首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
The outcomes of previous studies have resulted in differing recommendations on the rate and timing of fertilizer N applications for forage maize. In order to gain an improved understanding of the role of N fertilizer, a field experiment was carried out to investigate the effects of time and rate of N application on total and plant‐fraction yield, nutritive value and efficiency of nutrient utilization in early‐ and late‐sown forage maize. Treatments included two sowing dates (early, late), two rates of N (0, 135 kg ha?1) applied pre‐sowing (N1) and three rates of N (0, 79, 158 kg ha?1) applied post‐sowing (N2) at the six‐leaf stage (V6). Application of N at N1 (N0 vs. N135) increased dry‐matter (DM) stover yield by 11% and total yield by 7%. Application of fertilizer N at N2 (N0 vs. N158) increased grain yield by 44% and total yield by 34%. Application of N2 also increased irrigation and total water‐use efficiency (WUE) from 30 to 40 and 46 to 61 kg DM ml ?1 water respectively. Late sowing increased DM yield by 6%, but decreased WUE compared with early sowing. The results indicate that application of N at both N1 and N2 is essential to maximize total DM yield from forage maize, but application at V6 is recommended when N input is reduced.  相似文献   

2.
Two field experiments were conducted at Teagasc, Moorepark, Ireland, to determine the effect of sowing date and nitrogen application on the dry‐matter (DM) yield and crude protein (CP) content of forage rape and stubble turnips. The first experiment consisted of three sowing dates (1 August, 15 August and 31 August) with four rates of fertilizer N (0, 40, 80 and 120 kg N ha?1) on forage rape DM yields. The second experiment consisted of three sowing dates (1 August, 15 August and 31 August) with four rates of fertilizer N (0, 40, 80 and 120 kg N ha?1) over two soil sites (fertile or nitrogen depleted) on forage rape and stubble turnip DM yields. A delay in sowing from 1 to 31 August characterized a 74·5% decrease in forage rape DM yield, while stubble turnip DM yield decreased by 55·5%. Forage rape DM yields increased positively up to 120 kg N ha?1 at the first two sowing dates over both sites. In contrast, stubble turnips showed less response beyond 40 kg N ha?1 on site 1 in the first two sowing dates, while DM yield increased positively up to 120 kg N ha?1 on the less fertile site. The results indicate that the optimal sowing time for forage rape and a stubble turnip in Ireland was early August.  相似文献   

3.
In pasture‐based dairy farming, new sustainable systems that involve the annual dry matter (DM) production of grazed and conserved forage beyond the potential of grazed pasture alone are being sought. The objective of this experiment conducted in Australia was to compare a complementary forage rotation (CFR) for conservation and grazing, comprising an annual sequence of three crops, namely maize (Zea mays L), forage rape (Brassica napus L) and a legume (Persian clover, Trifolium repesinatum L or maple pea, Pisum sativum L), with a pasture [kikuyu grass (Pennisetum clandestinum) over‐sown with short‐rotation ryegrass (Lolium multiflorum L)] as a pasture control treatment. The experiment was a complete randomized block design with four replicates (~0·7 ha each). Annual dry‐matter (DM) yield over the 3 years averaged >42 t ha?1 year?1 for the CFR treatment and >17 t ha?1 year?1 for the pasture treatment. The high DM yield of the CFR treatment resulted from >27 t ha?1 year?1 from maize harvested for silage and >15 t DM ha?1 year?1 utilized by grazing the forage rape and legumes. Total input of nitrogen (N) and water were similar for both treatments, resulting in higher N‐ and water‐use efficiency for the CFR treatment, which was more than twice that for the pasture treatment. Overall, the nutritive value of the pasture treatment was slightly higher than the mean for that of the CFR treatment. The implications of these results are that a highly productive system based on the CFR treatment in conjunction with the use of pasture is achievable. Such a dairy production system in Australia could increase the total supply of feed resources grown on‐farm and the efficiency of use of key resources such as N and water.  相似文献   

4.
The impact of various starter phosphorus (P) fertilizers on the growth, nutrient uptake and dry‐matter (DM) yield of forage maize (Zea mais) continuously cropped on the same area and receiving annual, pre‐sowing, broadcast dressings of liquid and semi‐solid dairy manures was investigated in two replicated plot experiments and in whole‐field comparisons in the UK. In Experiment 1 on a shallow calcareous soil (27 mg l?1 Olsen‐extractable P) in 1996, placement of starter P fertilizer (17 or 32 kg ha?1) did not benefit crop growth or significantly (P > 0·05) increase DM yield at harvest. However, in Experiment 2 on a deeper non‐calcareous soil (41 mg l?1 Olsen‐extractable P) in 1997, placement of starter P fertilizer (19 or 41 kg P ha?1), either applied alone or in combination with starter N fertilizer (10 or 25 kg N ha?1), significantly increased early crop growth (P < 0·01) and DM yield at harvest by 1·3 t ha?1 (P < 0·05) compared with a control without starter N or P fertilizer. Placement of starter N fertilizer alone did not benefit early crop growth, but gave similar yields as P, or N and P, fertilizer treatments at harvest. Large treatment differences in N and P uptake by mid‐August had disappeared by harvest. In field comparisons over the 4‐year period 1994–97, the addition of starter P fertilizer increased field cumulative surplus P by over 70%, but without significantly (P > 0·05) increasing DM yield, or nutrient (N and P) uptake, compared with fields that did not receive starter P fertilizer. The results emphasized the extremely low efficiency with which starter P fertilizers are utilized by forage maize and the need to budget manure and fertilizer P inputs more precisely in order to avoid excessive soil P accumulation and the consequent increased risk of P transfer to water causing eutrophication.  相似文献   

5.
Crop growth is related to radiation‐use efficiency (RUE), which is influenced by the nitrogen (N) status of the crop, expressed at canopy level as specific leaf N (SLN) or at plant level as N nutrition index (NNI). To determine the mechanisms through which N affects dry‐matter (DM) production of forage kale, results from two experiments (N treatment range 0–500 kg ha?1) were analysed for fractional radiation interception (RI), accumulated radiation (Racc), RUE, N uptake, critical N concentration (Nc), NNI and SLN. The measured variables (DM, RI and SLN) and the calculated variables (NNI, Racc and RUE) increased with N supply. RUE increased from 0·74 and 0·89 g MJ?1 IPAR for the control treatments to 1·50 and 1·95 g MJ?1 IPAR under adequate N and water in both experiments. This represented an increase in RUE of 52–146% for the range of N treatments used in both experiments, whilst Racc increased by 9–17%, compared with the control treatments. Subsequently, the total DM yield of kale increased from 6·7 and 8 t DM ha?1 for the control treatments to ≥ 19 t DM ha?1 when ≥150 kg N ha?1 was applied. The DM yields for the 500 kg N ha?1 treatments were 25·5 and 27·6 t DM ha?1 for the two experiments. RUE increased linearly with SLN, at an average rate of 0·38 g DM MJ?1 IPAR per each additional 1 g N m?2 leaf until a maximum RUE of 1·90 g MJ?1 IPAR was reached in both experiments. There were no changes in RUE with SLN of > 2·6 g m?2 and NNI >1, implying luxury N uptake. RUE was the most dominant driver of forage kale DM yield increases in response to SLN and NNI.  相似文献   

6.
The effects of sowing date and nitrogen (N) fertilizer on the inter‐specific competition between dallisgrass (Paspalum dilatatum Poir.) and tall fescue (Festuca arundinacea Schreb.) in the humid Pampas of Argentina were investigated in two pot experiments where a constant soil moisture content was maintained. Tall fescue and dallisgrass seeds were sown either in the spring (October 2000) or in the autumn (March 2001) in mixed and mono‐specific stands with 0 or 100 kg N ha?1. In the spring, competition from tall fescue depressed dry‐matter (DM) yield of dallisgrass from 1·53 to 0·36 g DM per plant and tiller number from 9·4 to 3·7 tillers per plant in mixed and in mono‐specific stands, respectively, while tall fescue had 3–4 times higher DM yields in mixed stands. Leaf extension rate (LER) of tall fescue was higher (1·3 mm d?1) than that of dallisgrass (0·53 mm d?1). In the autumn, inter‐specific competition did not affect DM yield of dallisgrass and N fertilizer increased DM yield from 0·53 to 2·07 g DM per plant, tiller number from 6·8 to 14·2 tillers per plant and LER at the beginning of autumn from 1·2 to 2·12 mm d?1 in both species. As temperature decreased, LER was reduced in both species to 0·31 mm d?1 by late autumn. The number of leaves per tiller was not affected by treatment. Nitrogen fertilizer increased N concentration of above‐ground tissues of both species (18 g kg?1 DM in autumn and 20 g kg?1 DM in spring). It was concluded that a productive mixed pasture of dallisgrass and tall fescue can be obtained by sowing early in the autumn. The application of N fertilizer in this season is essential to ensure a high herbage yield and quality.  相似文献   

7.
A field experiment was conducted in 2006 and 2007 to determine the agronomic performance and nutritive value of Sorghum almum for introduction in the derived savannah area of Nigeria. The experiment was arranged in a 2 × 4 factorial design with 2 plant spacings (0·5 × 0·5 m and 1·0 × 1·0 m) and 4 nitrogen (N) fertilizer levels (0, 60, 120 and 180 kg N ha?1). Plant height, tiller number, leaf proportion, biomass yield and nutritive value of the herbage were evaluated as part of the search for alternatives (especially drought tolerant) to local forages for dry season feeding of ruminants. Herbage yield data were tested for linear, quadratic and cubic trends to identify the optimal fertilizer levels for both spacings. Spacing × N interactions (P < 0·05) were observed for plant height and tiller number in both years. Agronomic performance was marginally better in 2007 compared with 2006. The maximum dry‐matter (DM) yield of 3500 and 3740 kg ha?1 for the more dense row spacing (0·5 × 0·5 m) was achieved at N fertilizer levels of 144 and 149 kg N ha?1 for 2006 and 2007 respectively. For the less dense (1·0 × 1·0 m) row spacing, the maximum DM yield of 3020 and 3240 kg ha?1 was achieved at 51 and 97 kg N ha?1 for 2006 and 2007 respectively. The crude protein content of the grass ranged from 61 to 89 g kg?1 DM, while the neutral detergent fibre (NDF) content ranged from 700 to 734 g kg?1 DM. The ability of S. almum to persist into the second year in this region is seen as a promising index as persistence is one of the characteristics of a good forage plant. Considering the exorbitant price of N fertilizer, less dense row spacing with N fertilizer rate in the range of 50–100 kg N ha?1 is hereby recommended for this region.  相似文献   

8.
Intercropping has been a globally accepted practice for forage production, however, consideration of multiple performance criteria for intercropping including forage production, feed use efficiency and ruminal greenhouse gas emissions needs to be further investigated. A two-year field study was conducted to evaluate forage dry matter (DM) yield, nutritive value, feeding values and land-use efficiency as well as ruminal carbon dioxide (CO2) and methane (CH4) emissions of intercropped orchardgrass (Dactylis glomerata) and alfalfa (Medicago sativa) sown in five intercropping ratios (100:0, 75:25, 50:50, 25:75, and 0:100, based on seed weight) and three nitrogen (N) fertilizer levels (0, 50, and 100 kg ha−1). Increasing alfalfa proportion and N fertilizer level increased soil nutrients and the two-year total DM yield. Intercropping increased both land and nitrogen use efficiency (NUE) compared with monocultures. Greater NUE was obtained when N fertilizer was applied at 50 kg ha−1, compared with 100 kg ha−1. Increasing the proportion of alfalfa in intercrops increased the crude protein yield and rumen undegraded protein yield. Harvested forage intercrops were incubated with ruminal fluid for 48 h. Degraded DM yield, CO2 and CH4 emissions increased with increasing alfalfa proportion in intercrops. Overall, the 75:25 of orchardgrass-alfalfa intercrops was recommended as the best compromise between high forage productivity, superior feed use efficiency and low ruminal greenhouse gas emissions through complementary effects. The results indicate that the appropriate N fertilization level would be 50 kg ha−1 for acquiring higher nitrogen use efficiency and forage productivity.  相似文献   

9.
Seven forage types (diploid and tetraploid perennial ryegrass, Italian ryegrass and hybrid ryegrass, a low‐input mixture of perennial ryegrass, cocksfoot, timothy and meadow fescue, a mixture of perennial ryegrass and white clover, and monoculture of red clover) were sown in late July 2004. Each received one of four rates of dairy cattle slurry in three annual applications by trailing shoe, which supplied average nitrogen (N) inputs of 0·0, 114·9, 204·8 and 301·2 kg N ha?1 annum?1. Treatments were cut either three or four times annually over four years. Average dry‐matter yield (DM) response to slurry N was 15·6 kg DM kg?1 N. Lowest recovery of slurry N was in the second application each year (after first cut). The data suggest that slurry applied to Italian ryegrass, and also to swards containing legumes on soils with high phosphorus content, will produce a lower DM response to slurry N and result in a lower slurry N recovery than on swards of perennial ryegrass or cocksfoot‐dominant low‐input mixtures. Apparent recovery of slurry N was low at the second cut, especially when first‐cut yields had been high. To maximize slurry N recovery, application to regrowths with potentially slow rates of growth or high legume content should be avoided.  相似文献   

10.
The effect of sowing date (SD) and sowing rate of perennial ryegrass (PRG) on the establishment of Caucasian and white clovers in New Zealand was assessed. Clovers were sown in spring on 24 September (SD1) and 9 November (SD2) 1999, and in autumn on 4 February (SD3) and 31 March (SD4) 2000. On each date, clovers were sown with 0, 3, 6 or 12 kg ha?1 of PRG. Total herbage dry matter (DM) production up to 6 November 2000 was 13–16 t DM ha?1 for SD1 and SD2 when sown with 3–12 kg ha?1 of PRG, and 7–10 t DM ha?1 for sown clover monocultures. For SD3 and SD4, total herbage production was 6–9 t DM ha?1 with PRG, while total herbage production of clover monocultures was 5·4 t DM ha?1 for SD3 and 2·6 t DM ha?1 for SD4. By 6 November 2000, white clover contributed proportionately more than 0·15 of herbage mass when sown with 3–12 kg ha?1 of PRG on SD1, SD2 or SD3, but less than 0·09 when sown on SD4. The proportion of Caucasian clover never exceeded 0·09 of herbage mass in any of the swards. White clover was successfully established in spring and in autumn with 3–12 kg ha?1 of PRG provided the 15‐mm soil temperature was above 14 °C. None of the combinations of Caucasian clover and PRG provided an adequate proportion of legumes during the establishment year. This unsuccessful establishment of Caucasian clover with PRG was attributed to its inability to compete for available light as a seedling due to slow leaf area expansion from secondary shoot development and a high root:shoot ratio. Alternative establishment strategies for Caucasian clover may include the use of slow establishing grasses, cover crops and temporal species separation.  相似文献   

11.
Established swards of two diploid and two tetraploid red clover varieties sown pure received 0, 75, 150, 225 or 300 kg ha?1 N fertilizer and were cut three times in June, August and October 1971. The total yields of herbage DM for red clover varieties ranged from 8.01 to 11.32 t ha?1; swards sown with tetraploids Hungaropoly and Hera Pajbjerg were superior by 25% in DM yield and 23% in CP yield. The red clover contribution to these total yields of DM ranged from 6.05 to 10.69 t ha?1; tetraploid clovers outyielded diploids by 42% in DM yield and 39% in CP yield. The mean effect of N level on yield and on compositional attributes was slight. Total yields of herbage DM, averaged over all varieties, ranged from 9.50 to 10.22 t ha?1 and of total herbage CP from 1.76 to 1.91 t ha?1. The influence of N level on the red clover contribution was negligible. DM yields ranged from 8.54 to 8.72 t ha?1 and CP yields from 1.60 to 1.64 t ha?1. Superiority of tetraploid clovers over diploids was again confirmed. Red clover swards sown pure can give high yields without the application of fertilizer N.  相似文献   

12.
Overseeded winter annuals in bermudagrass [Cynodon dactylon (L.) Pers.] improve annual dry‐matter (DM) yield and capture nutrients in fields receiving manure application. This study determined the DM and nutrient uptake responses of annual ryegrass (Lolium multiflorum L.), cereal rye (Secale cereale), berseem clover (Trifolium alexandrinum L.) and bermudagrass‐winter fallow to 0, 50, 100 and 150 kg N ha?1 applied approximately 2 months before a single spring harvest, and in addition to swine‐effluent N (258 and 533 kg ha?1 in summer 2000 and 2001, respectively). Under drought conditions in 2000, DM yield at the spring harvest was highest in ryegrass, and summer DM yield of bermudagrass was greater at 100 and 150 kg N ha?1 than 50 kg N ha?1(P < 0·05). The concentration and uptake of N at the spring harvest increased linearly across N rates in both years (P < 0.05). Cover crops differed in N uptake in 2000 (P < 0.01) and values ranged from approximately 141 kg N ha?1 in berseem clover to 86 kg N ha?1 in rye. Per unit of N applied, uptake of N increased by approximately 0·409 kg ha?1 in 2000 and 0·267 kg ha?1 in 2001; uptake of P increased by 0·029 and 0·014 kg ha?1 respectively. In 2000, uptake of P was responsive to N rate and this relationship was significant (P < 0·01) in winter fallow (slope = 0·032) and ryegrass (slope = 0·057). Increased uptake of N and P at the single spring harvest was due mainly to higher concentrations in herbage and not higher DM yield.  相似文献   

13.
This study compared the profitabilities of systems of dairy production based on N‐fertilized grass (FN) and grass‐white clover (WC) grassland and assessed sensitivity to changing fertilizer N and milk prices. Data were sourced from three system‐scale studies conducted in Ireland between 2001 and 2009. Ten FN stocked between 2·0 and 2·5 livestock units (LU) ha?1 with fertilizer N input between 173 and 353 kg ha?1 were compared with eight WC stocked between 1·75 and 2·2 LU ha?1 with fertilizer N input between 79 and 105 kg ha?1. Sensitivity was confined to nine combinations of high, intermediate and low fertilizer N and milk prices. Stocking density, milk and total sales from WC were approximately 0·90 of FN. In scenarios with high fertilizer N price combined with intermediate or low milk prices, WC was more (P < 0·05) profitable than FN. Based on milk and fertilizer N prices at the time, FN was clearly more profitable than WC between 1990 and 2005. However, with the steady increase in fertilizer N prices relative to milk price, the difference between FN and WC was less clear cut between 2006 and 2010. Projecting into the future and assuming similar trends in fertilizer N and milk prices to the last decade, this analysis indicates that WC will become an increasingly more profitable alternative to FN for pasture‐based dairy production.  相似文献   

14.
The effects of levels of application of potassium (K) fertilizer, and its interactions with both nitrogen (N) fertilizer and the growth interval between fertilizer application and harvesting on ryegrass herbage yield and chemical composition, and the fermentation, predicted feeding value, effluent production and dry-matter (DM) recovery of silage were evaluated in a randomized block design experiment. Twenty plots in each of four replicate blocks received either 0, 60, 120, 180 or 240 kg K ha?1, each at either 120 or 168 kg N ha?1. Herbage from the plots was harvested on either 24 May or 8 June and ensiled (6 kg) unwilted, without additive treatment, in laboratory silos. Immediately after harvesting, all plots received 95 kg N ha?1 and were harvested again after a 49-day regrowth interval. From the primary growth, herbage DM yields were 6·31, 6·57, 6·74, 6·93 and 6·93 (s.e. 0·091) t ha?1, herbage K concentrations were 15·5, 16·2, 19·1, 22·4 and 26·1 (s.e. 1·06) g kg?1 DM and herbage ash concentrations were 57, 63, 71, 73 and 76 (s.e. 0·9) g kg?1 DM, and for the primary regrowth herbage DM yields were 2·56, 2·73, 2·83, 2·94 and 2·99 (s.e. 0·056) t ha?1 for the 0, 60, 120, 180 and 240 g K ha?1 treatments respectively. Otherwise, the level of K fertilizer did not alter the chemical composition of the herbage at ensiling. After a 120-day fermentation period the silos were opened and sampled. The level of K fertilization had little effect on silage fermentation and had no effect on estimated intake potential, in vitro DM digestibility (DMD), DM recovery or effluent production. Increasing N fertilizer application increased silage buffering capacity (P < 0·05) and the concentrations of crude protein (P < 0·001), ammonia N (P < 0·01) and effluent volume (P < 0·01), and decreased ethanol concentration (P < 0·05) and intake potential (P < 0·05). Except for the concentrations of lactate and butyrate, delaying the harvesting date deleteriously changed the chemical composition (P < 0·001) and decreased intake potential (P < 0·001) and DMD (P < 0·001) of the silages. It is concluded that, other than for K and ash concentration, increasing the level of K fertilizer application did not alter the chemical composition of herbage from the primary growth or the resultant silage. Also, the level of K fertilizer application did not affect predicted feeding value, DM recovery or effluent production. Herbage yield increased linearly with increased fertilizer K application. Except for acetate and ethanol concentrations, there were no level of K fertilizer application by level of N fertilizer application interactions or level of K fertilizer application by harvest date interactions on silage fermentation or predicted feeding value. Increasing N fertilizer application from 120 to 168 kg ha?1 had a more deleterious effect on silage composition and feeding value than increasing K fertilizer application from 0 to 240 kg ha?1. Delaying harvesting was the most important factor affecting herbage yield and composition, and silage composition and had the most deleterious effect on silage feeding value.  相似文献   

15.
The use of cattle manure (CM) for fertilization presents challenges for optimizing nitrogen (N) use. Our work aimed to assess N efficiencies, in a 6‐year experiment with three biennial rotations of four crops: oat–sorghum (first year) and ryegrass–maize (second year) in a rainfed humid Mediterranean area of Spain. Fertilization treatments included the following: control (no N), 250 kg mineral N ha?1 year?1 (250MN), three CM rates (supplying 170, 250 and 500 kg N ha?1 year?1) and four treatments where the two lowest CM rates were complemented with either 80 or 160 kg mineral N ha?1 year?1. Treatments were distributed randomly in each of three blocks. Maximum dry‐matter yield (~44–49 t ha?1 rotation?1) was achieved in the third rotation, and only the control and the 170CM yielded significantly less. Within the limitations of the EU Nitrate Directive, the N steady state supply of 170CM always requires a complement of mineral N (80 kg N ha?1) to maximize N agronomic efficiency. The maximum N‐fertilizer replacement value (250CM vs. 250MN) was 0·67, without significant differences between the two treatments in other N‐related efficiency indexes, which indicates that plants took advantage of residual‐N effects. Nitrogen losses by leaching in the 250CM treatment were around 5–7% of the N applied. This reinforces the sustainability of manure recycling in long cropping seasons.  相似文献   

16.
Performance of white clover/perennial ryegrass mixtures under cutting   总被引:4,自引:0,他引:4  
Clover persistence in mixtures of two varieties of perennial ryegrass (Lolium perenne) with contrasting growth habits and three white clover (Trifolium repens) varieties differing in leaf sizes was evaluated at two cutting frequencies. An experiment was sown in 1991 on a clay soil. The plots received no nitrogen fertilizer. In 1992, 1993 and 1994, mixtures containing the large-leaved clover cv. Alice yielded significantly more herbage dry matter (DM) and had a higher clover content than mixtures containing cvs Gwenda and Retor. Companion grass variety did not consistently affect yield or botanical composition. Cutting at 2 t DM ha?1 resulted in slightly higher total annual yields than cutting at 1.2 t DM ha?1, but did not affect clover content. In 1992 the mixtures yielded, depending on cutting frequency and variety, 10·6–14·6 t DM ha?1 and 446–599 kg ha?1 N, whereas grass monocultures yielded only 1·2–2·0 t DM ha?1 and 25–46 kg ha?1 N. From 1992 to 1994 the annual mean total herbage yield of DM in the mixtures declined from 12·2 to 10·5 to 8·7 t ha?1, the white clover yield declined from 8·7 to 6·5 to 4·1 t ha?1 and the average clover content during the growing season declined from 71% to 61% to 46%, whereas the grass yield increased from 3·4 to 4·0 to 4·5 t ha?1. The N yield decreased from 507 to 406 to 265 kg N ha?1 and the apparent N fixation from 470 to 380 to 238 kg N ha?1. Nitrate leaching losses during the winters of 1992–93 and 1994–95 were highest under mixtures with cv. Alice, but did not exceed 10 kg N ha?1. The in vitro digestible organic matter (IVDOM) was generally higher in clover than in grass, particularly in the summer months. No differences in IVDOM were found among clover or grass varieties. The experiment will be continued to study clover persistence and the mechanisms that affect the grass/clover balance.  相似文献   

17.
A rare stay‐green allele transferred from meadow fescue (Festuca pratensis L.) to perennial ryegrass (Lolium perenne L.) has improved both the colour of turf and the nutritive value of herbage. In this study its effect on shoot density and forage yield was assessed. Equivalent populations of perennial ryegrass were constructed with and without the stay‐green allele, following eight generations of backcrossing to perennial ryegrass. The stay‐green population, the normal population and the cv. AberStar were compared over two harvest years (2005 and 2006) in a field experiment with six application rates of N fertilizer (100, 200, 300, 400, 500 and 600 kg ha?1 annually). There were no significant interactions between level of N fertilizer and population in any of the traits measured. The mean annual dry‐matter (DM) yield over all populations and fertilizer levels was 6·45 t ha?1 lower in the second harvest year. Mean annual DM yields over all fertilizer levels of the normal population were higher than, or equal to, AberStar while those of the stay‐green population were significantly (proportionately 0·10–0·13) lower than the normal population. In 2005, the mean total yield of N in the herbage of the stay‐green population was 0·09 lower than that of the normal population and the mean concentration of N over all harvests was 1·5 g kg?1 DM higher. The shoot density of the stay‐green population after the last harvest in November 2006 was 0·18 lower than that of the normal population (3689 and 4478 shoots m?2 respectively).  相似文献   

18.
The objective of this experiment was to use diurnal and temporal changes in herbage composition to create two pasture diets with contrasting ratios of water‐soluble carbohydrate (WSC) and crude protein (CP) and compare milk production and nitrogen‐use efficiency (NUE) of dairy cows. A grazing experiment using thirty‐six mid‐lactation Friesian x Jersey cows was conducted in late spring in Canterbury, New Zealand. Cows were offered mixed perennial ryegrass and white clover pastures either in the morning after a short 19‐day regrowth interval (SR AM) or in the afternoon after a long 35‐day regrowth interval (LR PM). Pasture treatments resulted in lower pasture mass and greater herbage CP concentration (187 vs. 171 g kg?1 DM) in the SR AM compared with the LR PM but did not affect WSC (169 g kg?1 DM) or the ratio of WSC/CP (1·0 g g?1). Cows had similar apparent DM (17·5 kg DM cow?1 d?1) and N (501 g N cow?1 d?1) intake for both treatments. Compared with SR AM cows, LR PM cows had lower milk (18·5 vs. 21·2 kg cow?1 d?1), milk protein (0·69 vs. 0·81 kg cow?1 d?1) and milk solids (1·72 and 1·89 kg cow?1 d?1) yield. Urinary N concentration was increased in SR AM, but estimated N excretion and NUE for milk were similar for both treatments. Further studies are required to determine the effect of feeding times on diurnal variation in urine volume and N concentration under grazing to predict urination events with highest leaching risk.  相似文献   

19.
Field experiments in Gloucestershire, UK, in the 1990–91, 1991–92, 1993–94 and 1994–95 growing seasons explored the merits of grazing in spring a traditional tall wheat (Triticum aestivum) variety, Maris Widgeon, with more modern shorter varieties. In the first 2 years, defoliation was achieved by mowing at 7 cm in March and/or April. In the second 2 years, varieties sown at two sowing dates were grazed by sheep at a stocking rate of 42 × 50 kg sheep ha?1 for 3 or 4 days in March. Defoliation reduced crop height and interception of photosynthetically active radiation (PAR). In 1991–92, mowing significantly reduced grain yield of some of the shorter varieties but not of Maris Widgeon. This interaction was related to the amount of PAR intercepted. In this year, mowing improved the establishment of undersown white clover (Trifolium repens) and perennial ryegrass (Lolium perenne), but in subsequent years the conditions were much drier and undersowing failed. In the last two experiments, grazing in March did not significantly reduce grain yield of any variety. The quality of the forage eaten by the sheep had a modified acid-detergent fibre (MADF) content of less than 300 g kg?1 dry matter (DM) and a crude protein (CP) content of more than 200 g kg?1 DM in both seasons. Yield of DM and calculated metabolizable energy (ME) of different varieties removed by the sheep interacted strongly with sowing date. September-sown Maris Widgeon provided ≈ 0·7 and 0·3 t DM ha?1 (or 7·8 and 3·4 GJ ME ha?1) in March 1994 and March 1995 respectively. However, the shorter wheat varieties, Hereward and Genesis, only provided 0·3 and 0·1 t DM ha?1 when sown at the same time in the 2 years. At later sowing dates all of the varieties only provided about 0·1 t DM ha?1 when sown in October 1993, or 0·01 t DM ha?1 when sown in November 1994. Sheep grazing reduced total weed biomass in June, and reduced the emergence of weed seedlings from soil samples collected after the wheat harvest. Effects of defoliation on foliar infection by Septoria tritici were inconsistent.  相似文献   

20.
Six dryland pastures were established at Lincoln University, Canterbury, New Zealand, in February 2002. Production and persistence of cocksfoot pastures established with subterranean, balansa, white or Caucasian clovers, and a perennial ryegrass‐white clover control and a lucerne monoculture were monitored for nine years. Total annual dry‐matter (10.0–18·5 t DM ha?1) and sown legume yields from the lucerne monoculture exceeded those from the grass‐based pastures in all but one year. The lowest lucerne yield (10 t ha?1 yr?1) occurred in Year 4, when spring snow caused ungrazed lucerne to lodge and senesce. Cocksfoot with subterranean clover was the most productive grass‐based pasture. Yields were 8·7–13·0 t DM ha?1 annually. Subterranean clover yields were 2·4–3·7 t ha?1 in six of the nine years which represented 26–32% of total annual production. In all cocksfoot‐based pastures, the contribution of sown pasture components decreased at a rate equivalent to 3·3 ± 0·05% per year (R= 0·83) and sown components accounted for 65% of total yield in Year 9. In contrast, sown components represented only 13% of total yield in the ryegrass‐white clover pastures in Year 9, and their contribution declined at 10·1 ± 0·9% per year (R= 0·94). By Year 9, 79% of the 6.6 t ha?1 produced from the ryegrass‐white clover pasture was from unsown species and 7% was dead material. For maximum production and persistence, dryland farmers on 450–780 mm yr?1 rainfall should grow lucerne or cocksfoot‐subterranean clover pastures in preference to ryegrass and white clover. Inclusion of white clover as a secondary legume component to sub clover would offer opportunities to respond to unpredictable summer rainfall after sub clover has set seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号