首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identifying the vulnerability of subsoils to compaction damage is an increasingly important issue both in the planning and execution of farming operations and in planning environmental protection measures. Ideally, subsoil vulnerability to compaction should be assessed by direct measurement of soil bearing capacity but currently no direct practical tests are available. Similarly, soil mechanics principles are not suitably far enough advanced to allow extrapolation of likely compaction damage from experimental sites to situations in general. This paper, therefore, proposes a simple classification system for subsoil vulnerability to compaction based for field use on local soil and wetness data at the time of critical trafficking, and, at European level, on related soil and climatic information. Soil data are readily available ‘in Country’ or from the European Soil Database and climatic data are stored in the agrometeorological database of the MARS Project. The vulnerability to compaction is assessed using a two-stage process. First, the inherent susceptibility of the soil to compaction is estimated on the basis of the relatively stable soil properties of texture and packing density. Second, the susceptibility class is then converted into a vulnerability class through consideration of the likely soil moisture status at the time of critical loadings. For use at local level, adjustments are suggested to take account of possible differences in the support strength of the topsoil and specific subsoil structural conditions. The vulnerability classes proposed are based on profile pit observations, on a wide range of soils examined mainly in intensively farmed areas where large-scale field equipment is employed. A map of soil susceptibility to compaction in Europe has been produced, as the first stage in developing a more rigorous quantitative approach to assessing overall vulnerability than has been possible hitherto.  相似文献   

2.
The prolonged use of vehicular traffic for farming creates subsoil compaction, which reduces crop yield and deteriorates the physical conditions of the soil. Field experiments were conducted during 2002–2003 and 2003–2004 in Pakistan to study subsoil compaction effects on soil bulk density, total porosity, yield and yield components of wheat. Soil compaction was artificially created at the start of the experiment using 7.0 t roller having length of 1.5 m and diameter of 1.22 m. Treatments consisted of T1 = control (no compaction), T2 = two passes of roller, T3 = four passes of roller, T4 = six passes of roller. The experiments were arranged in randomised complete block with four replications. Results indicated that subsoil compaction adversely affected the bulk density, total porosity of soil and root length during both the years. Soil compaction increased the bulk density (BD) from 1.37 for T1 to 1.57, 1.61 and 1.72 Mg m−3 whereas decreased the total porosity from 47.3% for T1 to 40.0, 37.4 and 34.5% for T2, T3 and T4, respectively. Similarly grain yield decreased from 4141.7 for T1 to 3912.8, 3364.5 and 3010.3 kg ha−1 for T2, T3 and T4, respectively. The deteriorating effect of compaction depended upon the degree of compaction. Subsoil compaction adversely affected the yield and yield attributes of wheat during both years of experiments. The subsoil compaction adversely affected soil physical conditions, which substantially decreased the yield of wheat. Therefore, appropriate measures of periodic chiselling, controlled traffic, conservation tillage, and incorporating of crops with deep tap root system in rotation cycle is necessary to minimize the risks of subsoil compaction.  相似文献   

3.
Subsoil compaction is a severe problem mainly because its effects have been found to be long-lasting and difficult to correct. It is better to avoid subsoil compaction than to rely on alleviating the compacted structure afterwards. Before recommendations to avoid subsoil compaction can be given, the key variables and processes involved in the machinery–subsoil system must be known and understood. Field traffic-induced subsoil compaction is discussed to determine the variables important to the prevention of the compaction capability of running gear. Likewise, technical choices to minimise the risk of subsoil compaction are reviewed. According to analytical solutions and experimental results the stress in the soil under a loaded wheel decreases with depth. The risk of subsoil compaction is high when the exerted stresses are higher than the bearing capacity of the subsoil. Soil wetness decreases the bearing capacity of soil. The most serious sources of subsoil compaction are ploughing in the furrow and heavy wheel loads applied at high pressure in soft conditions. To prevent (sub)soil compaction, the machines and equipment used on the field in critical conditions should be adjusted to actual strength of the subsoil by controlling wheel/track loads and using low tyre inflation pressures. Recommendations based on quantitative guidelines for machine/soil interactions should be available for different wheel load/ground pressure combinations and soil conditions.  相似文献   

4.
Nitrogen from fertilisers and crop residues can be lost as nitrous oxide (N2O), a greenhouse gas that causes an increase in global warming and also depletes stratospheric ozone. Nitrous oxide emissions, soil chemical status, temperature and N2O concentration in the soil atmosphere were measured in a field experiment on soil compaction in loam and sandy loam (cambisols) soils in south-east Scotland. The overall objective was to discover how the intensity and distribution of soil compaction by tractor wheels or by roller just before sowing influenced crop performance, soil conditions and production and emissions of N2O under controlled traffic conditions. Compaction treatments were zero, light compaction by roller (up to 1 Mg per metre of length) and heavy compaction by loaded tractor (up to 4.2 Mg). In this paper we report the effects on production and emissions of N2O and relate them to soil and crop conditions. Nitrous oxide fluxes were substantial only when the soil water content was high (>27 g per 100 g). Fertiliser application stimulated emissions in the spring whereas crop residues stimulated emissions in autumn and winter. Heavy compaction increased N2O emissions after fertiliser application or residue incorporation more than light or zero compaction. The bulk densities of the heavily and lightly compacted soils were up to 89% and 82% of the theoretical (Proctor) maxima. Higher soil cone resistances, temperatures and nitrogen availability and lower gas diffusivities and air-filled porosities combined to make the heavily compacted soil more anaerobic and likely to denitrify than the zero or lightly compacted soil. Compaction sufficient to increase N2O emissions significantly corresponded with adverse soil conditions for winter barley (Hordeum vulgare L.) growth. Soil tillage, which ensures that soil compaction is no greater than in our light treatment and is confined to near the soil surface, may help to mitigate both surface fluxes of N2O and losses to the subsoil.  相似文献   

5.
In recent years, agricultural land in Switzerland has been increasingly used as temporary access ways for heavy machinery in road and pipeline construction operations. The Swiss soil protection law requires that measures are taken to prevent soil compaction in such operations, but gives no criteria to determine tolerable loads. We studied the compaction sensitivity of a loess soil (Haplic Luvisol) at different soil moisture conditions in a field traffic experiment and by a numerical model on the computer using finite element analysis. Two plots, one wetted by sprinkling and one left dry (no sprinkling), were traversed by heavy caterpillar vehicles during construction of a large overland gas pipeline. Compaction effects were determined by comparing precompression stresses of samples taken from trafficked and non-trafficked soil. A finite element model with a constitutive relation, based on the concept of critical state soil mechanics, was used to interpret the outcome of the field trials.

We found significantly higher precompression stresses in the trafficked (median 97 kPa) compared with the non-trafficked (median 41 kPa) topsoil of the wet plot. No effect was evident in the topsoil of the dry plot as well as in the subsoils of the wet and the dry plot. The observed compaction effects were in agreement with the model predictions if the soil was assumed to be partially drained, but disagreed for the wet subsoil if fully drained conditions were assumed. Agreement between model and experimental results also required that the moisture dependence of the precompression stress was taken into account.  相似文献   


6.
The main function of deep tillage is to alleviate subsoil compaction, but how long do the benefits of this technique remain? Traffic on loose soil causes a significant increase in soil compaction. Subsoiling and chisel plowing were carried out at 450 and 280 mm depth, respectively on a compacted soil in the west Rolling Pampas region of Argentina. The draft required, physical soil properties, root growth, sunflower (Helianthus annus L. Merr.) yield and traffic compaction over the subsequent two growing seasons were measured. Cone penetrometer resistance was reduced and sunflower yields increased following deep tillage operations. Subsoil compaction caused changes to the root system of sunflower that affected shoot growth and crop yields. Although subsoiling and chiseling had an immediate loosening effect, it was evident that after just 2 years, when traffic intensity was >95 mg km ha−1, re-compaction and settling had occurred in the 300–600 mm depth range.  相似文献   

7.
Soil compaction influences crop growth, movement of water and chemicals in numerous ways. Mathematical modelling contributes to better understanding of the complex and variable effects. This paper reviews models for simulating topsoil and subsoil compaction effects. The need for including both topsoil and subsoil compaction results from still increasing compactive effect of vehicular pressure which penetrates more and more into the subsoil and which is very persistent. The models vary widely in their conceptual approach, degree of complexity, input parameters and output presentation. Mechanistic and deterministic models were most frequently used. To characterise soil compactness, the models use bulk density and/or penetration resistance and water content data. In most models root growth is predicted as a function of mechanical impedance and water status of soil and crop yield—from interactions of soil water and plant transpiration and assimilation. Models for predicting movement of water and chemicals are based on the Darcy/Richards one-dimensional flow equation. The effect of soil compaction is considered by changing hydraulic conductivity, water retention and root growth. The models available allow assessment of the effects of topsoil and subsoil compaction on crop yield, vertical root distribution, chemical movement and soil erosion. The performance of some models was improved by considering macro-porosity and strength discontinuity (spatial and temporal variability of material parameters). Scarcity of experimental data on the heterogeneity is a constraint in modelling the effects of soil compaction. Suitability of most models was determined under given site conditions. Few of the models (i.e. SIBIL and SIMWASER) were found to be satisfactory in modelling the effect of soil compaction on soil water dynamics and crop growth under different climate and soil conditions.  相似文献   

8.
The papers in this special issue present results of the European Union (EU) concerted action “Experiences with the impact of subsoil compaction on soil crop growth and environment and ways to prevent subsoil compaction”. The results and conclusions of earlier research on subsoil compaction are memorized and it is emphasized that the conclusions are still sound: high axle load traffic on soils of high moisture content causes deep and persistent subsoil compaction. The concerted action on subsoil compaction in the EU and an almost identical concerted action on subsoil compaction in central and eastern Europe are briefly introduced. This special issue presents a selection of papers of the concluding workshop of the concerted action on subsoil compaction in the EU. It includes three papers on modeling the impact of subsoil compaction on crop growth, water availability to plants and environmental aspects; three papers on modeling of subsoil compaction by heavy machinery; four papers on measurement of soil mechanical and physical properties in relation to subsoil compaction and four papers on methods to determine the risk of subsoil compaction and to identify prevention strategies. The trends in agriculture in relation to subsoil compaction are discussed. A positive trend is that policy makers in the EU and worldwide recognize soil as a vital and largely non-renewable resource increasingly under pressure. A negative trend is that wheel loads in agriculture are still increasing causing severe damage to subsoils. The conclusion is that European subsoils are more threatened than ever in history. Manufactures, agricultural engineers and soil scientists should collaborate and research should be initiated to solve this problem and find solutions. Subsoil compaction should be made recognized by all people involved from farmer to policy maker. Therefore an assessment of the existence and seriousness of subsoil compaction throughout Europe should be initiated.  相似文献   

9.
Fast and accurate large-scale localization and quantification of harmfully compacted soils in recultivated post-mining landscapes are of particular importance for mining companies and the following farmers. The use of heavy machinery during recultivation imposes soil stress and can cause irreversible subsoil compaction limiting crop growth in the long term. To overcome or guide classical point-scale methods to determine compaction, fast methods covering large areas are required. In our study, a recultivated field of the Garzweiler mine in North Rhine-Westphalia, Germany, with known variability in crop performance was intensively studied using non-invasive electromagnetic induction (EMI) and electrode-based electrical resistivity tomography (ERT). Additionally, soil bulk density, volumetric soil water content and soil textures were analysed along two transects covering different compaction levels. The results showed that the measured EMI apparent electrical conductivity (ECa) along the transects was highly correlated (R2 > .7 for different dates and depths below 0.3 m) to subsoil bulk density. Finally, the correlations established along the transects were used to predict harmful subsoil compaction within the field, whereby a spatial probabilistic map of zones of harmful compaction was developed. In general, the results revealed the feasibility of using the EMI derived ECa to predict harmful compaction. They can be the basis for quick monitoring of the recultivation process and implementation of necessary melioration to return a well-structured soil with good water and nutrient accessibility, and rooting depths for increased crop yields to the farmers.  相似文献   

10.
Identifying the vulnerability of soils to compaction damage is becoming an increasingly important issue when planning and performing farming operations. Soil compaction models are efficient tools for predicting soil compaction due to agricultural field traffic. Most of these models require knowledge of the stress/strain relationship and of mechanical parameters and their variations as a function of different physical properties. Since soil compaction depends on the soil's water content, bulk density and texture, good understanding of the relations between them is essential to define suitable farming strategies according to climatic changes. In this work we propose a new pedotransfer function for 10 representative French soils collected from cultivated fields, a vineyard and forests. We investigate the relationship between soil mechanical properties, easily measurable soil properties, water content and bulk density. Confined compression tests were performed on remoulded soils of a large range of textures at different initial bulk densities and water contents. The use of remolded samples allowed us to examine a wide range of initial conditions with low measurement variability. Good linear regression was obtained between soil precompression stress, the compression index, initial water content, initial bulk density and soil texture. The higher the clay content, the higher the soil's capacity to bear greater stresses at higher initial water contents without severe compaction. Initial water content plays an important role in clayey and loamy soils. In contrast, for sandy soils, mechanical parameters were less dependent on initial water content but more related to initial bulk density. These pedotransfer functions are expected to hold for the soils of tilled surface layers, but further measurements on intact samples are needed to test their validity.  相似文献   

11.
Field traffic may reduce the amount of air-filled pores and cavities in the soil thus affecting a large range of physical soil properties and processes, such as infiltration, soil water flow and water retention. Furthermore, soil compaction may increase the mechanical strength of the soil and thereby impede root growth.

The objective of this research was to test the hypotheses that: (1) the degree of soil displacement during field traffic depends largely on the soil water content, and (2) the depth to which the soil is displaced during field traffic can be predicted on the basis of the soil precompression stress and calculated soil stresses. In 1999, field measurements were carried out on a Swedish swelling/shrinking clay loam of stresses and vertical soil displacement during traffic with wheel loads of 2, 3, 5 and 7 Mg at soil water contents of between 11 and 35% (w/w). This was combined with determinations of soil precompression stress at the time of the traffic and predictions of the soil compaction with the soil compaction model SOCOMO. Vertical soil displacement increased with increased axle load. In May, the soil precompression stress was approximately 100 kPa at 0.3, 0.5 and 0.7 m depth. In August and September, the soil precompression stress at 0.3, 0.5 and 0.7 m depth was 550–1245 kPa. However, when traffic with a wheel load of 7 Mg was applied, the soil displacements at 0.5 m depth were several times larger in August and September than in May, and even more at 0.7 m depth. An implication of the results is that the precompression stress does not always provide a good indication of the risk for subsoil compaction. A practical consequence is that subsoil compaction in some soils may occur even when the soil is very dry. The SOCOMO model predicted the soil displacement relatively well when the soil precompression stress was low. However, for all other wheeling treatments, the model failed to predict that any soil compaction would occur, even at high axle loads.

The measured soil stresses were generally higher than the stresses calculated with the SOCOMO model. Neither the application of a parabolic surface load distribution nor an increased concentration factor could account for this difference. This was probably because the stress distribution in a very dry and strongly structured soil is different from the stress distribution in more homogeneous soils.  相似文献   


12.
A database which holds results of field and laboratory experiments on the impact of subsoil compaction on physical and mechanical soil parameters and on crop yields and environmental impact is being developed within the EU sponsored concerted action (CA) project “Experiences with the impact of subsoil compaction on soil, crop growth and environment and ways to prevent subsoil compaction”. The database accumulates and can provide all available data from the participants of the European Union countries, and is compatible with the European Soil Database and other related databases.

More than 600 sets of data (Excel workbooks) from participants from the European Union, plus Poland, Switzerland and Norway are included in the database. Through a similar EU sponsored CA, Eastern European countries are expected to deliver 260 sets of data thus bringing the total number of Excel workbooks to approximately 860. In total, the database will contain approximately 13,500 data spreadsheets.

The objective of the database is to collect data on subsoil compaction, to store it in a structured format and to make it available for analysis and use. Thereby it will enable elucidation of the impact of subsoil compaction on soil properties, crop yields and environment and evaluate the vulnerability of soils to compaction.  相似文献   


13.
Soil compaction can affect crop growth and greenhouse gas emission and information is required of how both these aspects are affected by compaction intensity and weather. In this paper we describe treatments of compaction intensity and their effects on soil physical conditions and crop growth in loam to sandy loam cambisol soils. Soil conditions and crop performance were measured over three seasons in a field experiment on soil compacted by wheels on freshly ploughed seedbeds. Ploughing buried the chopped residues of the previous crop. After ploughing, traffic was controlled such that the experimental plots received wheel traffic only as treatments. The overall objective was to discover how the intensity and distribution of soil compaction just before sowing influenced crop performance, soil conditions and emissions of nitrous oxide. Compaction treatments were zero, light compaction by roller (up to 1 Mg m−1) and heavy compaction by loaded tractor, (up to 4.2 Mg). The experiment was located at Boghall, near Edinburgh (860 mm average annual rainfall) for the first two seasons under spring and winter barley (Hordeum vulgare L.) and in a drier area at North Berwick (610 mm average annual rainfall) for the third season under winter oil-seed rape (Brassica napus L.). Heavy compaction in dry soil conditions had little effect on crop growth. However, in wet conditions heavy compaction reduced air porosity, air permeability and gas diffusivity, increased cone resistance and limited winter barley growth and grain yield. Heavy compaction in wet conditions reduced winter barley yields to 7.1 Mg ha−1, in comparison to 8.8 Mg ha−1 in the zero compaction treatment. The compaction status of the top 15 cm of soil seemed to be particularly important. Loosening of the top 10 cm of soil immediately after heavy compaction restored soil conditions for crop growth. However, zero seed bed compaction gave patchy and uneven crop emergence in dry conditions. Both zero and light compaction to a target depth of 10 cm gave similar crop productivity. Maintenance of a correct compaction level near the soil surface is particularly important for establishment and overwintering of barley and oil seed rape.  相似文献   

14.
The relative importance of wheel load and tyre inflation pressure on topsoil and subsoil stresses has long been disputed in soil compaction research. The objectives of the experiment presented here were to (1) measure maximum soil stresses and stress distribution in the topsoil for different wheel loads at the same recommended tyre inflation pressure; (2) measure soil stresses at different inflation pressures for the given wheel loads; and (3) measure subsoil stresses and compare measured and simulated values. Measurements were made with the wheel loads 11, 15 and 33 kN at inflation pressures of 70, 100 and 150 kPa. Topsoil stresses were measured at 10 cm depth with five stress sensors installed in disturbed soil, perpendicular to driving direction. Contact area was measured on a hard surface. Subsoil stresses were measured at 30, 50 and 70 cm depth with sensors installed in undisturbed soil. The mean ground contact pressure could be approximated by the tyre inflation pressure (only) when the recommended inflation pressure was used. The maximum stress at 10 cm depth was considerably higher than the inflation pressure (39% on average) and also increased with increasing wheel load. While tyre inflation pressure had a large influence on soil stresses measured at 10 cm depth, it had very little influence in the subsoil (30 cm and deeper). In contrast, wheel load had a very large influence on subsoil stresses. Measured and simulated values agreed reasonably well in terms of relative differences between treatments, but the effect of inflation pressure on subsoil stresses was overestimated in the simulations. To reduce soil stresses exerted by tyres in agriculture, the results show the need to further study the distribution of stresses under tyres. For calculation of subsoil stresses, further validations of commonly used models for stress propagation are needed.  相似文献   

15.
Crop yields can be reduced by soil compaction due to increased resistance to root growth, and decrease in water and nutrient use efficiencies. A field experiment was conducted during 1997–1998 and 1998–1999 on a sandy clay loam (fine-loamy, mixed, hyperthermic Typic Haplargids, USDA; Luvic Yermosol, FAO) to study subsoil compaction effects on root growth, nutrient uptake and chemical composition of wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L. Moench). Soil compaction was artificially created once at the start of the study. The 0.00–0.15 m soil was manually removed with a spade. The exposed layer was compacted with a mechanical compactor from 1.65 Mg m−3 (control plot) to a bulk density of 1.93 Mg m−3 (compacted plot). The topsoil was then again replaced above the compacted subsoil and levelled. Both compacted and control plots were hoed manually and levelled. Root length density, measured at flowering stage, decreased markedly with compaction during 1997–1998 but there was little effect during 1998–1999. The reduction in nutrient uptake by wheat due to compaction of the subsoil was 12–35% for N, 17–27% for P and up to 24% for K. The reduction in nutrient uptake in sorghum due to subsoil compaction was 23% for N, 16% for P, and 12% for K. Subsoil compaction increased N content in wheat grains in 1997–1998, but there was no effect on P and K contents of grains and N and P content of wheat straw or sorghum stover. During 1997–1998, K content of wheat straw was statistically higher in control treatment compared with compacted treatment. In 1998, P-content of sorghum leaves was higher in compacted treatment than uncompacted control. Root length density of wheat below 0.15 m depth was significantly reduced and was significantly and negatively correlated with soil bulk density. Therefore, appropriate measures such as periodic chiselling, controlled traffic, conservation tillage, and incorporating of crops with deep tap root system in rotation cycle is necessary to minimize the risks of subsoil compaction.  相似文献   

16.
Abstract

In this paper we describe the susceptibility of Swedish subsoils to compaction and discuss strategies for prevention of traffic-induced subsoil compaction against the background of experiences from wheeling experiments conducted in Sweden during recent years. The susceptibility of Swedish subsoils to compaction must be considered high because subsoils are often wet during field operations and machinery with high wheel loads is used. The risk of subsoil compaction could be reduced by technical solutions, such as the use of dual and tandem wheels instead of single wheels, low tyre inflation pressure or tracks. However, each of these solutions has its limitations. Results from several wheeling experiments on different soils indicate that residual deformations occur even when the applied stress is lower than the precompression stress. Hence, soil compaction could not be avoided completely by limiting the applied stress to the precompression stress.  相似文献   

17.
Short-term effects of high axle load traffic on soil total porosity and pore size distribution were examined in field experiments on a clay (Vertic Cambisol) and an organic soil (Mollic Gleysol) for 3 years after the heavy loading. The clay soil had 48 g clay (particle size less than 2 μm) per 100 g in the topsoil and 65 g per 100 g in the subsoil. The organic soil consisted of well-decomposed sedge peat mixed with clay below 0.2 m depth down to 0.4–0.5 m and was underlain by gythia (organic soil with high clay content). The experimental traffic was applied with a tractor-trailer combination in autumn 1981. The trailer tandem axle load was 19 Mg on the clay and 16 Mg on the organic soil. There were three treatments: one pass with the heavy axle vehicle, with wheel tracks completely covering the plot area, four repeated passes in the same direction, and a control treatment without experimental traffic. During loading, the clay was nearly at field capacity below 0.1 m depth. The organic soil was wetter than field capacity.

One and four passes with the high axle load compacted both soils to a depth of 0.4–0.5 m. On the clay soil the total porosity was reduced by the heavy loading nearly as much as macroporosity (diameter over 30 μm) to 0.5 m depth. On the organic soil, macroporosity was reduced and microporosity (under 30 μm) increased in the 0.2–0.5 m layer by the heavy loading. Total porosity did not reveal the effects of compaction on the organic soil. The compaction of the clay below 0.1 m persisted for 3 years following the treatment despite annual ploughing to a depth of 0.2 m, cropping and deep cracking and freezing. Likewise, in the subsoil (below 0.2 m) of the organic soil, differences in pore size distribution persisted for a period of at least 3 years after the heavy loading.  相似文献   


18.
Research was conducted to develop a knowledge-based decision support system to assess the degree of compaction in agricultural soils. The experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely, clay, silty clay loam, and silty loam. The research was likewise aimed to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop compaction models for soil compaction assessment. Dimensional analysis technique was used in the development of the compaction models.

The soil compaction models were found to provide good predictions of the bulk density and cone index. Using the compaction models and other secondary data, the decision support system was developed to assess the compaction status of the soil in relation to crop yield. The predictions by the decision support system were validated with actual field data from earlier studies and high correlation was observed. Thus, the output of the decision support system may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific soil compaction problems.  相似文献   


19.
Applicability of geophysical prospecting methods for mapping of soil compaction and variability of soil texture on farm land The increasing degree of mechanization in agriculture has resulted in the use of more powerful and heavier tractors and machines. Consequently, mechanical burden to soils has increased, too, which can lead to persistent subsoil compaction at depths below 30 cm. In soils damaged by compaction soil functions like transportation of water and air decrease. Because of that, conditions for plant growth are getting worse and the soils' natural regulation functions could be impaired. In order to take counteractive measures, it is necessary to get information about the status of soil compaction. Up to now, the status of soil compaction can only be determined at single points in laboratory measurements or with less accuracy in field measurements. Therefore, the demand for an efficient planar‐mapping system arises. The applicability of different geophysical prospecting methods with regard to this problem has been examined. For this purpose, geophysical and soil measurements were performed in a field with conventional agricultural land use in Schleswig‐Holstein (Germany) on a young moraine site. We applied GPR (Ground Penetrating Radar) with main frequencies 500 MHz and 900 MHz, supplemented by inductive electromagnetic technique (EM) using the Ground Conductivity Meter EM38 and high‐resolution refraction seismic using compressional and shear waves. Differences in soil type were found by all these geophysical methods and confirmed by soil measurements, therefore, locations with higher risk for compaction (loamy soils) could be distinguished from locations with lower risk (sandy soils). Under humid conditions, radar data showed strong reflections at a depth of approx. 30 cm. During summer, under dry conditions, these reflections did not occur. This temporal variation of radar reflections can be explained by variable water layers inside the soil, which can be regarded as an indicator for compacted soil. The seismic investigation was performed along short (12 m) profiles with dense (20 cm) sensor spacing. Excellent data quality showed that this sort of measurement, known from engineering geophysics, is also feasible for soil investigations. We performed both compressional‐ (P‐) and shear‐(SH‐) wave refraction studies. Differences in soil type of subsoil affected especially seismic velocities of P‐waves. Whether or not areas of compacted soil can be detected is still unknown, because deeper soil horizons of our test area showed only uniformly strong compaction with little contrasts.  相似文献   

20.
Irrigation of crops in Mediterranean countries can produce some conditions that favour soil compaction processes. The SIMWASER model takes into account the effects of subsoil compaction on water balance and crop yield. The objectives of this paper were: (i) to test the mentioned model using the data set collected, during three years (1991–1993), from irrigation experiments with maize (Zea mays L., cv. Prisma) on a sandy soil (Cambisols (FAO, 1990) or Xerocrepts (USDA, 1998)) in SW Spain and (ii) to estimate the influence of subsoil compaction on soil water balance and crop yield assuming long lasting heavy subsoil compaction that may be developed under irrigation for the SW Spain conditions. The model was run to simulate soil water content, evapotranspiration, drainage below the root zone, and crop yield for the same period in which the experiment was carried out. Results of simulation were compared with the experimental results in order to know the agreement between them. The results obtained show a fairly good agreement between simulated and measured values for most of the parameters considered. For the scenario in which subsoil compaction is developed under irrigation, the results simulated by the model indicate a reduction of the rooting depth. However, the effects on water balance and crop yield in this sandy soil were not relevant under the SW Spain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号