfide. The rate of increase was higher at low doses (0-2 kGy) than at higher doses of 3-5 kGy. Carbon disulfide was the only volatile sulfur compound that was reduced by irradiation. Concentrations of all volatile sulfur compounds decreased in both irradiated and nonirradiated samples stored at 5 degrees C.  相似文献   

3.
Bologna was processed from ground turkey breast meats containing one of four antioxidant treatments (none, rosemary extract, sodium erythorbate, and sodium nitrite). After it was cooked, the bologna was sliced, sealed in gas impermeable bags, exposed to 0, 1.5, and 3.0 kGy gamma-radiation, and then stored at 5 degrees C for up to 8 weeks. Thiobarbuturic acid reactive substances (TBARS), color, and volatile sulfur compounds were measured every 2 weeks during storage. Irradiation had no consistent effect on TBARS values. The rosemary extract and sodium nitrite inhibited, while erythorbate increased, TBARS values, independent of radiation dose or storage time. Irradiation promoted redness and reduced yellowness of the control (no antioxidant) bologna at weeks 0 and 2. The use of nitrite and rosemary extract inhibited the changes in color due to irradiation. Several volatile sulfur compounds (hydrogen sulfide, methanethiol, methyl sulfide, and dimethyl disulfide), measured using a pulsed flame photometric detector, increased with radiation dose. However, none of the antioxidants had any substantial effect on volatile sulfur compounds induced by irradiation. Our results suggest that antioxidants did not consistently affect irradiation-induced volatile sulfur compounds of turkey bologna although they did significantly impact color and lipid oxidation.  相似文献   

4.
The aqueous solution of alginate was irradiated by 60Co gamma-rays in the dose range of 10-500 kGy. To assess the effect of irradiation on the degradation of alginate, the irradiation-induced changes in the viscosity, molecular weight, color, monomer composition, and sequence were measured. The molecular weight of raw alginate was reduced from 300000 to 25000 when irradiated at 100 kGy. The degradation rate decreased and the chain breaks per molecule increased with increasing irradiation dose. The viscosity of irradiated alginate solution reached a near minimum as low as at 10 kGy. No appreciable color changes were observed in the samples irradiated at up to 100 kGy, but intense browning occurred beyond 200 kGy. The 13C NMR spectra showed that homopolymeric blocks, MM and GG, increased and the M/G ratio decreased with irradiation. Considering both the level of degradation and the color change of alginate, the optimum irradiation dose was found to be 100 kGy.  相似文献   

5.
Apple (Malus x domestica Borkh., cv. Gala) fruit treated with 0.5 microL x L(-1) 1-methylcyclopropene (MCP) or air (non-MCP) for 12 h at 20 degrees C were exposed to gamma radiation at doses of 0, 0.44, 0.88, or 1.32 kGy at 23 degrees C and then stored at 20 degrees C. Production of volatile compounds was measured on the day of irradiation and 1, 3, 7, 14, and 21 days after irradiation. Both MCP treatment and irradiation inhibited ethylene production. MCP treatment reduced production of all volatile esters and alcohols detected, whereas irradiation inhibited production of most, but not all, esters and some alcohols by non-MCP-treated fruit. The inhibition of volatile production following irradiation increased with dose. Production of methyl and propyl esters was inhibited more than that of other esters following irradiation or MCP treatment. The impact of irradiation on production of esters and alcohols by MCP-treated fruit was minimal. Non-MCP-treated fruit irradiated at 0.44 kGy produced the most esters during the 21-day period at 20 degrees C following irradiation, and the ester production rate in these fruit was comparable to that of the nonirradiated fruit 21 days after irradiation. Fruit treated with doses higher than 0.44 kGy did not recover their ability to produce volatile compounds. These results indicate both MCP and ionizing radiation inhibit production of many aroma compounds produced by ripening apple fruit.  相似文献   

6.
Mature green pepper fruits (Capsicum annuum L.) were subjected to ionizing radiation, in the range of 1-7 kGy, with accelerated electrons. Ultrastructural changes by electron microscopy, and the activity of several oxidative metabolism-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaicol peroxidase (POX), and lipoxygenase (LOX), were determined in pericarp tissue just after the ionization treatment and during postionization storage at 7 degrees C followed by 3 days at 20 degrees C. Changes in oxidative stress during the ionization treatment was assessed by the accumulation of malondyaldehide (MDA), a lipid peroxidation product. The ionization induced modifications in the cell ultrastructure, a moderate separation of the plasma membrane from the cell wall being observed for all doses. At 5 and 7 kGy, peroxisomes were not detected and the structures of the chloroplast and vacuoles were seriously damaged. Lipid peroxidation and lipoxygenase activity increased with the ionization dose, staying constant and decreasing, respectively, during the storage period. Conversely, catalase, ascorbate peroxidase, and superoxide dismutase had lower values than in nonionized fruits and, in general, their values did not change or diminished slightly from the seventh day of storage. Peroxidase exhibited an increase in activity with the ionization dose, although these was not a linear relationship, with higher values at 3kGy. Ionization of pepper, especially at doses of 5 and 7 kGy, caused a significant oxidative damage in the fruit, since it increased oxidation and decreased the antioxidant enzymatic defense systems causing ultrastructural changes at cell level.  相似文献   

7.
Yellow passion fruit juice (PFJ, Passiflora edulis f. flavicarpa) is an important component of many tropical fruit beverages, but limited data exist on its antioxidant chemical composition and stability during processing and storage. PFJ fortified with ascorbic acid (450 mg/L) and sucrose (10%) was compared to a nonfortified control, and each was evaluated with and without vacuum deaeration to remove dissolved oxygen. Following pasteurization, juices were stored for 28 days at 37 degrees C to accentuate physicochemical changes. Pasteurization (85 degrees C for 30 min) resulted in minor changes to physicochemical attributes, but appreciable changes occurred during storage that resulted in termination of the study after 28 days. Oxygen control strategies proved to be ineffective for quality retention and indicated oxygen-independent reactions affecting juice color, phytochemical content, and antioxidant activity. Ascorbic acid and sucrose fortification had an overall preservation effect on total carotenoids, the former resulting in hyperchromic shifts in absorbance, indicating their chemoprotection. Pasteurization resulted in a 25% loss in l-ascorbic acid, which was completely destroyed after 14 days of storage; losses coincided with increased juice browning and formation of 5-hydroxymethylfurfural. Numerous polyphenolics were present in PFJ, and 16 of them were tentatively characterized on the basis of spectral similarities to known standards. Individually, polyphenolics increased during pasteurization, only to decline during storage at elevated temperatures. Antioxidant activity was measured in PFJ and in two subfractions (hydrophilic and lipophilic) after processing and storage, but antioxidant values were nonadditive. A significant chemical interaction affecting antioxidant capacity was found for hydrophilic juice components, but none was observed in the presence of lipophilic phytochemicals. Physicochemical attributes and overall quality of PFJ were retained following pasteurization but were significantly impacted by degradative reactions during accelerated storage.  相似文献   

8.
Dense phase CO2 processing (DP-CO2) is a promising alternative to thermal pasteurization potentially inactivating microorganisms without affecting food phytochemicals or organoleptic characteristics. To demonstrate these effects, studies were conducted by changing processing pressure and CO2 concentration in relation to microbial destruction. Subsequent storage stability (10 weeks at 4 degrees C) of muscadine grape juice processed by DP-CO2 (34.5 MPa at 8% or 16% CO2) was evaluated and compared to a heat-pasteurized juice (75 degrees C, 15 s). Thermal pasteurization decreased anthocyanins (16%), soluble phenolics (26%), and antioxidant capacity (10%) whereas no changes were observed for both DP-CO2 juices. DP-CO2 juices also retained higher anthocyanins (335 mg/L), polyphenolics (473 mg/L), and antioxidant capacity (10.9 micromol of Trolox equivalents/mL) than thermally pasteurized juices at the end of storage. Insignificant differences in sensory attributes (color, flavor, aroma, and overall likeability) were observed between unprocessed and DP-CO2 juices, while significant differences were observed between unprocessed and heat-pasteurized juices. Panelists preferred DP-CO2 over heat-pasteurized juices throughout the first 6 weeks of storage, whereby the growth of yeast and mold adversely affected the juice aroma. Comparable microbial counts were observed between DP-CO2 and thermally pasteurized juices during the first 5 weeks of storage. DP-CO2 protected phytochemicals in muscadine juice during processing and storage without compromising microbial stability or sensory attributes over 5 weeks of storage.  相似文献   

9.
Lipid oxidation and color stability of meats treated with irradiated phytic acid were investigated during storage for 2 weeks at 4 degrees C. The phytic acid in deionized distilled water (DDW) was degraded by irradiation at 10 and 20 kGy, and the irradiated phytic acid showed a strong antiradical activity. For measuring the antioxidant effects of irradiated phytic acid in food models, beef and pork were prepared with DDW (control), irradiated (10 and 20 kGy) or non-irradiated phytic acid, and ascorbic acid as a model system. Irradiated phytic acid significantly inhibited the lipid oxidation in meats compared to the control and ascorbic acid treated samples during storage (P < 0.05). The redness of the meats treated with phytic acid had a higher value than did the control and ascorbic acid treated samples, but a significant difference was not observed in the samples treated with phytic acid regardless of irradiation treatment. Irradiated phytic acid was also effective in inhibiting the loss of heme iron and metmyoglobin formation during storage. Results indicated that irradiation might be helpful for improving the antioxidant activity of phytic acid in meats.  相似文献   

10.
The 2-Alkylcyclobutanones (2-ACBs) content was determined in three Italian cured pork products (salame Milano, coppa, and pancetta) irradiated at different targeted irradiation doses (2, 5, and 8 kGy) during vacuum-packed storage. Among 2-ACBs, three different compounds were investigated, namely, 2-dodecylcyclobutanone, 2-tetradecylcyclobutanone, and 2-(tetradec-5'-enyl)cyclobutanone. 2-ACBs were absent from the nonirradiated samples, whereas their content increased with irradiation dose. Their presence was recorded occasionally at 2 kGy and constantly at higher irradiation doses (5 and 8 kGy). The plot of 2-ACBs content against targeted irradiation doses showed an exponential relationship. The effect of vacuum-packed storage time on the 2-ACBs content was dependent on the irradiation dose. During vacuum-packed storage for up to 60 days, the 2-ACBs content remained unchanged in the cured pork products irradiated at 2 and 5 kGy, whereas a significant increase was observed in the pork products irradiated at 8 kGy.  相似文献   

11.
锦橙汁辐照和巴氏灭菌处理后相关品质的分析   总被引:3,自引:2,他引:1  
为探讨辐照和巴氏杀菌对橙汁品质的影响,对锦橙汁分别进行1.4、2.8、5.6kGy3种不同剂量辐照及巴氏灭菌处理,使用固相微萃取-气质联用技术对挥发性成分进行分析,测定橙汁色度、pH值和Vc含量,并对橙汁香气进行感官评定。在鲜橙汁、巴氏灭菌汁和3种辐照样品中分别检测到了54、47、57、55和53种成分,2.8kGy剂量辐照处理后橙汁挥发性成分总峰面积最高,β-月桂烯、柠檬烯和γ-松油烯等橙汁特征香气物质经辐照后保持率高于巴氏灭菌。各种处理后Vc含量均有所下降,橙汁橙香均减弱。1.4kGy辐照后的橙汁感官评价结果最好,因此可以对橙汁进行低剂量辐照灭菌。  相似文献   

12.
Furan and acrylamide are two possible carcinogens commonly found in many thermally processed foods. The possibility of using ionizing radiation to reduce the levels of thermally induced furan and acrylamide in water and selected foods was investigated. Aqueous furan solutions, and foods (frankfurters, sausages, infant sweet potatoes) that contained furan were irradiated to various doses of gamma-rays. Water and oil spiked with acrylamide and potato chips (a known acrylamide-containing food) were also irradiated. In addition, possible irradiation-induced formation of acrylamide in glucose and asparagine solutions was analyzed. Results showed that irradiation at 1.0 kGy destroyed almost all furan in water. In frankfurters, sausages, and infant sweet potatoes, the rate of irradiation-induced destruction of furan was much lower than the rate in water, although significant reductions in furan levels were observed in all foods. Irradiation at 2.5-3.5 kGy, doses that can inactivate 5-log of most common pathogens, reduced furan levels in the food samples by 25-40%. Similarly to furan, acrylamide in water was also sensitive to irradiation. After 1.5 kGy of irradiation, most of the acrylamide was degraded. Irradiation, however, had a very limited effect on acrylamide levels in oil and in potato chips, even at a dose of 10 kGy. No detectable acrylamide was formed in the mixture of asparagine and glucose upon irradiation. These results suggest that a low dose of irradiation easily destroys furan and acrylamide in water. In real foods, however, the reduction of furan was less effective than in water, whereas the reduction in acrylamide was minimal.  相似文献   

13.
电子束辐照对三文鱼品质的影响研究   总被引:2,自引:0,他引:2  
为确定三文鱼电子束辐照的最佳剂量,以生鲜三文鱼为研究对象,采用0(未辐照)、0.5、1.0、2.0k Gy 4种不同剂量的电子束进行辐照处理,贮藏于0℃下,通过检测贮藏过程中鱼体的挥发性盐基氮、菌落总数、酸价、失重率、色差及质构等指标,研究电子束辐照剂量对三文鱼品质及其货架期的影响。结果表明,电子束辐照可以抑制三文鱼挥发性盐基氮的产生和菌落总数的增长,且辐照剂量越大,效果越明显;辐照剂量越大,贮藏初期的酸价越高,但在贮藏期间较未辐照组稳定,无明显的增大趋势;1.0 k Gy和2.0 k Gy剂量使三文鱼颜色变暗,0.5 k Gy较未辐照组差异不显著;贮藏末期,经过辐照的三文鱼的黏附性相对未辐照组小,硬度、弹性以及咀嚼性与未辐照组无显著差异,各剂量之间也无显著差异。综合各指标,0.5 k Gy剂量的电子束可以更好地保持三文鱼的品质。本研究结果为三文鱼的保鲜提供了有效的技术手段和一定的参考依据。  相似文献   

14.
Consumption of salsas and dishes containing cilantro has been linked to several recent outbreaks of food-borne illness due to contamination with human pathogens. Ionizing irradiation can effectively eliminate food-borne pathogens from various vegetables including cilantro. However, the effect of irradiation on aroma of fresh cilantro is unknown. This study was conducted to investigate the effect of irradiation on volatile compounds of fresh cilantro leaves. Fresh cilantro leaves (Coriandrum sativum L) were irradiated with 0, 1, 2, or 3 kGy gamma radiation and then stored at 3 degrees C up to 14 days. Volatile compounds were extracted using solid-phase microextraction (SPME), followed by gas chromatographic separation and mass spectra detection at 0, 3, 7, and 14 days after irradiation. Most of the volatile compounds identified were aldehydes. Decanal and (E)-2-decenal were the most abundant compounds, accounting for more than 80% of the total amount of identified compounds. The amounts of linalool, dodecanal, and (E)-2-dodecenal in irradiated samples were significantly lower than those in nonirradiated samples at day 14. However, the most abundant compounds [decanal and (E)-2-decenal] were not consistently affected by irradiation. During storage at 3 degrees C, the amount of most aldehydes peaked at 3 days and then decreased afterward. Our results suggest irradiation of fresh cilantro for safety enhancement at doses up to 3 kGy had minimal effect on volatile compounds compared with the losses that occurred during storage.  相似文献   

15.
This study evaluated the effectiveness of synthetic and natural antioxidants, green tea, commercial grape seed extracts/combinations, and TBHQ, with varying concentrations of lipid oxidation of nonirradiated and irradiated chicken breast meats stored at 5 degrees C for 12 days. Fresh boneless and skinless chicken breast meats were vacuum-infused with varying concentrations of antioxidants: green tea, grape seed extracts alone/in combination, and TBHQ. The irradiation dosage was 3.0 kGy. Carbonyl values of raw chicken meat and thiobarbituric acid reactive substances (TBARS) values of raw and cooked chicken meat were determined for 0-12 days at 5 degrees C storage. TBARS values for 0-12 days of storage at 5 degrees C ranged from 1.21 to 7.3 and 1.22 to 8.51 mg malondialdehyde/100 g chicken for nonirradiated and irradiated raw chicken, respectively. TBARS values of cooked chicken ranged from 2.19 to 35.83 and 2.45 to 45.72 mg malondialdehyde/100 g chicken for nonirradiated and irradiated chicken, respectively. Irradiation increased TBARS values of both controls and plant extracts. The carbonyl content in meat lipid ranged from 1.7 to 2.9 and 1.7 to 4.41 micromol acetophenone/10 g of nonirradiated and irradiated chicken meat, respectively, and meat protein ranged from 1.4 to 2.07 and 1.41 to 2.72 micromol/10 g meat. Infusion of chicken meat with selected plant extracts is an effective method to minimize lipid oxidation and volatiles developments caused by irradiation.  相似文献   

16.
The effect of electron-beam ionizing radiation stress and storage on mango fruit antioxidant compounds was evaluated in a dose range of 1-3.1 kGy. Phenolic high-performance liquid chromatography (HPLC) profiles were not affected right after the irradiation process; however, an increase in flavonol constituents was observed after 18 days in storage (3.1 kGy). Total phenolics by the Folin Ciocalteu method and antioxidant capacity (ORAC) were not affected, while reduced ascorbic acid decreased approximately 50-54% during storage (>/=1.5 kGy). No major changes in carotenoid HPLC profiles indicated a delay in ripening of irradiated mangoes (1-3.1 kGy) compared to nonirradiated fruits. However, irradiation dose >/=1.5 kGy induced flesh pitting due to localized tissue death. A summary of the potential roles of reactive oxygen species generated by the irradiation stress on different antioxidant constituents of mango fruits is presented.  相似文献   

17.
Ellagic acid and flavonoid antioxidant content of muscadine wine and juice   总被引:5,自引:0,他引:5  
Antioxidant properties of flavonoids and ellagic acid were characterized in eight wines and juices produced by various processing methodologies from red and white muscadine grape cultivars (Vitis rotundifolia). Juices and wines were produced by hot- and cold-pressed techniques, and additional wine was produced following on-hull fermentation for 3, 5, and 7 days. Chromatographic conditions were developed to simultaneously separate anthocyanins, ellagic acid, and flavonols and correlated to a measurement of overall antioxidant capacity (AOX), and their changes were monitored after storage for 60 days at 20 and 37 degrees C. Regression coefficients between concentrations of individual polyphenolics and AOX ranged from 0.55 for ellagic acid to 0.90 for kaempferol. Both red and white wines had higher AOX values after storage than juices made from an identical grape press, despite lower concentrations of individual polyphenolic compounds. Red wines fermented on-hull had higher initial concentrations of antioxidant polyphenolics as compared to a corresponding hot-pressed juice, but changes in AOX during storage were more affected by time than by storage temperature despite lower concentrations of flavonoids and ellagic acid present at 37 degrees C as compared to 20 degrees C. Oxidative or polymerization reactions significantly decreased levels of monomeric anthocyanins during storage with the greatest losses observed for delphinidin and petunidin 3,5-diglucosides. Processing methods for muscadine wine and juice production were important factors influencing concentrations of antioxidant flavonoids and ellagic acid, while the role of fermentation and time had the greatest influence on retention of AOX properties during storage.  相似文献   

18.
A study was conducted to investigate irradiation-induced formation of malondialdehyde (MDA), formaldehyde (FA), and acetaldehyde (ACT) from fructose, sucrose, glucose, and malic acid solutions. MDA and FA were generated from the carbohydrate solutions upon irradiation while little was formed from malic acid solution. On the other hand, a much higher amount of ACT was formed from malic acid than from the carbohydrate solutions. The G values (number of molecules formed per 100 eV radiation) for MDA were 0.042, 0.0066, and 0.0026 from 0.9 mg mL(-1) fructose, sucrose, and glucose solutions at pH 3.5, respectively. The G values for FA formation were 0.134, 0.233, and 0.0081 from the fructose, sucrose, and glucose solutions, respectively. As concentration of sugars in solutions increased from 0 to 90 mg mL(-1), the formation of these compounds increased rapidly. A further increase in sugar concentration from 90 to 900 mg mL(-1) resulted in a lower rate of increase in MDA and FA formation. pH had a profound effect on the irradiation-induced formation of these compounds from carbohydrates, especially on MDA formation. The minimum amount of MDA from fructose and glucose solutions was observed at pH 5 while formation of MDA from sucrose solution decreased as pH decreased from 7 to 2. The results can be used by the food industry to optimize food formulation in order to minimize formation of these compounds.  相似文献   

19.
Apple cider, with (0.1%) and without potassium sorbate, was packaged in polystyrene containers and exposed to three different gas environments: oxygen flush, nitrogen flush, and atmospheric air. To evaluate the effects of irradiation (2 kGy) and storage on flavor and microbial quality, these irradiated apple cider samples were compared to a control, unirradiated sample exposed to atmospheric air. Volatile compounds, soluble solids, titratable acidity, and microbiological counts were determined weekly throughout 7 weeks of refrigerated (4 degrees C) storage. Cider irradiated and stored in atmospheric air or nitrogen-flush environments had lower rates of loss for characteristic flavor volatiles compared to unirradiated apple cider and cider irradiated and stored in an oxygen-flush environment. The addition of potassium sorbate to the apple cider resulted in lower counts of yeasts and aerobic microorganisms, reduced fermentation of sugars to organic acids, and improved retention of volatile compounds characteristic of apple cider.  相似文献   

20.
The formation of 2-furoylmethyl derivatives of GABA (2-FM-GABA) and arginine (2-FM-Arg) as early indicators of nonenzymatic browning in different types of orange juice was studied. In dehydrated orange juice, the presence of 2-FM-GABA and 2-FM-Arg was detected from the first day of storage at 30 degrees C. In this type of juice, the content of these two compounds increased with temperature (30, 50 degrees C) and time (1-7 days) of storage. A noticeable increase in 5-hydroxymethylfurfural was only observed after 4 days of storage at 50 degrees C. No formation of 2-FM-GABA and 2-FM-Arg was detected in liquid orange juice heated under conditions similar to those used in the industry. These furoylmethyl derivatives were also found in commercial orange juice made from concentrates. A slight increase in their concentration was observed in the two samples stored during 8 months at room temperature. According to the results obtained, 2-FM-GABA and 2-FM-Arg contents could be suitable indicators to assess the main modifications due to Maillard reaction produced during the manufacture and/or storage of orange juice concentrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号