首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A German cockroach (Blatella germanica (L)) strain, Apyr‐R, was collected from Opelika, Alabama after control failures with pyrethroid insecticides. Levels of resistance to permethrin and deltamethrin in Apyr‐R (97‐ and 480‐fold, respectively, compared with a susceptible strain, ACY) were partially or mostly suppressed by piperonyl butoxide (PBO) and S,S,S,‐tributylphosphorotrithioate (DEF), suggesting that P450 monooxygenases and hydrolases are involved in resistance to these two pyrethroids in Apyr‐R. However, incomplete suppression of pyrethroid resistance with PBO and DEF implies that one or more additional mechanisms are involved in resistance. Injection, compared with topical application, resulted in 43‐ and 48‐fold increases in toxicity of permethrin in ACY and Apyr‐R, respectively. Similarly, injection increased the toxicity of deltamethrin 27‐fold in ACY and 28‐fold in Apyr‐R. These data indicate that cuticular penetration is one of the obstacles for the effectiveness of pyrethroids against German cockroaches. However, injection did not change the levels of resistance to either permethrin or deltamethrin, suggesting that a decrease in the rate of cuticular penetration may not play an important role in pyrethroid resistance in Apyr‐R. Apyr‐R showed cross‐resistance to imidacloprid, with a resistance ratio of 10. PBO treatment resulted in no significant change in the toxicity of imidacloprid, implying that P450 monooxygenase‐mediated detoxication is not the mechanism responsible for cross‐resistance. Apyr‐R showed no cross‐resistance to spinosad, although spinosad had relatively low toxicity to German cockroaches compared with other insecticides tested in this study. This result further confirmed that the mode of action of spinosad to insects is unique. Fipronil, a relatively new insecticide, was highly toxic to German cockroaches, and the multi‐resistance mechanisms in Apyr‐R did not confer significant cross‐resistance to this compound. Thus, we propose that fipronil could be a valuable tool in integrated resistance management of German cockroaches. © 2001 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Spodoptera litura (F.) is an important pest worldwide, with over 112 host plants, and is exposed to insecticides throughout the year, resulting in the rapid development of resistance. Insecticide mixtures can delay the development of resistance more effectively than sequences or rotations. Cypermethrin, deltamethrin, profenofos, chlorpyrifos and fipronil were assessed separately and in mixtures against laboratory susceptible S. litura and two field‐collected populations. RESULTS: The field‐collected population from Khanewal (KWL) was significantly more resistant to cypermethrin, deltamethrin, chlorpyrifos and profenofos than one collected from Muzaffar Garh (MGH). Mixtures of cypermethrin + chlorpyrifos or profenofos and of deltamethrin + chlorpyrifos or profenofos at 1:1, 1:10 and 1:20 ratios significantly increased (P < 0.01) toxicity to cypermethrin and deltamethrin in field populations. The combination indices of cypermethrin + chlorpyrifos at 1:1 and 1:10 ratios and cypermethrin + fipronil at 1:1, 1:10 and 1:20 ratios for the KWL strain and of cypermethrin + profenofos or fipronil at 1:1, 1:10 and 1:20 ratios for MGH were significantly below 1, suggesting synergistic interactions. The inhibitors DEF and PBO largely overcame resistance to deltamethrin, cypermethrin and profenofos, suggesting that resistance to the insecticides was associated with esterase and monooxygenase detoxification respectively. CONCLUSION: Chlorpyrifos, profenofos and fipronil could be used in mixtures to restore cypermethrin and deltamethrin susceptibility. These findings may have considerable practical implications for S. litura resistance management. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
BACKGROUND: The spotted bollworm Earias vittella (Fab.) is a serious pest of cotton and okra in Pakistan. Owing to persistent use of insecticides, this pest has developed resistance, especially to pyrethroids. The present studies aimed at determining the extent of resistance to pyrethroid, organophosphorus and new chemical insecticides in Pakistani populations of E. vittella. RESULTS: Field populations of E. vittella were monitored at Multan, Pakistan, from 1999 to 2007 for their resistance against six pyrethroid, four organophosphorus and six new chemical insecticides using a leaf‐dip bioassay. Of the pyrethroids, resistance was generally low to zeta‐cypermethrin and moderate to high or very high to cypermethrin, deltamethrin, esfenvalerate, bifenthrin and lambda‐cyhalothrin. Resistance to organophosphates chlorpyrifos, profenofos, triazophos and phoxim was recorded at very low to low levels. Among new chemicals, E. vittella had no or a very low resistance to spinosad, emamectin benzoate and methoxyfenozide, a very low to low resistance to abamectin, a very low to moderate resistance to indoxacarb and a moderate resistance to chlorfenapyr. CONCLUSION: The results indicate a lack of cross‐resistance between pyrethroid and organophosphorus insecticides in E. vittella. Rotation of insecticides showing no, very low or low resistance, but belonging to different insecticide classes with unrelated modes of action, may prevent or mitigate insecticide resistance in E. vittella. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
In May 2001 a sample of Culex pipiens pipiens variety molestus Forskål from Marin County, California, collected as larvae and reared to adults, was found to show reduced resmethrin and permethrin knock‐down responses in bottle bioassays relative to a standard susceptible Cx pipiens quinquefasciatus Say colony (CQ1). Larval susceptibility tests, using CQ1 as standard susceptible, indicated that the Marin mosquitoes had LC50 resistance ratios of 18.3 for permethrin, 12 for deltamethrin and 3.3 for pyrethrum. A colony of Marin was established and rapidly developed higher levels of resistance in a few generations after exposure to permethrin as larvae. These selected larvae were shown to cross‐resist to lambda‐cyhalothrin as well as to DDT. However, adult knock‐down time in the presence of permethrin, resmethrin and pyrethrum was not increased after increase in tolerance to pyrethroids as larvae. Partial and almost complete reversion to susceptibility as larvae was achieved with S, S, S‐tributylphosphorotrithioate and piperonyl butoxide (PBO), respectively, suggesting the presence of carboxylesterase and P450 monooxygenase mediated resistance. Insensitive target site resistance (kdr) was also detected in some Marin mosquitoes by use of an existing PCR‐based diagnostic assay designed for Cx p pipiens L mosquitoes. Carboxylesterase mediated resistance was supported by use of newly synthesized novel pyrethroid‐selective substrates in activity assays. Bottle bioassays gave underestimates of the levels of tolerance to pyrethroids of Marin mosquitoes when compared with mortality rates in field trials using registered pyrethroid adulticides with and without PBO. This study represents the first report of resistance to pyrethroids in a feral population of a mosquito species in the USA. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Isolated rat brain synaptosomes were used to evaluate the action of pyrethroid mixtures on Ca2+ influx and subsequent glutamate release under depolarizing conditions. In equipotent binary mixtures at their respective and/or estimated EC50s with deltamethrin always as one of the two components, cismethrin, λ-cyhalothrin, cypermethrin, esfenvalerate and permethrin were additive and S-bioallethrin, fenpropathrin and tefluthrin were less-than-additive on Ca2+ influx. In binary mixtures with deltamethrin always as one of the two components, esfenvalerate, permethrin and tefluthrin were additive and λ-cyhalothrin was less-than-additive on glutamate release. Binary mixture of S-bioallethrin and cismethrin was additive for both Ca2+ influx and glutamate release. Only a subset of pyrethroids (S-bioallethrin, cismethrin, cypermethrin, and fenpropathrin) in binary mixtures with deltamethrin caused a more-than-additive effect on glutamate release. These binary mixtures were, however, only additive (cismethrin and cypermethrin) or less-than-additive (S-bioallethrin and fenpropathrin) on Ca2+ influx. Therefore, increased glutamate release evoked by this subset of pyrethroids in binary mixture with deltamethrin is not entirely occurring by Ca2+-dependent mechanisms via their action at voltage-sensitive calcium channels. These results suggest that pyrethroids do not share a common mode of toxicity at presynaptic nerve terminals from rat brain and appear to affect multiple target sites, including voltage-sensitive calcium, chloride and sodium channels.  相似文献   

6.
Isomers of pyrethroids usually have different insecticidal activities. Permethrin, a non‐cyano pyrethroid, is not an exception and cis‐permethrin is much more active than the trans‐isomer against Triatoma infestans, vector of Chagas' Disease in Argentina. The large‐scale separation of cis‐ and trans‐permethrin was performed by successive recrystallizations from ethanol‐water mixtures. An aqueous suspension concentrate (flowable) formulation of pure crystalline cis‐permethrin was prepared and assayed for its insecticidal activity on wood and ceramic surfaces against nymph V of T infestans. This formulation was at least three times more effective than deltamethrin, with LC50 values on ceramic of 0.11 µg cm−2 and 0.33 µg cm−2 respectively. On wood surfaces, the LC50 value was 0.57 µg cm−2 compared with 3.20 µg cm−2 for deltamethrin. Against other insect species such as Periplaneta americana, Aedes aegypti and Culex quinquefasciatus, the suspension concentrate formulation of cis‐permethrin was, however, less effective than similar formulations of deltamethrin or β‐cypermethrin. © 2000 Society of Chemical Industry  相似文献   

7.
The characteristics of a new high-level, field-derived resistance to pyrethroids in Tribolium castaneum (Herbst) were investigated using impregnated-paper and treated-grain assays. Piperonyl butoxide almost completely suppressed the resistance, suggesting that the major resistance mechanism was microsomal oxidation. Resistance extended to all pyrethroids tested and to carbaryl but not to organophosphorus insecticides or to methoprene. Resistance was strongest against α—CN phenoxybenzyl cyclopropanecarboxylate pyrethroids and was correlated with structural modifications of the pyrethroid molecule, results also consistent with oxidative resistance. This resistance will ultimately result in failures to control T. castaneum if pyrethroids, such as deltamethrin, cypermethrin or cyfluthrin, are used in the field, even if they are synergised with piperonyl butoxide. The resistance does not jeopardise organophosphorus materials (e.g. fenitrothion, chlorpyrifos-methyl, pirimiphos-methyl, methacrifos) or methoprene.  相似文献   

8.
BACKGROUND: Helicoverpa zea (Boddie) pyrethroid resistance monitoring programs typically utilize cypermethrin in the adult vial test. Here we investigated if differences in insect growth stage and pyrethroid structure affect resistance ratios and discuss implications for pyrethroid resistance management. RESULTS: Vial bioassays with cypermethrin, esfenvalerate and bifenthrin were conducted on H. zea third instars and male moths from a susceptible laboratory colony and the F1 generation of a pyrethroid‐resistant field population. In the susceptible population, both growth stages were most sensitive to bifenthrin and adults were more sensitive to esfenvalerate than cypermethrin. LC50 resistance ratios for the larvae and adults of the resistant population were approximately two times higher for bifenthrin than cypermethrin or esfenvalerate. CONCLUSION: For the resistant population, vial assays using either growth stage gave similar resistance ratios for each of the three pyrethroids, respectively, proving the adult vial test accurately reflects larval resistance. However, as resistance ratios varied considerably depending on the pyrethroid used, resistance ratio values obtained with one pyrethroid may not be predictive of resistance ratios for other pyrethroids. Our results suggest that carefully chosen pyrethroid structures diagnostic for specific mechanisms of resistance could improve regional monitoring programs. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
The effects of pyrethroids were studied upon isolated segmental nerves and neuromuscular junctions in both susceptible (Cooper) and knockdown-resistant (kdr; super-kdr) strains of housefly larvae (Musca domestica L.). Isolated segmental nerves contained neither cell bodies nor synaptic contacts; thus, any effects of pyrethroids were attributed solely to their actions upon voltage-dependent Na+ channels. Threshold concentrations of the type II pyrethroid, deltamethrin, required to elevate the spontaneous firing rate of these nerves were determined. Both resistant strains were about ten times less sensitive to deltamethrin than the susceptible strain, but insensitivity of super-kdr nerves was no greater than in the less resistant kdr strain. At neuromuscular junctions, the minimum concentrations of pyrethroids needed to trigger massive increases in the frequency of miniature excitatory postsynaptic potentials (mEPSPs) were determined for deltamethrin and the type I pyrethroid, fenfluthrin. With fenfluthrin there was no detectable difference between the junctions of kdr and super-kdr strains, which were both about ten-fold less sensitive than Cooper junctions. With deltamethrin, kdr junctions were about 30 times less sensitive than those of Cooper; super-kdr junctions were dramatically insensitive to deltamethrin, being some 10000- and 300-fold less sensitive than those of Cooper and kdr respectively. Thus, in the synaptic assay, super-kdr conferred an extension in resistance over kdr only against the type II pyrethroid, it being ineffective against fenfluthrin. We suggest that kdr resistance comprises at least two site-insensitive areas within the nervous system. One involves insensitivity of the Na+ channel and has similar efficacy in both kdr and super-kdr strains against type I and II pyrethroids; the other is associated with the presynaptic terminal and is particularly effective in super-kdr resistance against type II pyrethroids. The latter could be associated with Ca2+-activated phosphorylation of proteins involved with neurotransmitter release. Such phosphorylation reactions are known to be perturbed by pyrethroids, especially by type II compounds.  相似文献   

10.
The field strain of Anopheles stephensi, the main malaria vector in south of Iran, was colonized in laboratory and selected with DDT and dieldrin in two separate lines for 3 generations to a level of 19.5- and 14-fold for DDT and dieldrin resistance, respectively. Synergist tests with chlorofenethol (DMC) and piperonyl butoxide (PBO) on the selected strains indicated that dehydrochlorination and oxidative detoxification might be the underlying mechanisms involved in the resistance to dieldrin and DDT in selected strains. DDT selection decreased susceptibility to DDT and pyrethroids including lambdacyhalothrin, permethrin deltamethrin and cyfluthrin. The result also showed that selection with dieldrin caused negative and positive cross-resistance to pyrethroid and fipronil, respectively. Based on these results, it can be concluded that besides metabolic resistance mechanisms, other factors such as mutation in γ aminobutyric acid (GABA) and voltage-gated sodium channels (Kdr) might be involved.  相似文献   

11.
The cytochrome P450-dependent monooxygenases (P450s) are an important enzymatic system that metabolizes xenobiotics (e.g., pesticides), as well as endogenous compounds (e.g., hormones). P450-mediated metabolism can result in detoxification of insecticides such as pyrethroids, or can be involved in the bioactivation and detoxification of insecticides such as organophosphates. We isolated (from the JPAL strain) a permethrin resistant strain (ISOP450) of Culex pipiens quinquefasciatus, having 1300-fold permethrin resistance using standard backcrossing procedures. ISOP450 is highly related to the susceptible lab strain (SLAB) and the high resistance to permethrin is due solely to P450-mediated detoxification. This is the first time in mosquitoes that P450 monooxygenase involvement in pyrethroid resistance has been isolated and studied without the confounding effects of kdr. Resistance in ISOP450 is incompletely dominant (D = +0.3), autosomally linked, and monofactorally inherited. It is expressed in the larvae, but not in adults. Cross-resistance to pyrethroids lacking a 3-phenoxybenzyl moiety (tetramethrin, fenfluthrin, bioallethrin, and bifenthrin) ranged from 1.5- to 12-fold. ISOP450 had only limited (6.6- and 11-fold) cross-resistance to 3-phenoxybenzyl pyrethroids with an α-cyano group (cypermethrin and deltamethrin, respectively). Examination of cross-resistance patterns to organophosphate insecticides in ISOP450 showed an 8-fold resistance to fenitrothion, while low, but significant, levels of negative cross-resistance were found for malathion (RR = 0.84), temephos (RR = 0.73), and methyl-parathion (RR = 0.55). The importance and uniqueness of this P450 mechanism in insecticide resistance is discussed.  相似文献   

12.
Deltamethrin and NRDC 157, pyrethroid insecticides that produce different poisoning syndromes in mammals, enhanced veratridine-dependent, sodium channel-mediated 22Na+ uptake in mouse brain synaptosomes. Concentrations producing half-maximal enhancement were 2.5 × 10?8M (deltamethrin) and 2.2 × 10?7M (NRDC 157). This effect was stereospecific: The nontoxic 1S enantiomers had no significant effect on veratridine-dependent activation. At high deltamethrin concentrations, enhancement was maximal at 5 × 10?5?1 × 10?4M veratridine. Pyrethroid enhancement was completely blocked by 5 × 10?6M tetrodotoxin, and neither pyrethroid affected 22Na+ uptake in the absence of veratridine at concentrations up to 1 × 10?5M. The relative potencies of deltamethrin and NRDC 157 in the synaptosomal sodium channel assay agree well with their relative acute toxicities to mice when administered by intracerebral injection. These findings demonstrate that pyrethroids exemplifying both characteristic poisoning syndromes are potent, stereospecific modifiers of sodium channel function in mammalian brain.  相似文献   

13.
Feeding-avoidance response of the bulb mite Rhizoglyphus robini to various insecticidal and acaricidal pyrethroids and some of their cleavage products was examined using a two-choice cellulose disc bioassay. The mites were able to detect extremely low quantities of certain pyrethroids, down to 1–5ng of pesticide applied to a cellulose disc weighing 200 mg. The phagodeterrent potency of the pyrethroids was found to be in the following decreasing order: fenvalerate > cypermethrin > deltamethrin > bioresmetnrin > pyrethrin > bifenthrin > cis-permethrin > trans-permethrin. Fenpropathrin, bioallethrin, flucythrinate and tetramethrin were stimulatory up to a level of 50 ng disc?1. A 100-ng dose of fenpropathrin deterred the mites. Chemical and photochemical cleavage products of pyrethroids possessed phagodeterrent potencies comparable to those of the intact pesticides. 3-Phenoxybenzotc acid and cis-chrysanthemic acid were the most effective deterrents followed by dibromochrysanthemic acid and the cis and trans bifenthrin acid moiety. The probable relevance of the observed phagodeterrence by pyrethroid residues and their cleavage products, as related to induction of dispersal and eventual outbreaks of mites, is discussed.  相似文献   

14.
Pollen beetle, Meligethes aeneus (Coleoptera: Nitidulidae) is a major pest on several million hectares in European winter oilseed rape cultivation. Synthetic pyrethroids have been successfully used for many years to keep them under economic damage thresholds. Recently wide-spread resistance development to pyrethroids in pollen beetle populations was described in many European countries, including Germany, France, Poland, Denmark and others. Resistance monitoring is conducted by incubating beetles for 24 h in glass vials coated with different concentrations of lambda-cyhalothrin. Using such an assay format we were able to show cross-resistance to other pyrethroids, such as deltamethrin, cypermethrin, and to a somewhat lower extent bifenthrin, etofenprox and tau-fluvalinate. Here we also investigated in more detail in 27 different populations the biochemical mechanism of pyrethroid resistance. Synergism experiments revealed a high synergistic potential for piperonyl butoxide in vivo, whereas other compounds such as S,S,S-tributylphosphorotrithioate and diethylmaleimide failed to suppress pyrethroid resistance. Incubating microsomal fractions of pollen beetle with deltamethrin and subsequent LC–MS/MS analysis revealed 4-OH-deltamethrin as the major metabolite. Metabolite formation in vitro and pyrethroid resistance in vivo is correlated and inhibition trials with piperonyl butoxide, tebuconazole and aminobenzotriazole suggest the involvement of cytochrome P450′s. Furthermore we were able to show cross-resistance to tau-fluvalinate which is supported by the competitive inhibition of 4-OH-deltamethrin formation by increasing concentrations of tau-fluvalinate in microsomal hydroxylation assays. Although we provided clear experimental evidence for an oxidative mechanism of resistance in numerous populations, other mechanisms might be involved based on the data discussed.  相似文献   

15.

Deltamethrin, a pyrethroid insecticide, was tested in both the laboratory and the field, with the aim of controlling the olive bark beetle, Phloeotribus scarabaeoides (Bernard), in living olive trees. In the laboratory, bark beetle adults were exposed to olive twigs treated with different concentrations of deltamethrin. Among these concentrations, dosage at 0.05% produced 100% mortality in the scolytids after 13 weeks. This dosage of deltamethrin, applied in the field, protected olive trees from scolytid attack during the whole emergence period.  相似文献   

16.
The potency of six dietary pyrethroids, as toxicants and inhibitors of weight gain in first- and fourth-instar Tribolium castaneum (Herbst) larvae, decreased in the order of cis-cypermethrin and deltamethrin > trans-cypermethrin and cis-permethrin > fenvalerate and trans-permethrin. Dosages that reduced larval weight also delayed pupation and emergence, probably due to their antifeeding activity. Three oxidase inhibitors (piperonyl butoxide, O, O-diethyl O-phenyl phosphorothioate, and O-isobutyl O-prop-2-ynyl phenylphosphonate), at a dietary concentration of 100 mg kg?1, had little or no effect on the toxicity of trans-permethrin, but strongly synergised the toxicity of cis-cypermethrin by about 3-, 3- and 10-fold, respectively. Piperonyl butoxide also synergised the toxicity of cis-permethrin, trans-cypermethrin and deltamethrin, but not that of fenvalerate. On the other hand, an esterase inhibitor, profenofos, did not enhance the potency of any of the α-cyano-3-phenoxybenzyl pyrethroids. Oxidases appear to be more important than esterases in pyrethroid detoxification by T. castaneum larvae.  相似文献   

17.
The interactions between six insecticides (indoxacarb, cypermethrin, chlorpyrifos, azinphosmethyl, tebufenozide and chlorfenapyr) and three potential synergists, (piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and diethyl maleate (DEM)) were studied by dietary exposure in a multi-resistant and a susceptible strain of the obliquebanded leafroller, Choristoneura rosaceana (Harris). The synergists did not produce appreciable synergism with most of the insecticides in the susceptible strain. Except for tebufenozide, PBO synergized all the insecticides to varying degrees in the resistant strain. A very high level of synergism by PBO was found with indoxacarb, which reduced the resistance level from 705- to 20-fold when PBO was administered alone and to around 10-fold when used in combination with DEF. DEF also synergized indoxacarb, cypermethrin, chlorpyrifos, azinphosmethyl and tebufenozide in the resistant strain. DEM produced synergism of indoxacarb, chlorpyrifos, azinphos-methyl and chlorfenapyr in the resistant strain. DEM was highly synergistic to cypermethrin, and to some extent to tebufenozide in both the susceptible and resistant strains equally, implying that detoxification by glutathione S-transferases was not a mechanism of resistance for these insecticides. The high level of synergism seen with DEM in the case of cypermethrin may be due to an increase in oxidative stress resulting from the removal of the antioxidant, glutathione. These studies indicate that enhanced detoxification, often mediated by cytochrome P-450 monooxygenases, but with probable esterase and glutathione S-transferase contributions in some cases, is the major mechanism imparting resistance to different insecticides in C. rosaceana.  相似文献   

18.
The activity levels of succinate dehydrogenase (SDH) and glucose‐6‐phosphate dehydrogenase (G6PD) were assessed in various tissues of Cyprinus carpio var communis which had been exposed to lethal concentrations of group‐II pyrethroids (deltamethrin, cypermethrin, fenvalerate and fluvalinate) for a period of 72 h. The results indicated a steady decrease in SDH activity with a concomitant increase in G6PD activity. The decreased SDH activity indicated inhibition of SDH at mitochondrial level and the increased G6PD activity an enhancement of an alternative pathway of carbohydrate metabolism, viz the hexose monophosphate shunt (HMP) or pentose phosphate pathway as a biochemical adaptation to overcome the toxic stress. © 2001 Society of Chemical Industry  相似文献   

19.
Very high cypermethrin and fenvalerate resistance frequencies were recorded in Helicoverpa armigera (Hübner) populations in central India during the 1993–94, 1994–95 and 1995–96 cropping seasons. Synergism assays and biochemical analyses of detoxification enzyme levels indicated that mono-oxygenases and esterases were important metabolic mechanisms mediating pyrethroid resistance. Piperonyl butoxide- (PBO) and profenofos-suppressible pyrethroid resistance were correlated with enhanced levels of cytochrome P450 and general esterases respectively. Enzyme assay data indicated that high cytochrome P450 levels generally coincided with low esterase activity and vice versa. Similarly, synergist bioassays showed that PBO-insensitive resistance was frequently associated with profenofos-sensitive resistance and vice versa. Oxidase- and esterase-mediated mechanisms evidently alternated in a reciprocal manner, with perceptible shifts in relative importance occurring during mid-October in all three seasons and in late January in 1995. Apart from metabolic mechanisms, a synergist-insensitive resistance mechanism (believed to be nerve insensitivity), accounted for an average of 51, 30 and 28% of cypermethrin resistance during the 1993–94, 1994–95 and 1995–96 seasons respectively. © 1997 SCI.  相似文献   

20.
Synergism of mixtures of pyrethroids with organophosphorus (OP) compounds in insects is reviewed, and the toxicity of such combinations againstSpodoptera littoralis (Boisd.) larvae is reported. Mixtures of one of the pyrethroids cypermethrin, fenvalerate or deltamethrin with one of the OP compounds monocrotophos, profenofos, azinphos-methyl or acephate were assayed at different ratios as 24-h-old dipping residues on alfalfa, which was fed toS. littoralis larvae for 48 h. With most of the binary mixtures containing various OP concentrations in excess of those of the pyrethroids, synergism was demonstrated. In the pairs fenvalerate — azinphos-methyl, deltamethrin — azinphos-methyl and deltamethrin — profenofos, however, no synergism was found. In a detailed investigation with pyrethroid concentrations causing 20% mortality and OP concentrations giving a kill of no higher than ;10%, the above findings on synergism were amply confirmed. A cypermethrinmonocrotophos mixture showed synergism also on cotton leaves sprayed in the field. Synergism could not be demonstrated by topical application of pyrethroid — OP mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号