首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
大田条件下以不施氮处理为对照(CK),设置农民传统施肥(FP)、水肥一体化(WF)以及水肥一体化减氮20%(WF-N)4种水氮管理模式,研究氮肥用量及施氮方式对玉米产量形成、氮素吸收及其利用效率的影响。结果表明,同等施氮量下,与FP处理相比,WF处理的子粒产量、穗粒数、千粒重和完熟期植株干物质积累量分别增加9.57%、7.45%、2.41%和9.14%;完熟期植株氮素积累量增加8.77%,氮肥偏生产力(PFPN)、氮肥农学效率(AEN)、氮肥利用率(NUE)分别增加9.57%、45.28%、28.65%。减氮20%条件下,水肥一体化施氮处理的玉米产量及产量构成、完熟期植株干物质积累量与FP处理间无显著差异,其PFPN、AEN、NUE较FP处理分别增加24.34%、21.87%和21.38%。  相似文献   

2.
Summary

Drought is a major production constraint of rainfed lowland rice grown in Thailand and Laos. Adverse soil conditions also reduce yield. In an attempt to increase rainfed lowland rice production in these countries, a major collaborative international project was conducted during a 6-year period in the region. The objectives of the project were to quantify production constraints, determine genotypic variation in yield, and identify an effective breeding strategy. A rice simulation model was developed also and used to investigate the potential impact of strategies for genetic improvement and agronomic management.

Four major physical or biological constraints to higher production levels of rainfed lowland rice were identified, (1) the lack of standing water at the appropriate time of transplanting, (2) severe water stress that often develops at the end of the growing season, (3) low yield potential of the present cultivars, particularly in Thailand, and (4) adverse soil conditions including low pH and low soil fertility. The results of the field experiments and simulation modelling exercises showed that the influence of these constraints can be reduced and yield increased by several methods : in particular, choice of appropriate cultivars and time of sowing to match crop phenology with water availability, application of appropriate fertilizer, adoption of high yielding cultivars, adoption of direct seeding in place of the traditional transplanting system, and reduction of percolation water loss from the paddies.

A technology package currendy being investigated for the rainfed lowland rice is direct seeding early in the season, using cultivars that flower by the end of the rainy season, with application of organic or chemical fertilizer. The appropriate cultivars are early flowering and short-intermediate statured, possess high yield potential and ability to maintain favourable plant water status at flowering, and have the ability to establish well and compete against weed under direct seeding.  相似文献   

3.
《Field Crops Research》2006,96(1):37-47
Irrigated rice in China accounts for nearly 30% of global rice production and about 7% of global nitrogen (N) consumption. The low agronomic N use efficiency (AEN, kg grain yield increase per kg N applied) of this system has become a threat to the environment. The objective of this study was to determine the possibility to improve the AEN of irrigated rice in China by comparing the farmers’ N-fertilizer practices with other N management strategies such as real-time N management (RTNM) and fixed-time adjustable-dose N management (FTNM). Field experiments were conducted in farmers’ fields in four major rice-growing provinces in China in 2001 and 2002. The same experiment was repeated at the International Rice Research Institute (IRRI) farm in the dry seasons of 2002 and 2003. Agronomic N use efficiency was determined by the “difference method” using an N-omission plot. Maximum yield was achieved mostly at 60–120 kg N ha−1, which was significantly lower than the 180–240 kg N ha−1 applied in farmers’ practices at the Chinese sites. With the modified farmers’ fertilizer practice, a 30% reduction in total N rate during the early vegetative stage did not reduce yield but slightly increased yield and doubled AEN compared with the farmers’ practice at the Chinese sites. The total N rate in RTNM and FTNM ranged from 30 to 120 kg ha−1 at the Chinese sites, but their yields were similar to or higher than that of the farmers’ practice. Compared with the modified farmers’ practice, RTNM and FTNM further increased AEN at the Chinese sites. Overall, FTNM performed better than RTNM at the Chinese sites because the total N rate of FTNM was closer to the optimal level than RTNM. A quantum leap in AEN is possible in the intensive rice-growing areas in China by simply reducing the current N rate and by allocating less N at the early vegetative stage.  相似文献   

4.
Abstract

Drought is the major constraint to rice production in rainfed areas across Asia and sub-Saharan Africa. In the context of current and predicted water scarcity, increasing irrigation is generally not a viable option for alleviating drought problems in rainfed rice-growing systems. It is therefore critical that genetic management strategies for drought focus on maximum extraction of available soil moisture and its efficient use in crop establishment and growth to maximize biomass and yield. Extensive genetic variation for drought resistance exists in rice germplasm. However, the current challenge is to decipher the complexities of drought resistance in rice and exploit all available genetic resources to produce rice varieties combining drought adaptation with high yield potential, quality, and resistance to biotic stresses. The strategy described here aims at developing a pipeline for elite breeding lines and hybrids that can be integrated with efficient management practices and delivered to rice farmers. This involves the development of high-throughput, high-precision phenotyping systems to allow genes for yield components under stress to be efficiently mapped and their effects assessed on a range of drought-related traits, and then moving the most promising genes into widely grown rice mega-varieties, while scaling up gene detection and delivery for use in marker-aided breeding.  相似文献   

5.
Improving agricultural productivity to keep pace with the fast-growing food demand is a huge challenge for sub-Saharan Africa (SSA). Fertilizer is a powerful productivity-enhancing input; nevertheless, farmers of SSA use only 5–9 kg ha?1 of fertilizer, which is ten times lesser than Latin America and Asia (50 and 80 kg ha?1, respectively). Rice (Oryza sativa) is one of the most important food crops of SSA, and its consumption is growing faster than any other commodity in Africa. Rice-based systems have high potential for improving food production through an efficient management of fertilizers. The biophysical environment, cropping systems and socio-economic status of farmers including market opportunities are the main factors for developing appropriate fertilizer recommendations. Many research efforts have been invested in different countries to develop fertilizer recommendation for rice. However, the diversity of rice ecologies, the type and the cost of fertilizers available on local market are the main constraints for development of blanket recommendations of fertilizer usually applied in many countries. Here, we make a reviews of the progress made on the development of fertilizer recommendations for rice-based systems in SSA. The utilization of the new concepts and decisions support tools for development of fertilizer recommendation and the main achievements and weakness are discussed. The opportunities offered by the new concepts, modeling and decision support tools are discussed in a regional strategic approach for better management of fertilizers in the diversified ecologies of rice-based systems.  相似文献   

6.
《Plant Production Science》2013,16(2):147-153
Abstract

Mini-watersheds called Nongin Thai are geographical components of rainfed lowland rice culture in Northeast Thailand, and constitute distinct units in understanding environmental constraints for low and unstable rainfed rice production there. The toposequential variation of soil fertility and its relation to rice productivity within mini-watersheds, was examined by phytometry of sampled soils and field measurements of rice growth and yield. The phytometry experiment with irrigated potted rice using soils sampled from various rice fields within each mini-watershed, revealed that soil fertility as evaluated by rice dry matter production showed a 5 times difference among the fields at most. The difference in the soil fertility was ascribed primarily to that in nitrogen (N) supply capacity, which itself had a strong correlation with soil organic carbon (SOC) content. Accordingly, the biomass production of pot-grown rice was proportional to SOC. content, which suggested the usefulness of SOC as an index for soil fertility evaluation. The effect of clay on the soil fertility was much less than that of SOC. The actual rice yield in each field also showed quite large field-to-field variation, most of which was explained by the SOC content, rice growth duration and fertilizer application rate even though water availability also affected the yield. The yield positively correlated with growth duration and hence with earlier transplanting. Both SOC and clay contents of fields showed steep gradients with ascending field elevation within mini-watersheds, resulting in a marked toposequential distribution of rice yield. The toposequential distributions of SOC and clay contents imply that rice culture after deforestation accelerated soil erosion from upper to lower fields. The large toposequential gradient in soil fertility requires different resource and crop management for each toposequential position, in order to improve rice productivity of the mini-watershed as a whole.  相似文献   

7.
A large proportion of the rice in West Africa is produced in rainfed lowland ecosystems, mainly in inland valleys. The hydrological conditions (duration and intensity of flooding) vary with the toposequence position between the fringe and the centre of the valley. Production methods tend to evolve from the currently predominant unbunded plots without external input use, to input-intensive production in bunded plots. Agronomic management interventions co-evolve and may include varietal choice, herbicide use, and mineral N fertilizer application. The response of rice and the associated weeds to such interventions is likely to vary with the prevailing hydrological regime. A 2-year field experiment was conducted in northern Ivory Coast to determine the impact of water regime (plot position in the valley, presence of bunds) and input use (mineral N fertilizer and herbicide) on the productivity (yield and N use efficiency) of traditional and modern rainfed lowland rice cultivars and the biomass and composition of the associated weeds. Installing field bunds reduced seasonal variations in ponded water depth and resulted in a mean increase in rice grain yield of 30–40% (p < 0.005). This increase was associated with a 25% lower cumulative weed biomass and a several-fold increase in the agronomic use efficiency of applied mineral N in bunded than unbunded plots. Under low input management, traditional varieties tended to out-yield modern varieties in unbunded plots. Improved crop management such as herbicide and fertilizer application, and the construction of field bunds was more effective to increase the yield and N use efficiency in the flooded valley centre than in the drought-prone valley fringes. There is a need for site-specific targeting of modern cultivars, land development and improved production methods in the inland valleys of the West African savanna zone.  相似文献   

8.
水稻无人飞播技术是一种近年来随着无人机产业蓬勃发展而新兴的播种技术,它以农用无人机为作业平台完成水稻种子播种任务,具有作业效率高、工作强度低、使用成本低、智能化程度高的特点,同时可兼容田间信息获取和施肥撒药任务,能够与其他智能化、“无人化”农业装备互联,实现农场智能化生产。水稻无人飞播技术体系是地面水稻无人播种机械化体系的重要补充,为我国水稻种植“无人化”提供强大动力。本文从无人飞播方面浅谈了未来水稻优质丰产“无人化”栽培技术体系,并对该体系提出展望。  相似文献   

9.
为明确苏北平原稻茬麦的最优氮水运筹模式,以淮麦30为材料,在大田测土施肥条件下,设置0 kg·hm-2(N0)、180 kg·hm-2(N1)、270 kg·hm-2(N2)3个施氮量和生育期不灌水(W0)、灌拔节水(W1)、灌拔节水+孕穗水(W2)3个灌水处理,研究小麦干物质积累与转运、产量形成和氮素吸收与利用对不同氮水运筹的响应。结果表明,小麦干物质积累量、转运量和转运效率,氮素积累量、转运量和转运效率,花后干物质贡献率及氮素贡献率均随施氮量和灌水次数的增加而增加,各处理均以N2W2效果最佳。氮肥和灌水次数的增加对小麦成穗数、穗粒数、千粒重和产量、氮素收获指数与氮素利用效率均有显著促进作用,以N2W2效果最佳。氮肥农学效率、氮肥表观利用率和氮肥偏生产力则随施氮量增加而降低,以N1W2效果最佳;在相同氮肥水平下,灌水处理的上述三个指标较不灌水处理高。对本试验条件下各测定指标,氮肥在氮水运筹中起主导作用,且氮肥和灌水有显著的互作效应。综上,在苏北平原稻茬麦区,施氮量180 kg·hm-2结合浇灌拔节水和孕穗水(W2)的氮水模式可在协调小麦干物质和氮素的积累、转运与分配、促进增产的同时,提高氮肥利用效率,从而实现节氮增产的目标。  相似文献   

10.
《Plant Production Science》2013,16(2):196-201
Abstract

Crop production in a rainfed area is constrained by inappropriate management of soil and water by the resource-poor farmers. The present study addresses this issue through integration of practices for soil water conservation (SWC) and soil fertility enhancement as well. Extensive experimentation on wheat-maize was undertaken for two years (2004?2006) on the fields of eight farmers representing two soil types; Rajar (Typic Ustorthent; USDA soil taxonomy) and Guliana (Udic Haplustalf; USDA soil taxonomy) in the Gujar Khan Tehsil of Rawalpindi District, Pakistan. Four treatments consisting of: no SWC +farmer’s rate of fertilizer application (FP), no SWC+improved fertilizer application (IF), SWC practices i.e., deep plowing, bund improvement, plowing across contour+FP (SWC+FP) and SWC+IF. Wheat and maize grain yields in SWC and IF were statistically higher than in the treatments with no SWC and FP, respectively. Compared with the control without any treatment, increase in water use efficiency of both maize and wheat crop was higher in SWC+IF followed by IF alone. On the average, Guliana soil series showed better response to all treatments than Rajar soil. The integrated application of SWC and IF practices increased crop yields in the rainfed area.  相似文献   

11.
《Field Crops Research》2005,92(1):17-33
The inclusion of grain legumes in rainfed lowland rice farming systems provides an opportunity to increase food production, household income, and human nutrition of impoverished rice farmers in Asia. We examined the effect of rice establishment method on the performance of wet season rice (Oryza sativa L.) and post-rice crops of either chickpea (Cicer arietinum L.) or moong [Vigna radiata (L.) Wilczek] on an Udic Haplustalf in the drought-prone, rainfed lowlands of eastern India. Rice was either direct seeded in lines on moist soil immediately after the onset of wet season rain or transplanted after sufficient rainwater accumulated for soil submergence. Crop establishment method had no effect on rice performance in a season (2001) with normal rainfall. In a drought season (2002), direct seeding resulted in mean rice grain yield of 2.3 t ha−1, whereas the transplanted rice crop failed. The agronomic efficiency of N fertilizer applied to direct-seeded rice was comparable for the 2 years (18 and 24 kg grain per kg N applied). Topsoil inorganic N was markedly higher following chickpea and moong than following a post-rice fallow. Direct-seeded rice had higher yield and accumulation of N following a post-rice legume than following fallow, but transplanted rice derived no such benefit from the legume. Direct-seeded rice was established 1–2 months before transplanted rice, and direct-seeded rice matured before transplanted rice by 8 days in the favorable season and by 26 days in the drought season. The soil nitrate present after legumes and fallow rapidly disappeared, presumably by denitrification, following the onset of rains and soil flooding prior to transplanting. A portion of this accumulated soil nitrate was taken up by the direct-seeded rice before it could be lost. But transplanted rice did not benefit from this inorganic N derived from legumes because virtually all soil nitrate was lost before transplanting. Direct seeding of rice ensured better use of residual and applied N, reduced risk due to drought, and favored intensification with post-rice legumes in drought-prone lowland systems.  相似文献   

12.
《Plant Production Science》2013,16(4):488-496
Environmental resources for rainfed rice production show large variability even within a small area in Northeast Thailand, and it is said that farmer’s management is well adapted to the variability. This study evaluated transplanting date and nitrogen (N) fertilizer rate in the management to improve rice productivity. The effect of transplanting date and N fertilizer rate on rice productivity was analyzed by investigating rice growth, and also by dividing rainfed rice fields located in a mini-watershed into 4 subecosystems: (1) medium deep water, waterlogged (MDW), (2) shallow water, favorable (SWf), (3) shallow water, drought- and submergence-prone (SWds), and (4) shallow water, drought-prone (SWd). Rice grew at almost a constant rate until maturity and the growth rate was higher at a lower field. The difference in productivity was derived from not only a water condition but also soil fertility, and was associated with the rate of N uptake. Small leaf area index was found to be one of the causes for low productivity in rice. Statistic analysis showed that earlier transplanting increased biomass production in all subecosystems. The biomass-increase resulted in a higher yield in SWds and SWd fields while it resulted in a reduced harvest index (HI) and did not increase yield in MDW and SWf fields. The effect of N fertilizer was apparent in the field where rice biomass was small due to later transplanting or unfertile soil, but the effect was generally small. Earlier transplanting in upper fields and later transplanting in lower fields in mini-watersheds were suggested to improve rice production, and proper distribution of N fertilizer use is considered necessary.  相似文献   

13.
《Journal of Crop Improvement》2013,27(1-2):531-558
SUMMARY

Yams (Dioscorea spp.) constitute an important starchy staple in sub-Saharan Africa (SSA) where food security for a growing population is a critical issue. Mixed cropping in yam based systems is the norm in the region and productivity of yams in these systems is below potential. It is concluded that there is much scope for improvement of yam based cropping systems in SSA in order to meet the needs of the region. The strategy of crop breeding to select yam varieties suitable for various cropping systems must consider a truly multidisciplinary systems approach. Further manipulation must be made to tuber dormancy to expand flexibility in field propagation in different cropping systems and improve storage and marketing. The sustainability of yam based cropping systems in SSA could improve if agronomic research was focused on strategies for improving soil fertility, weed and pest management including design of cropping systems and suitable rotations.  相似文献   

14.
While the application rate of nitrogen fertilizer is believed to dramatically influence rice fields and improve the soil conditions in paddy fields, fertilization with low use efficiency and nitrogen loss may cause environmental pollution. In this paper, 15N-labeled urea was used to trace the fate of nitrogen at four rates (0, 75, 225 and 375 kg N/ha) of urea fertilizer over three split applications in Hangzhou, Zhejiang, in 2014. Plant biomass, the soil nitrogen content of different layers, NH3 volatilization and N2O emissions were determined using the 15N abundance to calculate the portion from nitrogen fertilizer. The results indicated that rice yields increased with the application rate of nitrogen fertilizer. NH3 volatilization is the main nitrogen loss pathway, and N2O emissions were significantly associated with nitrogen application rates in the paddy. The percent of nitrogen loss by NH3 volatilization and N2O emissions increased with the nitrogen application rate. This study showed that the suitable N fertilizer in a loam clay paddy, considering the yield requirements and environmental issues, is approximately 225 kg N/ha in Hangzhou, with a distribution of 50.06% of the residual in the rice and soil and 48.77% loss as NH3 volatilization and N2O emissions. The nitrate from fertilization mainly remained in the 0–20 cm level of the topsoil.  相似文献   

15.
浙江金华地区水稻土养分供应能力研究   总被引:13,自引:0,他引:13  
 自1997年早稻开始,在浙江省金华市农业科学研究所试验区稻田设立了监测水稻土生产力及肥力变化的长期肥料定位试验,并在试验区周围10 km范围内选择了21户农民的稻田进行相应的监测试验。试验区内农户间稻田土壤的养分供应能力相差很大,氮供应能力变化于49~116 kg/hm2,磷供应能力变化于13~32 kg/hm2,钾供应能力变化于68~183 kg/hm2。农民常规施肥区的氮肥利用效率很低,氮表观回收率的平均值为14%~26%,氮肥农业效率平均值为4.6~8.2,且农户之间、早晚稻之间均存在较大差异。肥料定位试验结果表明,在连续种植水稻条件下,缺肥区土壤相应的有效养分消耗很快。与NPK全肥区比较,NP区从第2季水稻起,NK区从第3季水稻起,即开始出现减产。针对当地农民现行养分管理的实际情况,就水稻系统发展适地养分综合管理新技术进行了讨论。  相似文献   

16.
Farmers have adopted alternate wetting and drying (AWD) irrigation to cope with water scarcity in rice production. This practice shifts rice land away from being continuously anaerobic to being partly aerobic, thus affecting nutrient availability to the rice plant, and requiring some adjustment in nutrient management. The use of a chlorophyll meter (also known as a SPAD meter) has been proven effective in increasing nitrogen-use efficiency (NUE) in continuously flooded (CF) rice, but its use has not been investigated under AWD irrigation. This study aimed at testing the hypotheses that (i) SPAD-based N management can be applied to AWD in the same way it is used in CF rice, and (ii) combining chlorophyll meter-based nitrogen management and AWD can enhance NUE, save water, and maintain high rice yield. Experiments were conducted in a split-plot design with four replications in the 2004 and 2005 dry seasons (DS) at IRRI. The main plots were three water treatments: CF, AWD that involved irrigation application when the soil dried to soil water potential at 15-cm depth of −20 kPa (AWD−20) and −80 kPa (AWD−80) in 2004, and AWD−10 and AWD−50 were used in 2005. The subplots were five N management treatments: zero N (N0), 180 kg N ha−1 in four splits (N180), and three SPAD-based N-management treatments in which N was applied when the SPAD reading of the youngest fully extended leaf was less than or equaled 35 (NSPAD35), 38 (NSPAD38), and 41 (NSPAD41). In 2005, NSPAD32 was tested instead of NSPAD41. A good correlation between leaf N content per unit leaf area and the SPAD reading was observed for all water treatments, suggesting that the SPAD reading can be used to estimate leaf N of rice grown under AWD in a way similar to that under CF. SPAD readings and leaf color chart (LCC) values also showed a good correlation. There were no water × nitrogen interactive effects on rice yield, water input, water productivity, and N-use efficiency. Rice yield in AWD−10 was similar to those of CF; yields of other AWD treatments were significantly lower than those of CF. AWD−10 reduced irrigation water input by 20% and significantly increased water productivity compared with CF. The apparent nitrogen recovery and agronomic N-use efficiency (ANUE) of AWD−10 and AWD−20 were similar to those of CF. The ANUE of NSPAD38 and NSPAD35 was consistently higher than that of N180 in all water treatments. NSPAD38 consistently gave yield similar to that of N180 in all water treatments, while yield of NSPAD35 about 90% of that of CF. We conclude that a combination of AWD−10 and SPAD-based N management, using critical value 38, can save irrigation water and N fertilizer while maintaining high yield as in CF conditions with fixed time and rate of nitrogen application of 180 kg ha−1. Treatments AWD−20 and NSPAD35 may be accepted by farmers when water and N fertilizer are scarce and costly. The findings also suggested LCC can also be a practical tool for N-fertilizer management of rice grown under AWD, but this needs further field validation.  相似文献   

17.
Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment) in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the ...  相似文献   

18.
施氮对稻茬冬小麦氮肥吸收利用及转运的影响   总被引:1,自引:0,他引:1  
为推动稻茬冬小麦氮肥高效利用,采取15N微区试验,研究了施氮量(N0、N120、N210、N300)对稻茬小麦氮素吸收、转运、产量和氮肥利用的影响。结果表明,增加施氮量能够显著提高成熟期植株对肥料氮和土壤氮的吸收量。小麦对基肥氮的吸收以越冬至拔节期最高,对追肥氮的吸收以拔节至开花期最高。植株对追肥氮的积累量均高于基肥氮,对土壤氮的积累量在N120 处理下高于肥料氮,在N210、N300 处理下则相反;N120、N210、N300 处理下植株中土壤氮积累量占总吸氮量的比例分别为57%、48%、45%。成熟期叶片、茎鞘、穗轴+颖壳和籽粒中的氮素分配比例分别为6.09%~9.70%、9.01%~11.14%、7.19%~7.48%、71.96%~ 77.42%。肥料氮对籽粒氮素的贡献率随施氮量增加而显著增加,N120、N210、N300 处理分别为45.78%、 56.22%、61.25%。植株中肥料氮的转运量、花后积累量和土壤氮的花后积累量均随施氮量增加而显著增加,而土壤氮的转运量则随施氮量的增加而下降。基肥氮、追肥氮、肥料氮和土壤氮的转运效率分别为 77.31%~79.96%、77.89%~81.80%、77.61%~81.13%、51.55%~67.64%。植株花后氮积累量对籽粒氮素的贡献率约为1/5,肥料氮和土壤氮花后积累量对籽粒中肥料氮和土壤氮的贡献率分别为9.59%~ 14.56% 和 24.11%~34.48%。施氮量超过210 kg·hm-2 时产量增加不显著,N120、N210、N300 处理氮肥回收率分别为54.48%、48.15%、41.64%。  相似文献   

19.
The contribution of rice production to the three major greenhouse gases CO2, CH4 and N2O in 1990, the base year of the Kyoto protocol is investigated for Japan. For the CO2 assessment, we use a top-down life cycle approach, CH4 is assessed using the Japanese GHG emission inventory and N2O is assessed according to the ratio of rice area divided by the total area of agricultural soils. In total, 1.6% of greenhouse gas (GHG) emissions in 1990 originated from rice production. Next, we assess regional variations in nine rice-producing regions, based on the CO2 data of 1990. General trends in rice production from 1960 to 2000 and data from the Japanese GHG emission inventory since 1990 are used to assess variations in time. The rice-related GHG emissions decreased to 1.05% of the total GHG emissions in 2001 and will be less than half the 1990 level in 2012, mainly due to the decrease in rice production. Contrary to the trend in GHG emissions of rice, overall GHG emissions increased as rice production fulfils important roles, in mitigating global warming and in adapting to changing climates. The protection of rice production is required to counter the increase of GHG emissions in transportation, waste and domestic sectors and to minimize problems related to landscape, water and natural hazard management.  相似文献   

20.
《Plant Production Science》2013,16(3):267-276
Abstract

Soil moisture distributions in rainfed lowland rice environments are largely determined by the position in the toposequence. In this study, we developed an experimental sloping bed that can simulate the soil hydrological conditions in sloping rainfed lowland rice environments to examine if the expression of promoted root system development in relation to soil moisture availability along the soil profile may maximize water uptake and dry matter production under drought. The gradient of available water along both the surface soil layer and the vertical soil profile was successfully created by manipulating ground water levels in the experimental sloping bed indicating the practical effectiveness of this experimental system. Then, two contrasting genotypes, IRAT109 (upland rice adapted japonica) and KDML105 (lowland adapted indica) were grown for plasticity evaluation. Dry matter production was maintained even at a higher position in the toposequence in IRAT109, but decreased in KDML105. Such maintenance of dry matter production in IRAT109 was attributed to its greater ability to increase root length density in a deeper soil layer, where more soil moisture is available. In contrast, KDML105 maintained root length density in the upper soil layer, and could not utilize the soil moisture available in the deeper soil layer. These results imply that the genotype that expressed root plasticity with root system developing in the soil portion where more soil moisture was available showed greater dry matter production than the genotype that showed root plasticity in the soil layer where soil moisture was less available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号