首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The legal-administrative setting for the use of waterresources in Mendoza Province is founded on differentlegal rules. This includes the National Constitution,the Argentine Civil Code, National Laws, theConstitution of the Provincial State, the GeneralWater Law, (legal) administrative regulations of theGeneral Department of Irrigation.The current water law is based on the roman law, onthe Arab irrigation water rights which were brought toArgentina by the Spaniards and on the practices of theoriginal American pre-Colombian intermediate law.The latter is marked by a strong regional sense. Assuch, the water law is strongly influenced by theregions elements of nature and attempts to offersolutions to problems.The legal rules are discussed from a behavioral andorganizational perspective. Examples from the LowerTunuyan System are given to illustrate the day-to-dayeffects on irrigation water management.  相似文献   

2.
Summary Water potential, osmotic potential, turgor potential, and stomatal resistance were measured on leaves of a drought-sensitive (Ponca) and a drought-resistant (KanKing) cultivar of winter wheat (Triticum aestivum L.) treated with foliar applications of NaCl to determine the effect of salt on the water status of two cultivars varying in drought resistance. Plants were grown under controlled conditions in soil, which was watered or allowed to dry. Water potential of the soil was determined. Given an ample water supply, water potential and osmotic potential of leaves of both cultivars with NaCl were lower, and stomatal resistance was higher, than without NaCl. The combination of salt and drought killed both cultivars, but the turgor potential of the drought-sensitive cultivar with the two stresses reached zero before that of the drought-resistant cultivar. Under limited water supply, both cultivars with foliar applications of salt extracted more water from soil than they did with no salt, and the drought-resistant cultivar took up more water than did the drought-sensitive cultivar. The drought-resistant cultivar with foliar NaCl maintained a higher turgor potential and extracted more water from the drying soil than did the drought-sensitive cultivar with foliar NaCl, suggesting that the drought-resistant cultivar was also more salt tolerant.  相似文献   

3.
Summary Correlations between spring rainfall and grain yield were determined for four winter wheat cultivars (Triticum aestivum L. em. Thell. Triumph, Wichita, Concho, and Triumph 64), grown between 1950 and 1977 under dryland conditions at Stillwater, in the East Central region of Oklahoma, and at Goodwell, located in the drier, western part of the state.At Stillwater, all but one of the cultivars exhibited maximum positive correlations between rainfall and yield in the fourth week of March, when stem-extension occurs. Smaller positive correlations were observed in mid-April when flowering. Results at Goodwell were similar except that the correlations between rainfall and yield were lower and occurred earlier than at Stillwater and showed a less marked secondary peak at flowering. These results agree with those of experiments in which irrigation has been applied at different growth stages of wheat, and have shown that both stem-extension and flowering are critical stages of water requirement. As the results of this climatic study show that the peak correlations between rainfall and yield occur at these same two stages, it is suggested that long-term climatic data could be used to determine optimum timing for irrigation of wheat.Such an approach should save water and energy by limiting irrigation to those times when analysis of local records demonstrates the maximum positive correlation between rainfall and yield.  相似文献   

4.
The steady-state drainage equation ofHooghoudt (1940) has adrawback that tables for the determination of the so-calledequivalentlayer, de are needed. These calculations arecumbersome as de is dependenton the unknown spacing. Moreover, additional head islost due to theconvergence of stream lines towards the finite numberof perforations withinthe pipe wall. Therefore, corrections are required byreplacing the actualdrain radius by its effective radius. The designers inEgypt assume that thedepth of impermeable layer is infinity which resultsin an over estimationof drain spacing that will affect the ability of thedrainage system.Van der Molen and Wesseling (1991) have developed aseries solution toreplace the Hooghoudts approximation method for theequivalent depth by anexact solution. A comparison between this solution andthose of Lovell andYoungs (1984) and Hooghoudt (1940) showed that theexact solution proved tobe very accurate and efficient solution. The mainobjective of this study isto verify an accurate depth of the impermeable barrierand an effectiveradius of drain pipes which should be used in thedesign process using theexact solution.A field investigation was conducted in a study area of33,138 ha in theNorthern Delta of Egypt within Daqahliya Governorate.The results indicatethat a 5 m depth instead of infinity for theimpermeable layer in Nile Deltaand an effective radius of 90 mm should be used in thedesign process. Theuse of the exact solution for equivalent depth is acrucial issue especiallywith the high rate of on-going drainage projects inEgypt.  相似文献   

5.
This paper presents new formulae to calculate the width of a buffer zone between a drained agricultural plot and a nature reserve area. These formulae are based on the classical Dupuit-Forchheimer assumptions and take into account the position of the impervious layer. With basic meteorological and agrological inputs, the proposed equations can be used to determine the length of the depression zone during watertable drawdown due to underground drainage. Calculating the required width of protection belts around peatland reserves is a typical and common application of the formulas presented in this paper.  相似文献   

6.
In spite of several attempts at integrated operation planning, multiple reservoirs in Japan have been operated by trial and error without any formal rules. Subjects of integrated operation are not only showing optimal usage of daily storage levels as an operational policy but also providing a countermeasure for droughts.Objectives of this study are to make a formal operation rule of multiple reservoirs for irrigation using the theory of Required Storage for Drought Curve (RSDC) Method and to propose operational policy for multiple reservoirs as large water supply systems. The Iwaki river basin, on which there are four reservoirs for irrigation parallel with each other, is considered to be a model river basin with a large water system for this case study.From results of simulations using historical data, comparing an individual operation rule with an integrated operation rule on several indices, effectiveness of the latter rule is recognized. Under integrated operation, water losses are minimized and excessive water conservation can be avoided over the whole area to benefit while target river discharge is maintained at key control points because water usage from all reservoirs is well balanced in relation to water availability.  相似文献   

7.
The findings of a study of factors influencing the uptake of pressurised irrigation technologies by smallholders in developing countries are presented. The paper reviews the physical and technical characteristics that determine their suitability for use by smallholders. It also identifies a range of pre-conditions relating to water availability, institutional support and economic opportunity that must be satisfied before smallholders will adopt even low-technology pressurised irrigation systems.The review demonstrates that where physical, economic and institutional conditions are right some forms of pressurised modern irrigation technology permit smallholder irrigation of high value crops where surface irrigation would be inappropriate. However, the paper warns against the danger of wide-scale promotion of such technologies without considering the issues of institutional and technical support. Where pressurised systems are promoted to increase water use efficiency it is essential that they be well designed, installed and operated for savings to be realised.  相似文献   

8.
Summary Cowpea (Vigna unguiculata L.), grown widely under both irrigated and dryland conditions, is well adapted to drought and high temperature and is moderately salt tolerant. Data on photosynthetic response and regulation of water relations in cowpea under salinity stress is lacking. Therefore, in conjunction with a field plot experiment to establish the leaching requirement of cowpea, measurements were made of carbon dioxide assimilation rates (A) by 14CO2 uptake, leaf conductances to H2O (g1) by tritum uptake, and to CO2 (g), and leaf total water potential (t 1) and osmotic potential ( 1).Cowpeas, grown in field plots containing Pachappa fine sandy loam (mixed, thermic, Mollic Haploxeraff), were irrigated daily with saline water (1,350 mg 1–1 total salt concentration) to achieve leaching fractions of 0.17, 0.13, 0.09, 0.07, and 0.02. Cowpea maintained high leaf water potentials, high rates of CO2 assimilation and high leaf conductances under moderately saline conditions (high leaching). Values of t 1 and 1 for high leaching were consistently 50 to 200 J kg–1 higher than for low leaching throughout the day. Calculating 1 at full leaf turgor eliminated diurnal variation in 1. As leaching decreased, however, A, g1, and g, decreased significantly. About 45% of the 1°C assimilated by the leaf was incorporated rapidly into ethanol insoluble compounds. The relationship between A and g1 for cowpea was similar to that reported for other crops.Contribution from the US Salinity Laboratory, USDA-ARS, 4500 Glenwood Dr., Riverside, CA. 92501, USA  相似文献   

9.
Summary The effect of N and K nutrition on the salt tolerance of lettuce (Lactuca saliva L. cv. Saunas) and Chinese cabbage (Brassica campestris L., Pekinensis cv. Kazumi) was evaluated in three greenhouse experiments under a controlled aero-hydroponic system of cultivation. Three levels of KNO3 (1, 5 and 10 mM) were tested in all the experiments with rapidly circulated saline and nonsaline nutrient solutions. Two experiments, carried out between January and March 1989, with lettuce (Exp. I) and Chinese cabbage plants (Exp. III), consisted of two salinity levels, EC = 1.75 and 6.0 dS m–1, the former representing a nonsaline nutrient solution. In the third experiment with lettuce (Exp. II., conducted between March and May 1989), three saline nutrient solutions having EC levels of 4.7, 7.75 and 10.75 dS m–1 were compared to the nonsaline solution. The nutrient solutions were salinized with NaCl and CaCl2, in a 4:1 molar ratio. The highest yields of fresh weight of both crops were obtained from the 5 mM KNO3 under both saline and non-saline conditions. The 10 mM treatment caused yield reduction in Chinese cabbage, probably due to a severe tipburn disorder. The relatively high fresh weight yield obtained at the lowest (1 mM) KNO3 level can be explained by the positive effect of circulation velocity on nutrient uptake. The threshold salinity damage value for the vegetative yield of lettuce plants fed by 5 or 10 mM KNO3 was approximately 5 dSm–1 and the yield decreased by 6.5% per unit dS m–1 above the threshold. No yield improvement due to the addition of KNO3 occurred under highly saline conditions (Exp. II). The fresh weight of Chinese cabbage obtained from the saline 1 and 5 mM KNO3 treatments was approximately 15% lower than the non-saline-treatment (Exp. III). Salinity increased tipburn and the effect was not altered by the addition of KNO3. No significant interaction between nutrition (KNO3 level) and salinity was found. The application of salts increased the concentration of Na and Cl in plant tissue and reduced the levels of N and K; the opposite occurred in plants fed by the medium and high levels of KNO3.Contribution from Institute of Soils and Water, ARO, Volcani Center, PO Box 6, Bet Dagan 50250, Israel. No. 3092-E 1990 series  相似文献   

10.
The complexity of physical phenomena in furrow irrigation,where numerous parameters vary with time and space, makeempirical models more operative than mechanistic models forimproving irrigation efficiency. In addition, when theseempirical models are well adapted for real-time calibration onadvance trajectory, they can be considered an efficient toolto predict irrigation performance.In the first section of this paper, the selection of operativefurrow irrigation modelling for real-time applications isdiscussed. Models derived from Horton and linear infiltrationequations through the water balance equation (WBE) arepreferred to those derived from the 2-term Philips equationand to the solution of WBE involving both the power advancefunction and Kostiakovs extended equation.The second section shows that simplified analytical modellingoptions can be added to the basic advance-infiltration modelfor improving irrigation efficiency. The modelling optiondeveloped in this paper concerns the prediction of cutoff timeand irrigation performance for closed-end furrows (CEF).The simplified analytical model for CEF based on the massconservation principle is successfully compared to field testsand numerical simulations.  相似文献   

11.
The design of most canal systems requires that they be operated under rigid schedules, rather thanon-demand. Rigid schedule operation results in water wastage through spillage, or users taking their turn even when the water cannot be efficiently used. This paper develops a two step method for optimally designing a canal system so it can be operated effectively under user on-demand requests for water. The first step determines the cross-sectional dimensions of the canal to provide storage capabilities while minimizing costs, by solving an appropriate nonlinear optimization problem. In the second step a hydraulic simulation model finds a near-optimal storage capacity based on construction and right-of-way costs, penalties due to operational water losses, water over supplied to users and supply shortages. The performance is evaluated by a quality index that is defined as the ratio of volume of satisfied demands to total volume of water requested. Results of regression equations from hundreds of computer sensitivity analyses relating variables are summarized in tables.  相似文献   

12.
Summary Barley plants (Hordeum distichum, L., cv. Zita) grown in a sandy soil in pots were adjusted during a pretreatment period of 5 days to three levels of soil water osmotic potential by percolating 61 of a nutrient solution with additional 0, 22.3 and 44.6 mM KCl. A drying cycle was then started and the plants were harvested when the soil water matric potential had decreased to –1.4 MPa, respectively 6, 7 and 8 days later.No significant differences in dry matter yields, transpiration coefficients and wilting percentages were found between treatments.During the drying cycle leaf water potential ( l ) decreased concomitantly with decrease in soil water potential ( s ) with almost constant and similar differences ( l s ) for all treatments despite differences in levels of potentials. The concomitant decrease in leaf osmotic potential () was due partly to dehydration (58%) and partly to increase in leaf solute content (42%) independent of treatment. The part of total osmotic solutes due to K decreased relatively during the drying cycle.Close relationships were found between and l as functions of relative water content (RWC). Identical curves for the two levels of salt treatment agree with similar concentrations of K, Cl, and ash found for salt treated plants indicating that maximum uptake of macro nutrients may have been reached.During the main part of the drying cycle the turgor potential as function of RWC was higher and decreased less steeply with decreasing RWC in the salt treated than in the non-salt treated plants.In the beginning of the drying cycle additions of KCI lowered the transpiration rates of the salt treated plants resulting in a slower desiccation of the soil and hence an increased growth period. A delay in uptake from a limited soil water supply may be advantageous during intermittent periods of drought.  相似文献   

13.
This article examines trends in the understandingof and policies toward farmer participation in irrigationmanagement over the past 20 years, with special attention toexperiences with induced participation and management transferprograms in the Philippines, Sri Lanka, Pakistan, Senegal,Columbia Basin USA, and Mexico. Key lessons relate to the valueof social organizers as catalysts; the role of the irrigationagency as partner; and the enabling conditions for participation.As levels of income and infrastructure rise, we can expect moreformal organizations that enable farmers to deal with bankaccounts, service contracts, water rights, water markets, andadvanced technology in irrigation systems. The impact ofparticipation on irrigation performance needs to be evaluated notjust in terms of reductions in government costs, but by whetherimprovement in physical structures and farmers control overwater are great enough to offset the farmers costs ofparticipating.  相似文献   

14.
Summary The paper reports an experimental study of miscible displacement of soluble salts during infiltration and redistribution of water in vertical, homogeneous columns of sandy, sandy loam and clay soils with initially uniform salt and moisture contents. Calcium chloride, mixed uniformly in initially dry and moist soils, was leached with water under transient and steady infiltration conditions. The salt and water profiles were determined immediately following infiltration and after matching total infiltration and redistribution times. Irrespective of different flow conditions and soil types, the centre of mass of salt front coincided with the piston front that would exist given perfect displacement of water initially present in the soil by the water being infiltrated (piston-flow model). Furthermore the advance of centre of mass of salt front was independent of the water application rate and initial soil water content in all soils following both infiltration and redistribution.  相似文献   

15.
Summary The interaction of different K status of barley plants (Hordeum vulgare, L.) and water stress on yield and water relations was studied. The plants which were cultivated outdoor in pots and supplied with 0.8, 5.0, 8.5 or 12.0 g K per pot, as KCl, were subjected to increased soil water stress during the early grain filling stage.The water content of the flag leaf tissue was significantly increased from 3.1 to 4.1 g H2O/g D.M. (dry matter) by K application resulting in maintenance of similar leaf osmotic potentials (–1.5 MPa) at all K levels prior to onset of water stress (Table 2). At the lowest K level Ca contributed essentially to maintenance of the cell osmotic potential (Fig. 2).In fully watered plants grain yield at the lowest K level was reduced 20% (Fig. 5 a) due to a decrease in the number of tillers with ears per plant (Fig. 5 b) and to early commencement of maturity processes (Table 3).Water stress caused grain yield reductions between 15 and 50%. However, by increase of K application yield was maintained to the greatest degree in high K plants (Fig. 5 a) due to improved water status in these plants during the drying cycle (Fig. 4). The production of above ground dry matter (top D.M.) during the grain filling period and the grain yield were highly correlated with the leaf water content at the end of the drying cycles (Fig. 6). The greater yield in high K plants was associated with prolongation of the grain filling period by up to 7 days (Table 3) and with an increase in grain weight by up to 20% (Fig. 5 b) as compared with low K plants. Preanthesis reserves contributed up to 52% of grain yield at low K levels (Fig. 5 c) reducing differences in grain yield between the K levels.Abbreviations RWC predawn relative water content - predawn leaf osmotic potential - WUE water use efficiency - R preanthesis reserves - ear D.M. increase in ear D.M. during the grain filling period - top D.M. increase in top D.M. during the grain filling period - SD standard deviation - LSD least significant difference  相似文献   

16.
Summary Sixteen minilysimeters were used in a study to determine the effect of preconditioning to shade on evapotranspiration (ET) by Kentucky bluegrass (Poa pratensis L. var Merion). Grass that had been preconditioned to 100, 71, 51, and 27% of possible photosynthetically active radiation (PAR) was subjected to full sun (100% PAR) or full shade (2% PAR) for one day periods. Canopy temperature and ET were measured and compared for grass from differing preconditioning treatments. Live biomass was later clipped, dried and weighed. Dry weight increased by a factor of nearly 3 as pretreatment PAR increased from 27 to 100%. In spite of this difference in the 20 mm high canopy densities, ET and canopy temperature were equal for grasses from all preconditioning treatments when placed in full sun or full shade. It was concluded that ET is not influenced by preconditioning to shade as long as complete ground cover is maintained.Contribution from the Colorado State University Agricultural Experiment Station and published as Scientific Series Paper No. 3019. The research was supported by the Colorado Water Resources Research Institute and the United States Golf Association Green Section  相似文献   

17.
Summary Daily water use of irrigated wheat (Triticum aestivum L., var. Siete Cerros) was determined for three seasons between 1983 and 1986 using a hydraulic weighing lysimeter at Kadawa in the Kano River Irrigation Project of Kano State, Nigeria. Crop coefficients were determined for various time intervals during each growing season using the lysimeter data and a grass-based reference crop evapotranspiration estimated with Class A pan evaporation data. Mean crop coefficients for each ten-day period of crop growth were then determined. Observed length of a season ranges between 110 and 120 days. Seasonal crop water use ranges between 395 mm and 456 mm. Wheat crop water requirements (CWR) were then estimated for major irrigation projects in the Nigerian Sudan and Sahel savannah zones, between latitudes 10°N and 14°N, using the crop coefficients obtained and long term mean climatic data. The estimated CWR agreed with values obtained from the lysimeter experiments. Seasonal CWR values estimated by designers of three existing irrigation projects in the area agreed with the experimental results, but the designers' short term, ten-day period estimates differed from the results obtained.Contribution from the Irrigation Research Programme, Institute for Agricultural Research, Ahmadu Bello University, Zaria, Nigeria  相似文献   

18.
Summary The growth response of kenaf (Hibiscus cannabinus L.) to four irrigation schedules based on leaf water potential l was evaluated in a semi-arid tropical environment. Total dry matter production was unaffected by regimes in which the mean value of leaf water potential l (mean of solar noon and dawn value) did not fall below –1.26 MPa. Stem elongation was more sensitive than dry matter accumulation to plant water stress. — The economic yield for paper pulp production (i. e. total plant dry matter production minus that of the foliage and upper 60 cm of stem) increased with the frequency of irrigation. — Growth recovery by kenaf following a period of water stress was examined. Alleviation of water stress 10 weeks after irrigation, when l was –1.60 MPa, produced stem elongation rates that were greater than those of plants previously receiving irrigation. This ability to withstand water stress and partially compensate in growth following alleviation of the stress indicates that the kenaf crop has stress response features suitable for rainfall only production under semi-arid tropical conditions. — Irrigation schedules based on l resulted in water applications tailored to crop requirements in that water use increased, and the time interval between irrigation decreased, with increasing canopy development as well as with increasing evaporative demand. However, erratic fluctuations in l between irrigations make scheduling by this method difficult and the use of daily mean, dawn or noon values of l for scheduling irrigation of kenaf cannot be recommended in environments of high evaporative demand. The factors contributing to these fluctuations in (l) are discussed.  相似文献   

19.
A field experiment to evaluate accurate cost and time efficient methodologies for determining soil hydraulic properties was done at the NIAB Research Station at Faisalabad, Pakistan. The experiment was performed on a freely draining loamy soil. This soil type is representative of 75% of the topsoil in a tile drainage area known as the Fourth Drainage Project. Redistribution of water was monitored at five locations, for seven depths, following a steady state infiltration for prolonged time. The data were analyzed with Darcian flow analysis, three simplified methods, and two parameter optimization programs to calculate unsaturated hydraulic conductivity. The Darcian flow analysis was used as a reference against which the simplified methods were compared. Two simplified methods produced satisfactory results with less effort. The drawback is that the simplified methods alone do not provide enough information for use in simulation models. The advantage of the two optimization programs — SFIT and RETC — is that they are based on a continuous function which describes complete h() and K() curves. This is a requirement for computer simulation of salt and water movement in the unsaturated soil. The results of the optimizations were evaluated by their correspondence to field measurements and to laboratory measurements and by their ability to simulate soil water flow. Both programs fit the observed field data well, but only the SFIT optimized parameters were suitable for soil water flow simulations.Abbreviations IWASRI International Waterlogging and Salinity Research Institute - NRAP Netherlands Research Assistance Project - NIAB Nuclear Institute for Agriculture and Biology - SSP Soil Survey of Pakistan Revised paper from Field determination of soil hydraulic properties presented in ICID, CIID IDW5, Lahore, Pakistan (1–55 — 1–64).  相似文献   

20.
Summary The use of canopy and air temperature differences to compute a crop water stress index (CWSI) for assessing plant water status was investigated using cotton crop canopies that either fully or partially covered the ground. The complete ground cover canopy condition was studied in a well watered moisture regime in a rainout shelter with measurements made on six Texas cotton race stocks. The partial ground cover canopy situation was investigated in a well watered moisture regime of a commercial cotton variety Paymaster 266 grown in the field. The slope of the nonstressed baseline of the CWSI for a cotton canopy with about 50% ground cover was approximately one-half that reported for full canopies. Values of CWSI calculated with theoretical and empirical procedures agreed more closely under a complete canopy condition than under a partial canopy situation. Values of aerodynamic resistance (r a ) and canopy resistance for well watered soil moisture conditions (r ep )were estimated in order to use the theoretical procedure of computing CWSI. Values of r a ranged from 10 to 15 sm–1 and r cp from 50 to 60 sm–1. Both the theoretical and empirical procedures showed much promise, but more information is needed to develop techniques for evaluating r a and r cp under differing canopy and environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号