首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertical profile in leaf photosynthetic capacity was investigated in a terra firme rain forest in central Amazonia. Measurements of photosynthesis were made on leaves at five levels in the canopy, and a model was fitted to describe photosynthetic capacity for each level. In addition, vertical profiles of photosynthetic photon flux density, leaf nitrogen concentration and specific leaf area were measured. The derived parameters for maximum rate of electron transport (J(max)) and maximum rate of carboxylation by Rubisco (V(cmax)) increased significantly with canopy height (P < 0.05). The highest J(max) for a single canopy level was measured at the penultimate canopy level (20 m) and was 103.9 &mgr;mol m(-2) s(-1) +/- 24.2 (SE). The highest V(cmax) per canopy height was recorded at the top canopy level (24 m) and was 42.8 +/- 5.9 &mgr;mol m(-2) s(-1). Values of J(max) and V(cmax) at ground level were 35.8 +/- 3.3 and 20.5 +/- 1.3 &mgr;mol m(-2) s(-1), espectively. The increase in photosynthetic capacity with increasing canopy height was strongly correlated with leaf nitrogen concentration when examined on a leaf area basis, but was only weakly correlated on a mass basis. The correlation on an area basis can be largely explained by the concomitant decrease in specific leaf area with increasing height. Apparent daytime leaf respiration, on an area basis, also increased significantly with canopy height (P < 0.05). We conclude that canopy photosynthetic capacity can be represented as an average vertical profile, perturbations of which may be explained by variations in the environmental variables driving photosynthesis.  相似文献   

2.
An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.  相似文献   

3.
Seedlings of two sympatric oak species, Quercus robur L. and Quercus petraea (Matt.) Liebl., were grown in common garden conditions to test for potential interspecific differences in intrinsic water-use efficiency (WUE). Intrinsic water-use efficiency was estimated based on carbon isotope composition of shoots (delta13C) and on gas exchange measurements (ratio of net CO2 assimilation rate to stomatal conductance (A/g(sw))). In addition, genotype x environment interactions were tested by subjecting the seedlings to four irradiance treatments (8, 18, 48 and 100% of incident solar irradiance) imposed by neutral shading nets, and, in the 100% irradiance treatment, two watering regimes. In all treatments, initial growth of Q. robur was faster than that of Q. petraea. In both species, there was a tight correlation between delta13C and A/g(sw). Intrinsic water-use efficiency increased with increasing irradiance (almost doubling from 8 to 100% irradiance), and this effect paralleled the increase in A with increasing irradiance. In full sun, WUE of Q. petraea seedlings was 10-15% higher than in Q. robur seedlings, with the difference attributable to a difference between the species in g(sw). The interspecific difference in WUE was maintained during drought, despite the appreciable increase in WUE and decrease in growth imposed by drought. No interspecific differences in WUE were observed at low irradiances, suggesting a strong genotype x environment interaction for WUE. These findings confirm the existence of interspecific genetic differences in WUE, but also show that there is large intraspecific variability and plasticity in WUE. The initially greater height and biomass increments in Q. robur seedlings illustrate the ability of this species to out-compete Q. petraea in the early stages of forest regeneration. For adult trees growing in closed canopies, the high WUE of Q. petraea may contribute significantly to its survival during dry years, whereas the low WUE of Q. robur may account for the frequently observed declines in adult trees of this species following drought.  相似文献   

4.
Hikosaka K  Hirose T 《Tree physiology》2000,20(18):1249-1254
Photosynthetic nitrogen-use efficiency (PNUE, photosynthetic capacity per unit leaf nitrogen) varies among species from different habitats and correlates with several ecological characteristics such as leaf life span and leaf mass per area. We investigated eight evergreen broad-leaved woody species with different leaf life spans that coexist in a warm-temperate forest. We determined photosynthetic capacity at ambient CO(2) concentration in saturated light, nitrogen concentration, and the concentration of ribulose-1,5-bisphosphate carboxylase (RuBPCase), a key enzyme of photosynthesis and the largest sink of nitrogen in leaves. Each species showed a strong correlation between photosynthetic capacity and RuBPCase concentration, and between RuBPCase concentration and nitrogen concentration. Photosynthetic capacity of leaves decreased with increasing leaf life span, whereas PNUE did not correlate significantly with leaf life span. There was a twofold variation in PNUE among species. This relatively small variation in PNUE is consistent with the argument that species that coexist in a single habitat maintain a similar PNUE. The two components of PNUE-photosynthetic rate per unit RuBPCase and RuBPCase per unit leaf nitrogen-were not significantly correlated with other leaf characteristics such as leaf life span and leaf mass per area. We conclude that differences in PNUE are relatively small among coexisting species and that differences in absolute amounts of photosynthetic proteins lead to differences in photosynthetic productivity among species.  相似文献   

5.
Whitehead D  Gower ST 《Tree physiology》2001,21(12-13):925-929
Measurements of the photosynthetic response to midsummer irradiance were made for 11 species representing the dominant trees, understory shrubs, herbaceous plants and moss species in an old black spruce (Picea mariana (Mill.) B.S.P.) boreal forest ecosystem. Maximum rates of photosynthesis per unit foliage area at saturating irradiance, A(max), were highest for aspen (Populus tremuloides Michx.), reaching 16 micromol m(-2) s(-1). For tamarack (Larix laricina (Du Roi) K. Kock) and P. mariana, Amax was only 2.6 and 1.8 micromol m(-2) s(-1), respectively. Values of A(max) for understory shrubs and herbaceous plants were clustered between 9 and 11 micromol m(-2) s(-1), whereas A(max) of feather moss (Pleurozium schreberi (Brid.) Mitt.) reached only 1.9 micromol m(-2) s(-1). No corrections were made for differences in shoot structure, but values of photosynthetic light-use efficiency were similar for most species (70-80 mmol CO2 mol(-1)); however, they were much lower for L. laricina and P. mariana (15 mmol CO2 mol(-1)) and much higher for P. schreberi (102 m;mol CO2 mol(-1)). There was a linear relationship between Amax and foliage nitrogen concentration on an area basis for the broad-leaved species in the canopy and understory, but the data for P. mariana, L. laricina and P. schreberi fell well below this line. We conclude that it is not possible to scale photosynthesis from leaves to the canopy in this ecosystem based on a single relationship between photosynthetic rate and foliage nitrogen concentration.  相似文献   

6.
Kull O  Tulva I 《Tree physiology》2002,22(15-16):1167-1175
We investigated shoot growth patterns and their relationship to the canopy radiation environment and the distribution of leaf photosynthetic production in a 27-m-tall stand of light-demanding Populus tremula L. and shade-tolerant Tilia cordata Mill. The species formed two distinct layers in the leaf canopy and showed different responses in branch architecture to the canopy light gradient. In P. tremula, shoot bifurcation decreased rapidly with decreasing light, and leaf display allowed capture of multidirectional light. In contrast, leaf display in T. cordata was limited to efficient interception of unidirectional light, and shoot growth and branching pattern facilitated relatively rapid expansion into potentially unoccupied space even in the low light of the lower canopy. At the canopy level, T. cordata had higher photosynthetic light-use efficiency than P. tremula, whereas P. tremula had higher nitrogen-use efficiency than T. cordata. However, at the individual leaf level, both species had similar efficiencies under comparable light conditions. Production of new leaf area in the canopy followed the pattern of photosynthetic production. However, the species differed substantially in extension growth and space-filling strategy. Light-demanding P. tremula expanded into new space with a few long shoots, with shoot length strongly dependent on photosynthetic photon flux density (PPFD). Production of new leaf area and extension growth were largely uncoupled in this species because short shoots, which do not contribute to extension growth, produced many new leaves. Thus, in P. tremula, the growth pattern was strongly directed toward the top of the canopy. In contrast, in shade-tolerant T. cordata, shoot growth was weakly related to PPFD and more was invested in long shoot growth on a leaf area basis compared with P. tremula. However, this extension growth was not directed and may serve as a passive means of avoiding self-shading. This study supports the hypothesis that, for a particular species, allocation patterns and crown architecture contribute as much to shade tolerance as leaf-level photosynthetic acclimation.  相似文献   

7.
Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves.  相似文献   

8.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

9.
Kitaoka S  Koike T 《Tree physiology》2005,25(4):467-475
Several deciduous broad-leaved tree species, differing in leaf phenology, invade larch (Larix kaempferii (Lamb.) Carrière) plantations in Japan. The understory light environment of larch forests changes drastically between the leafy and leafless periods. To determine how the invading seedlings exploit the changing light environment, and if phenological differences reflect the light- and nitrogen-use traits of the seedlings, we measured leaf phenology, seasonal changes in light-saturated photosynthetic rate (P(sat)), leaf nitrogen (N) content (N(area)), chlorophyll/nitrogen ratio (Chl/N), specific leaf area (SLA) and N remobilization rate (NRMR) over 3 years. The mid-successional or gap-phase species, Magnolia hypoleuca Siebold & Zucc., had a short leafy period and high P(sat) and NRMR. In contrast, two late-successional tree species, Prunus ssiori Friedr. Schmidt, which undergoes leaf flush before larch, and Carpinus cordata Blume, which maintains green leaves until frost, both had low P(sat) and NRMR but exploited the opportunity for growth during the period when the larch canopy trees were leafless. Quercus mongolica Fisch. ex Ledeb. var. crispula (Blume) Ohashi, a mid-late-successional species that underwent leaf flush at the same time as the overstory larch, had values of photosynthetic parameters between those of the gap-phase and late-successional species. Among species, M. hypoleuca and Q. mongolica had higher photosynthetic rates and photosynthetic N-use efficiencies. In all species, the relationship between N(area) and P(sat) showed species-specific yearly fluctuations; however, there was no yearly fluctuation in the relationship between N(area) and P(sat) at CO2 saturation. Yearly fluctuations in the N(area)-P(sat) relationship appeared to be induced by changes in SLA and N-use characteristics, which in turn are affected by climatic variations.  相似文献   

10.
Acclimation potential of needle photosynthetic capacity varies greatly among pine species, but the underlying chemical, anatomical and morphological controls are not entirely understood. We investigated the light-dependent variation in needle characteristics in individuals of Pinus patula Schlect. & Cham., which has 19-31-cm long pendulous needles, and individuals of P. radiata D. Don., which has shorter (8-17-cm-long) stiffer needles. Needle nitrogen and carbon contents, mesophyll and structural tissue volume fractions, needle dry mass per unit total area (M(A)) and its components, volume to total area ratio (V/A(T)) and needle density (D = M(A)/(V/A(T))), and maximum carboxylase activity of Rubisco (V(cmax)) and capacity of photosynthetic electron transport (J(max)) were investigated in relation to seasonal mean integrated irradiance (Q(int)). Increases in Q(int) from canopy bottom to top resulted in proportional increases in both needle thickness and width such that needle total to projected surface area ratio, characterizing the efficiency of light interception, was independent of Q(int). Increased light availability also led to larger M(A) and nitrogen content per unit area (N(A)). Light-dependent modifications in M(A) resulted from increases in both V/A(T) and D, whereas N(A) changed because of increases in both M(A) and mass-based nitrogen content (N(M)) (N(A) = N(M)M(A)). Overall, the volume fraction of mesophyll cells increased with increasing irradiance and V/A(T) as the fraction of hypodermis and epidermis decreased with increasing needle thickness. Increases in M(A) and N(A) resulted in enhanced J(max) and V(cmax) per unit area in both species, but mass-based photosynthetic capacity increased only in P. patula. In addition, J(max) and V(cmax) showed greater plasticity in response to light in P. patula. Species differences in mesophyll volume fraction explained most of the variation in mass-based needle photosynthetic capacity between species, demonstrating that differences in plastic adjustments in mass-based photosynthetic activities among these representative individuals were mainly associated with contrasting investments in mesophyll cells. Greater area-based photosynthetic plasticity in P. patula relative to P. radiata was associated with larger increases in M(A) and mesophyll volume fraction with increasing irradiance. These data collectively demonstrate that light-dependent increases in mass-based nitrogen contents and photosynthetic activities were associated with an increased mesophyll volume fraction in needles at higher irradiances. They also emphasize the importance of light-dependent anatomical modifications in determining needle photosynthetic capacity.  相似文献   

11.
Photosynthetic utilization of water and nitrogen in Ulmus americana L. seedlings was tightly linked with the relative availability of each resource. During periodic drying cycles, water use efficiency increased as predawn water potential fell from -0.5 to -2.0 MPa. During the later stages of such drying cycles, the relative contribution of stomatal limitations to the total net photosynthetic limitation appeared to be at its greatest, whereas biochemical limitations were predominant in well-watered plants grown under low nitrogen (N) availability. For any level of leaf water status, water use efficiency of photosynthesis (WUE) was always greater in plants with high leaf N content than in plants with low leaf N content. Photosynthetic nitrogen use efficiency (PNUE) was always greater in plants with low leaf N content than in plants with high leaf N content, for any level of water status. In combined N treatments and predawn water status classes, there was a significant inverse relationship between PNUE and WUE.  相似文献   

12.
Exploring the response differences of leaf physiology parameters to enhanced nitrogen deposition between saplings and trees is vital for predicting the variations of terrestrial ecosystem structure and function under future global climate change. In this study, the ecophysiological parameters of saplings and trees of Fraxinus mandshurica Rupr. were measured at different levels of nitrogen addition in a temperate forest. The results show that ecophysiological parameters maximum net photosynthetic rate(P_(max)), apparent quantum efficiency(a), dark respiration(R_d), light saturation point(L_(sp)), photosynthetic nitrogen use efficiency(PNUE),specific leaf area(SLA)and stomatal conductance under saturated light intensity(G_(smax)) were higher in saplings than in trees. These physiological parameters and not N_(leaf)(leaf nitrogen content)led to relatively lower P_(max) and R_d in trees. For both saplings and trees, low and median nitrogen addition(23 and 46 kg ha~(-1)a~(-1)) resulted in significant increases in Pmax, Rd, Lsp, Chl, PNUE, SLA and Gsmax. These parameters tended to decline under high additions of nitrogen(69 kg ha~(-1)a~(-1)),whereas Nleaf was always enhanced with increasing nitrogen. Variations in Pmax and Rd with increasing nitrogen were attributed to variations in the strongly related parameters of, Lsp, Chl, PNUE, SLA and Gsmax. Overall, the response sensitivity of physiological parameters to enhanced nitrogen levels was lower in trees compared with saplings.  相似文献   

13.
Biomass, leaf area, canopy photosynthesis, photosynthetic nitrogen-use efficiency (PNUE), nitrogen-partitioning ratio (NPR: ratio of nitrogen taken up by jack pine relative to two different competitor species), and nitrogen uptake (NU) of jack pine (Pinus banksiana Lamb.) competing with large-leaved aster (Aster macrophyllus L.) and Canada blue-joint grass (Calamagrostis canadensis (Michx.) Beauv.) were examined at three nitrogen levels in a controlled-environment growth chamber. When grown with large-leaved aster, jack pine biomass, photosynthesis and PNUE (p<0.001) increased as nitrogen level increased. Jack pine biomass, photosynthesis and NPR (p<0.001) decreased as nitrogen level increased when grown with Canada blue-joint grass. At the lowest nitrogen supply level, jack pine photosynthesis decreased as competitor PNUE increased (r2=0.84, p<0.001). Jack pine photosynthesis decreased as NU of large-leaved aster (37.5 mg N l−1: r2=0.75, p<0.001; 100 mg N l−1: r2=0.86, p<0.001) and Canada blue-joint grass (37.5 mg N l−1: r2=0.96, p<0.001; 100 mg N l−1: r2=0.84, p<0.001) increased. NU and PNUE may play an important role in the outcome of interactions between jack pine seedlings and competing forest vegetation in newly planted stands.  相似文献   

14.
Ishida A  Yazaki K  Hoe AL 《Tree physiology》2005,25(5):513-522
In a field study, we compared anatomy and diurnal gas exchange and chlorophyll fluorescence in sunlit mature leaves of Macaranga gigantea (Reichb. f. and Zoll.) Muell. seedlings, saplings, an adult tree and suckers originating from stumps. We tested the hypothesis that the pattern of resource use shifts across various life stages with ontogenetic changes in leaf anatomy and physiology. Among leaves of different developmental stages, seedling leaves were the smallest and thinnest, whereas adult tree leaves were the largest and thickest, and the air space within the lamina was largest in seedling leaves and smallest in adult tree leaves. Photosynthetic nitrogen-use efficiency (PNUE) was higher in seedling and sapling leaves than in adult tree leaves. Mean PNUE in seedling leaves was 1.6 times that in adult tree leaves. Nevertheless, among the developmental stages, net photosynthetic rate (Pn) per unit leaf area was lowest in seedling leaves because they have the lowest nitrogen (N) content per unit leaf area. In situ water vapor stomatal conductance (g(s) at a given leaf-to-air vapor pressure deficit was highest in sapling leaves, suggesting that they have a high hydraulic efficiency per unit leaf area. Among developmental stages, intrinsic water-use efficiency (Pn/g(s)) and photochemical capacity of photosystem II were lowest in seedling leaves. Sapling leaves had the highest N concentration and Pn per unit dry mass and the highest g(s), indicating that the gradual transition from the seedling stage to the sapling stage is accompanied by an accumulation of N in plant bodies and the development of hydraulic systems to counteract unfavorable environmental stresses. The properties of adult tree leaves (low PNUE, high carbon:N ratio, small and dense cells and thick lamina) indicate that, during the transition from the sapling stage to the adult tree stage, the priority of resource use in leaves gradually shifts from enhancement of photosynthetic performance to defense against herbivory and mechanical damage. Leaf morphology and physiology were coordinated with the differences in resource use at each life stage.  相似文献   

15.
In summer 1992, isoprene emission was measured on intact leaves and branches of Quercus alba (L.) at two heights in a forest canopy. Isoprene emission capacity (measured at 30 degrees C and a photosynthetic photon flux density of 1000 micro mol m(-2) s(-1)) was significantly higher in sun leaves than in shade leaves when expressed on a leaf area basis (51 versus 31 nmol m(-2) s(-1); P < 0.01). Because leaf mass per unit area (LMA, g m(-2)) was higher in sun leaves than in shade leaves, emissions of sun and shade leaves expressed on a dry mass basis did not differ significantly (99 versus 89 micro g C g(DW) (-1) h(-1); P = 0.05). Similar measurements in 1995 were consistent with the 1992 data, but data from leaves in more shaded locations demonstrated that isoprene emission capacity decreased with decreasing growth irradiance, irrespective of units of expression. Isoprene emission capacity in leaves of Q. coccinea Muenchh. and Q. velutina Lam. also declined steeply with canopy depth. Emission capacity, on a dry mass basis, showed no obvious pattern with canopy position in Q. prinus L. There was no difference in the temperature response of sun versus shade leaves of Q. alba, but shade leaves exhibited a greater quantum efficiency and saturated at lower irradiance than sun leaves. Rates of isoprene emission measured on branches of Q. alba were approximately 60% of those measured on individual leaves, as a result of self-shading within branch enclosures. It is recommended that within-canopy variation in isoprene emission capacity be incorporated into regional emission models.  相似文献   

16.
【目的】采用课题组早期创制的楸树种内杂种和种间杂种为试验材料,比较杂种间多年的生长性状及光合生理生化特性。旨在明晰楸树种间和种内杂种的生长及光合能力差异及其原因,探究杂种叶片氮素利用及分配与光合效率的潜在关系,为楸树栽培及遗传改良提供参考。【方法】试验采用完全随机区组设计,测定种内杂种(楸树×楸树,Cbb)和种间杂种(楸树×滇楸,Cbf)1~5年树高和1~6年胸径及6年生时的叶片氮素含量、叶绿素含量、光响应曲线和CO2响应曲线。采用非直角双曲线模型拟合光响应曲线,FvCB生化模型(Farquhar、von Caemmerer和Berry提出的生物化学光合模型)拟合CO2响应曲线,分别计算了表观光合量子效率(AQY)、光补偿点(LCP)等气体交换参数及最大羧化效率(Vcmax)、最大电子传递速率(Jmax)等光合生理生化参数。并计算出光合系统(捕光系统,羧化系统和生物力能学组分)氮素分配比例。【结果】方差分析显示2年生以上的种内杂种Cbb树高和胸径均显著大于种间杂种Cbf。种间与种内杂种间叶绿素总量没有显著差异,但Cbf叶绿素b显著高出Cbb15.08%,Cbb的叶绿素a/b和类胡萝卜素/叶绿素总量比值均显著大于Cbf。Cbb具有更高的最大净光合速率、气孔导度、最大羧化效率和暗呼吸速率,表明了Cbb具有更强的光合能力。种间与种内杂种间叶片氮素含量没有显著差异,但Cbb光系统氮素分配比例相对较高,同时具有更高的光合氮素利用效率,这可能是其高光合效率的主要因素之一。相关分析表明楸树杂种光合氮素利用效率与氮素在羧化系统及生物力能学组分中的分配比例呈显著正相关;种内杂种Cbb光合氮素利用效率与其胸径具有较好的(R2=0.531)正向线性关系。【结论】1)楸树种内杂种(楸树×楸树)对本地环境(中原地区)具有更强的适应性,致使其生长势显著优于种间杂种(楸树×滇楸);2)相对于云贵高原,中原地区更长的日照时间和更高的7月均温可能促使了楸树×楸树形成适应高光合辐射环境的响应机制(高水平Chla/b和Car/Chla+b);3)楸树×楸树光合系统更高的N分配比例及高效的N素利用效率提高了其光合能力;4)楸树种间杂种中滇楸所传递给子代的遗传物质不具有适应中原地区环境的调控机制,这是楸树×滇楸在生长和光合生理方面均劣于楸树×楸树的主要原因。  相似文献   

17.
Gas exchange was measured in a forest plantation dominated by Fraxinus angustifolia Vahl. and Quercus robur L. in northern Italy, over three growing seasons that differed in water availability (2001, 2002 and 2003). The objectives were to: (1) determine variability in the photosynthetic parameters V(cmax) (maximum carboxylation capacity) and J(max) (maximum rate of electron transport) in relation to species, leaf ontogeny and drought; and (2) assess the potential of the photosynthesis-nitrogen relationship for estimating leaf photosynthetic capacity. Marked seasonal and interannual variability in photosynthetic capacity was observed, primarily caused by changes in leaf ontogeny and water stress. Relatively small differences were apparent between species. In the absence of water stress (year 2002), the seasonal patterns of V(cmax) and J(max) were characterized by a rapid increase during spring, a relatively steady state during summer and a rapid decline during autumn. In years with a moderate (year 2001) or a severe (year 2003) water stress, photosynthetic capacity decreased during the summer in proportion to drought intensity, without a parallel decline in leaf nitrogen content. The V(cmax)-nitrogen relationship was significantly affected by both leaf ontogeny and drought. As a consequence, the use of a single annual regression to predict V(cmax) from leaf nitrogen yielded good estimates only during the summer and in the absence of water stress. Irrespective of the mechanisms by which photosynthetic capacity is affected by water stress, its large seasonal and interannual variability is of great relevance for modeling the forest carbon cycle.  相似文献   

18.
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.  相似文献   

19.
Ishida A  Toma T  M 《Tree physiology》1999,19(2):117-124
We tested the hypothesis that, in tropical pioneer tree species, vertical leaf angle contributes to high carbon gain because it minimizes damage caused by high irradiances. Diurnal changes in leaf gas exchange and chlorophyll fluorescence were measured in east-facing (EL), west-facing (WL) leaves, and in leaves artificially held horizontal (HL) in the uppermost canopy of Macaranga conifera (Zoll.) Muell. Arg. Maximum values of net photosynthetic rate (P(n)) for EL and HL reached 12 &mgr;mol m(-2) s(-1), whereas maximum P(n) for WL was only 6 &mgr;mol m(-2) s(-1). Midday depressions of P(n) and stomatal conductance occurred at high photosynthetic photon flux densities (PPFD), especially for HL. Photosystem II quantum yield (DeltaF/F(m)') of HL for a given PPFD at the leaf surface was lower in the afternoon than in the morning. Values of DeltaF/F(m)' for HL measured at dusk were lower than those measured just before dawn, suggesting that HL suffered from high light and heat load. Variations in the morphology and physiology of the canopy leaves were associated with different light environments, and there was circumstantial evidence of a transitional point at a PPFD of about 20-30% of full sunlight. Maximum P(n) and nitrogen (N) content were higher in upper canopy leaves than in lower canopy leaves, and the differences were mainly associated with differences in lamina thickness. We conclude that the vertical leaf angle and thick lamina of the top canopy leaves contributed to enhance total carbon gain of the whole plant.  相似文献   

20.
To investigate whether sun and shade leaves respond differently to CO2 enrichment, we examined photosynthetic light response of sun and shade leaves in canopy sweetgum (Liquidambar styraciflua L.) trees growing at ambient and elevated (ambient + 200 microliters per liter) atmospheric CO2 in the Brookhaven National Laboratory/Duke University Free Air CO2 Enrichment (FACE) experiment. The sweetgum trees were naturally established in a 15-year-old forest dominated by loblolly pine (Pinus taeda L.). Measurements were made in early June and late August 1997 during the first full year of CO2 fumigation in the Duke Forest FACE experiment. Sun leaves had a 68% greater leaf mass per unit area, 63% more leaf N per unit leaf area, 27% more chlorophyll per unit leaf area and 77% greater light-saturated photosynthetic rates than shade leaves. Elevated CO2 strongly stimulated light-saturated photosynthetic rates of sun and shade leaves in June and August; however, the relative photosynthetic enhancement by elevated CO2 for sun leaves was more than double the relative enhancement of shade leaves. Elevated CO2 stimulated apparent quantum yield by 30%, but there was no interaction between CO2 and leaf position. Daytime leaf-level carbon gain extrapolated from photosynthetic light response curves indicated that sun leaves were enhanced 98% by elevated CO2, whereas shade leaves were enhanced 41%. Elevated CO2 did not significantly affect leaf N per unit area in sun or shade leaves during either measurement period. Thus, the greater CO2 enhancement of light-saturated photosynthesis in sun leaves than in shade leaves was probably a result of a greater amount of nitrogen per unit leaf area in sun leaves. A full understanding of the effects of increasing atmospheric CO2 concentrations on forest ecosystems must take account of the complex nature of the light environment through the canopy and how light interacts with CO2 to affect photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号