首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
A 4-week feeding trial was conducted to determine the effects of different dietary supplements on the growth, immunity and resistance of sea cucumber Apostichopus japonicus against Vibrio splendidus infection. The control group was supplied with blank microcapsules, and Astragalus polysaccharide (APS) microcapsules, tuckahoe polysaccharide (TPS) microcapsules, (APS + TPS) microcapsules, (APS + TPS) microcapsules + Bacillus subtilis, were tested for effects. Coelomic fluid was collected at 7-day intervals to test activities of lysozyme (LSZ), superoxide dismutase (SOD), alkaline phosphatase (AKP), and complement 3 (C3) content. After the feeding trial, the specific growth rate of sea cucumbers fed a diet supplemented with (APS + TPS) microcapsules + B. subtilis was significantly increased (P < 0.05); activities of LSZ, SOD, AKP and C3 content were significantly higher than in other groups (P < 0.05). The challenge test showed that the cumulative mortality of sea cucumbers fed a diet supplemented with (APS + TPS) microcapsules + B. subtilis reduced significantly (P < 0.05). In conclusion, dietary combinations of (APS + TPS) microcapsules + B. subtilis has a potential for use in diet formulations for sea cucumbers to significantly increase growth, immunity and disease resistance against V. splendidus infection.  相似文献   

2.
The effect of dietary substitution of silkworm (Bombyx mori L) meal (SM) for fishmeal (FM) on the growth performance and non‐specific immunity of sea cucumber (Apostichopus japonicus) (initial weight: 12.8 ± 0.16 g) was determined. Four isonitrogenous and isocaloric diets were formulated: Diet 1, which served as the control diet, contained 5% FM; Diet 2 contained 3.75% FM and 1.25% SM; Diet 3 contained 2.5% FM and 2.5% SM; and Diet 4 contained 5% SM. Other ingredients in each of the four diets were kept in the same proportion. After 8 weeks of feeding, the results showed that sea cucumbers fed Diet 2 had 18.7% increases in weight over those fed the control diet, but no significant difference was observed. No obvious difference in body wall composition was detected among the sea cucumbers fed the four different diets. Immunity analysis indicated that phagocytosis and serum alkaline phosphatase activity were not significantly (P > 0.05) affected when FM was partially or completely replaced with SM. Serum lysozyme activity of sea cucumbers fed Diet 4 showed a significant (P < 0.05) growth increase compared with those fed control diet. The results revealed that SM could be an effective substitute for FM in sea cucumber diet.  相似文献   

3.
A feeding trial of three protein (200, 300 and 400 g kg−1) and two lipid levels (20 and 100 g kg−1) was conducted to determine the proper dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Dietary protein and lipid levels were adjusted by adding with different levels of soybean meal, squid liver oil and soybean oil, respectively. Three replicate groups of sea cucumbers (average weight of 1.3 g) were fed the experimental diets for 12 weeks. At the end of the feeding trial, survival was not affected by dietary protein and lipid levels (P > 0.05). Weight gain (WG) and specific growth rate (SGR) of sea cucumbers were significantly affected by dietary protein (P < 0.006) and lipid levels (P < 0.001). The highest WG and SGR were observed in sea cucumbers fed the 200 and 400 g kg−1 protein diet with 20 g kg−1 lipid (P < 0.05). WG and SGR of sea cucumbers fed the diet containing 20 g kg−1 lipid were higher than those of sea cucumbers fed the 100 g kg−1 lipid diets (P < 0.05) at each dietary protein level. Apparent digestibility coefficients of dry matter, crude protein, carbohydrate and gross energy of sea cucumbers fed the 20 g kg−1 lipid diets were significantly higher than those of the 100 g kg−1 lipid diets at 200 and 400 g kg−1 protein (P < 0.05). Moisture, crude protein, crude lipid and ash contents were not significantly different among the groups. The results of this study indicate that the diet containing 200 g kg−1 protein (170 g kg−1 digestible protein) with 20 g kg−1 lipid (13 g kg−1 digestible lipid) may be sufficient for optimum growth of juvenile sea cucumber.  相似文献   

4.
In this experiment, a feeding trial was performed to determine the effects of fructooligosaccharide (FOS) on growth performance, digestive enzyme activity and immune response of Japanese sea bass, Lateolabrax japonicus juveniles (initial weight 38.3 ± 0.5 g), and the fish were examined following feeding with six levels of FOS (0, 0.5, 1, 2, 4 and 6 g/kg) for 28 days. Significant enhancement of weight gain (WG) and specific growth rate (SGR) was found in fish fed 1 g/kg FOS incorporated diets (p < .05), while the feed conversion ratio (FCR) in the 1, 2 g/kg FOS groups reduced significantly compared with the control (p < .05). Besides, the crude lipid in the 4, 6 g/kg FOS groups increased significantly compared with the control (p < .05). On the other hand, the erepsin and lipase activities significantly elevated in intestine of fish fed 2 g/kg FOS (p < .05) and the lysozyme activity in serum of fish fed 2 g/kg FOS were significantly higher than that in the control (p < .05). Moreover, the alkaline phosphatase activities in serum of fish fed 0.5, 1, 2 g/kg FOS were significantly higher than in control (p < .05). Regression analysis showed that the relationships between dietary FOS levels and either SGR, FCR, erepsin or lysozyme activities were best expressed by regression equations, and the optimal inclusion levels are 1.37, 1.80, 3.06, 3.11, 1.93 and 1.80 g/kg for SGR, FCR, erepsin, lipase, lysozyme and total superoxide dismutase activities, respectively. Overall, this study revealed that FOS incorporated diets could beneficial for L. japonicus culture in terms of increasing the growth, digestion and immune activities. Under the present experimental condition, the optimal supplementary level of FOS in the diet of L. japonicus is 1–3 g/kg.  相似文献   

5.
A 14‐wk feeding trial was carried out to evaluate the optimum dietary ascorbic acid (AA) level in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.49 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semipurified experimental diets were formulated to contain 0 (l ‐ascorbyl‐2‐monophosphate [AMP]; AMP0), 30 (AMP24), 60 (AMP48), 120 (AMP100), 240 (AMP206), and 1200 (AMP1045) mg AA/kg diet in the form of AMP using casein as the main protein source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of 14 wk of feeding trial, weight gain (WG), specific growth rate (SGR), and feed efficiency (FE) of sea cucumbers fed AMP100, AMP206, and AMP1045 were significantly (P < 0.05) higher than those of animals fed AMP0, AMP24, and AMP48. However, there were no significant differences in WG, SGR, and FE among sea cucumbers fed AMP100, AMP206, and AMP1045 and among animals fed AMP0, AMP24, and AMP48. Whole‐body vitamin C concentration increased with AA content of the diets. Broken‐line analysis of WG showed an optimum dietary AA level of 105.3 mg AA/kg diet in sea cucumber. These results indicated that the optimum dietary vitamin C level in sea cucumber in the form of AMP could be greater than 100 mg AA/kg diet but less than 105.3 mg AA/kg diet.  相似文献   

6.
A feeding trial was conducted to investigate the effects of dietary fructooligosaccharide (FOS) on growth performance, body composition, intestinal enzymes activities and histology of fingerling Megalobrama amblycephala. A total of 1200 fish (1.42 ± 0.01 g) were fed diets containing graded levels of FOS (0, 0.5, 1, 2, 4 and 8 g kg−1 diet) for 8 weeks in a recirculating system indoor. The weight gain, specific growth rate (SGR) and survival rate were all improved in dietary supplementation of FOS fed fish. Increasing FOS levels resulted in both higher whole‐body lipid and lower moisture contents, whereas ash and protein contents showed no significant differences among all the treatments. Intestinal amylase, protease, Na+, K+‐ATPase, alkaline phosphatase, γ‐glutamyl transpeptidase and creatine kinase activities all increased with dietary FOS levels up to 4 g kg−1 (< 0.05). Transmission electron microscopy analysis indicated that microvilli length in the mid‐intestine was significantly increased with increased dietary FOS levels (< 0.05). In conclusion, dietary supplementation of FOS could confer benefits on growth performance, intestinal digestive and absorptive ability, histology of fingerling Megalobrama amblycephala.  相似文献   

7.
This study investigated the effects of different prebiotics, including galactooligosaccharide (GOS), fructooligosaccharide (FOS) and inulin (INL), on skin mucosal immune parameters, humoral immune responses as well as performance of common carp (Cyprinus carpio). Two hundred and forty specimens (13.85 ± 0.85 g) were stocked in 12 fibreglass tanks assigned into three treatments and a control group. The experimental diets were formulated to have equal level (2%) of the prebiotics. At the end of the feeding trial, the highest skin mucus lysozyme activities and total immunoglobulin (total Ig) were observed in GOS‐fed group (< 0.05). However, skin mucus protease activity showed no significant difference among different dietary groups (< 0.05). Blood respiratory burst activity was significantly increased in all prebiotic‐fed fish compared to the control group (< 0.05); the highest activity was observed in GOS treatment. Furthermore, evaluation of humoral immune response revealed that feeding with GOS‐supplemented diet significantly increased lysozyme and alternative complement (ACH50) activity as well as total Ig compared to the control and other prebiotic groups. While no significant difference was observed between FOS and INL groups, common carps fed GOS‐supplemented displayed improved (< 0.05) growth performance, including final weight, weight gain, specific growth rate (SGR) and feed conversion ratio (FCR), compared to the control treatment. These results revealed that different prebiotics modulate carp growth and immune response in different manner, and GOS seems to be the most suitable prebiotic.  相似文献   

8.
The effects of four modes of diel temperature-fluctuation with two designated fluctuating temperatures (15 ± 3°C and 18 ± 3°C) on the growth and energy budget of young sea cucumber, Apostichopus japonicus Selenka, were studied to develop a highly efficient temperature-control scheme for aquaculture of the species. Sea cucumbers with a mean wet body weight of 8.0 ± 1.2 g (mean ± SD) were allocated to each treatment randomly with five replicates. After a 38-day trial, specific growth rate (SGR) and food conversion efficiency (FCE) decreased with increasing temperature in constant-temperature treatments. Among the four modes of temperature fluctuation, SGR of sea cucumbers reared under a mode which simulated the natural fluctuation of the temperature (mode C) of seawater was significantly higher than that of sea cucumbers reared at the corresponding constant temperatures. This enhancement of growth rate by use of mode C was attributed to higher FCE and lower energy allocated to respiration and feces. In large-scale culture, a temperature-control mode designed based on mode C could enhance not only growth but also efficiency of food utilization by the young sea cucumber.  相似文献   

9.
The suspension‐feeding sea cucumber Cucumaria frondosa is widely distributed in cold waters and is commercially exploited in the North Atlantic. While the species is considered to have potential for aquaculture, its feeding and reproductive biology differs markedly from that of currently cultivated sea cucumbers. Here, for the first time, the influence of food sources on the condition of C. frondosa was experimentally tested. Individuals were fed with either diatoms or fish eggs for 3 months. Specific growth rate (SGR), organ indices, fecundity, gonad maturity and profiles of lipids and fatty acids (FA) in tissues were compared among treatments and with sea cucumbers collected from the field. Individuals fed with fish eggs showed higher SGR and organ indices than all other treatments. The highest proportion of large oocytes was also found in gonad tubules of females from the fish egg treatment, although individuals fed with diatoms were the only ones in which spontaneous spawning occurred. Moreover, gonad and muscle tissues of sea cucumbers from the fish egg treatment presented the highest levels of lipids and essential FA. In contrast, non‐fed sea cucumbers showed negative SGR, relatively low female fecundity and low concentrations of lipids and FA in tissues. While the fish egg diet presented several obvious benefits, phytoplankton remains an important source of carotenoids, which are vital for vitellogenesis in echinoderms. This indicates that mixed diets rich in lipids, essential FA and carotenoids can be further investigated to optimize growth and reproductive output of this species in captivity.  相似文献   

10.
A feeding trial was conducted to estimate the optimum level of dietary n‐3 highly unsaturated fatty acids (HUFAs) for juvenile sea cucumber, Apostichopus japonicas, based on growth performance and fatty acid compositions. Diets with five n‐3 HUFAs levels (0.15, 0.22, 0.33, 0.38, and 0.46%) were fed to sea cucumber juveniles (1.97 ± 0.01 g) once a day for 60 d. The sea cucumbers fed diets containing 0.22% n‐3 HUFAs showed significantly (P < 0.05) higher body weight gain, feed efficiency, and protein efficiency ratio than the sea cucumbers fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.33, 0.38, and 0.46% n‐3 HUFAs. The sea cucumbers fed diets containing 0.46% n‐3 HUFAs showed significantly (P < 0.05) higher eicosapentaenoic acid and saturated fatty acid than the sea cucumber fed diets containing 0.15% n‐3 HUFAs, but not significantly different (P > 0.05) from those of sea cucumbers fed diets containing 0.22, 0.33, and 0.38% n‐3 HUFAs. The results of growth performance and n‐3 HUFA compositions of body wall indicated that the optimum level of dietary n‐3 HUFAs for juvenile sea cucumber is between 0.22 and 0.46%.  相似文献   

11.
The viability of placing abalones (Haliotis discus hannai), sea cucumbers (Apostichopus japonicas) and rockfish (Sebastes schlegeli) in a polyculture system, the effect of this mixed species group on the system's nitrogen (N) and phosphorous (P) budgets, and the growth and food intake of the organisms in the system were examined using a recirculating aquaculture system. Four replicates were set up for each of three treatment groups (abalone only (C), abalone‐sea cucumber (AS) and abalone‐sea cucumber‐rockfish (ASF)) with an experimental period of 60 d. Compared with the C group, in the AS group the abalone survival rate and specific growth rate (SGR) of body weight increased and the harvested abalones from the polyculture system became the main source of N and P output of the polyculture system. However, the N and P output in the water layer did not differ significantly from that in the C group (p > 0.05), and the N utilization rate was significantly higher than that in the C and ASF groups (p < 0.05). Compared with the AS group, in the ASF treatment the SGR of body weight as well as the protease and amylase activities of sea cucumbers were significantly higher (p < 0.05), the water layer and faeces became the main sources of N and P output in the system. These results showed that the AS polyculture mode significantly improved the N and P utilization rates in the system and led to increased aquaculture production.  相似文献   

12.
White shrimp (Litopenaeus vannamei) was fed six different formulations of medicinal herbs (MH) and Bacillus in a feeding trial conducted for 56 days. The survival, growth, digestive enzyme activity, and serum biochemical parameters were assessed. A basal diet without MH and Bacillus was served as the control. At the end of feeding trial, survival ranged from 76.19% to 84.76% with no significant differences (> 0.05) among all groups. Growth measured as final weight, specific growth rate (SGR), protein efficiency ratio (PER), protein productive value (PPV), and feed efficiency ratio (FER) were improved with increased dietary MH and Bacillus. Shrimp fed 0.2% MH and 0.3% Bacillus (Diet 23) were found to have the best growth performance. For shrimp fed Diet 23 final weight and SGR were significantly (< 0.05) higher than for controls. The digestive enzyme activity of protease and amylase in hepatopancreas and intestines were significantly (< 0.05) enhanced by the feed supplements, however amylase of the hepatopancreas was not affected. Serum protein and glucose content were enhanced by the supplement of MH and Bacillus. Serum cholesterol in shrimp of high Bacillus level groups was significantly (< 0.05) higher than in the control group. However, no significant difference (> 0.05) in serum Triacylglycerols between supplemented groups and control was found. Results revealed that the combined MH and Bacillus in diet could enhance growth because it can improve digestive enzyme activity and digestive metabolism.  相似文献   

13.
This study was performed to determine the optimum dietary carbohydrate (CHO) levels of sea cucumber, based on the parameters of growth, digestive enzymes, digestibility, non‐specific immune enzymes and acute low‐salinity (20 g/L) stress and high‐temperature (30°C) stress tolerance. Diets with eight different CHO (dextrin) levels (32.9, 107.6, 192.5, 257.2, 316.8, 428.0, 482.4 and 572.8 g/kg) were fed to sea cucumber juveniles (0.49 ± 0.01 g) for 60 days. Significant higher amylase activity was observed in sea cucumbers fed diet with CHO ranging between 32.9 and 192.5 g/kg than that of other treatments (p < .05). The sea cucumbers fed with 192.5 g/kg CHO showed significantly higher acid phosphatase activity than the treatments of 482.4 and 572.8 g/kg CHO (p < .05), and significantly higher alkaline phosphatase activity than other treatments (p < .05, except 257.2 g/kg). The treatments of 428.0–572.8 g/kg were found significantly lower values than other treatments in apparent digestibility coefficients for dry matter and crude protein (p < .05). The sea cucumbers fed with 192.5, 257.2 and 316.8 g/kg CHO showed better tolerance to high‐temperature (30°C) and low‐salinity (20 g/L) stress than other treatments. In brief, the optimal dietary CHO level for the growth of juvenile sea cucumber is 177.96 g/kg. However, excessive CHO will inhibit amylase enzyme activity and decrease digestibility, resulting in low growth of sea cucumber.  相似文献   

14.
A feeding trial was conducted to determine the optimum dietary protein level of sea cucumber Apostichopus japonicus juvenile focusing on growth performance and non‐specific immune response. Diets with seven crude protein levels (42.0, 108.9, 155.2, 216.7, 258.0, 313.3 and 357.5 g kg?1) were fed to sea cucumber juveniles (1.05 ±0.01 g) once a day for 100 days. More than 70% survival was observed, and there was no significant difference among all treatments. The sea cucumbers fed diets containing 108.9 g kg?1 crude protein showed significantly (< 0.05) higher body weight gain than those of the sea cucumbers fed diets containing 42.0, 216.7, 258.0, 313.3 and 357.5 g kg?1 crude protein. No significantly differences (> 0.05) were observed in moisture, crude protein, crude lipid, ash and carbohydrate content of the body wall among all treatments. The coelomic fluid catalase activity of the sea cucumbers generally increased with increasing dietary protein levels. Therefore, the acid phosphatase, superoxide dismutase and lysozyme activity increased with increasing dietary protein levels at first and decreased subsequently. The relationship between dietary protein levels and body weight gain was analysed by a second‐order polynomial regression analysis model. The result indicates that the optimum dietary protein level for sea cucumber juveniles is 135.4 g kg?1.  相似文献   

15.
The system nitrogen (N), phosphorous (P) budget, N/P utilization rate and the physiological response mechanism of the abalone Haliotis discus hannai (body weight: 12.87 ± 0.82 g) and the sea cucumber Apostichopus japonicus (body weight: 10.85 ± 1.16 g) to different co‐culture environment conditions were examined. Animals were kept in a multilayer, cubic recirculating aquaculture system at different polyculture densities (abalones at 400 ind/m2in monoculture [Group C] and abalones at 400 ind/m2with sea cucumbers at 10 ind/m2 [AS1] or 20 ind/m2 [AS2]). Each treatment was replicated four times, and the experimental cycle was 90 days. No significant difference in survival rate of abalones was detected when the stocking density of sea cucumbers increased from 10 to 20 ind/m2, but the concentrations of total ammonia nitrogen and nitrite nitrogen in the water were significantly higher in AS2 than in AS1. Survival rate, specific growth rate (SGR) of body weight of sea cucumbers and SGR of body weight of abalones were significantly lower in AS2 than in AS1. No significant difference in protease (PES), lipase, amylase and cellulase activities of abalones was identified between Group C and AS1, but the PES and amylase activities of abalones and sea cucumbers in AS1 were significantly higher than those in AS2. In AS1, the N/P output from harvesting of abalones and sea cucumbers and the N/P utilization rates were significantly higher than those in AS2. Although the N/P output from faeces was significantly lower in AS2 than in Group C and AS1, the N/P output from the water layer was significantly higher than that in AS1. The expression levels of Cu/Zn superoxide dismutase (Cu/Zn‐SOD) and heat shock protein 70 (HSP70) of both abalones and sea cucumbers in AS2 were significantly higher than those in AS1. No significant difference in expression of catalase (CAT) and HSP90of abalones was identified among these groups, but the expression levels of CAT and HSP90of sea cucumbers in AS2 were significantly higher than those in AS1. These results indicate that stocking sea cucumbers at 10 ind/m2 in the polyculture system will relieve the organic load on the system and improve the N/P utilization rate. It will also increase aquaculture production and improve the ecological and economic benefits of the system.  相似文献   

16.
A 9‐week feeding trial was conducted to estimate the dietary requirement of arginine in juvenile cobia in indoor flow‐through and aerated aquaria. Six isonitrogenous and isoenergetic practical diets were formulated to contain graded levels of arginine ranging from 1.76% to 3.75% (dry weight) at about 0.4% increments replaced by equal proportions of glycine. Survival was not significantly different among dietary treatments. Specific growth rate (SGR) and feed efficiency ratio (FER) increased with increasing dietary arginine up to the 2.96% diet (< 0.05), and thereafter declined. The whole body crude protein content was significantly affected by dietary arginine (< 0.05), while moisture, crude lipid and ash showed no significant differences among dietary treatments. The essential amino acid contents of muscle were not significantly affected by dietary arginine. The serum nitric oxide synthase activities in fish fed diets with arginine from 2.18% to 3.75% were significantly higher than activities in fish fed the diet with 1.76% arginine (< 0.05). On the basis of SGR and FER, the optimal dietary arginine requirements of juvenile cobia were estimated to be 2.85% of the diet (6.20% of dietary protein) and 2.82% of the diet (6.13% of dietary protein), respectively, using second‐order polynomial regression analysis.  相似文献   

17.
A 12‐week feeding trial was conducted to investigate the effects of two dietary probiotics; Bacillus subtilis KCTC 2217 or Bacillus licheniformis KCCM 11775 with two prebiotics; mannan oligosaccharide (MOS) or fructooligosaccharide (FOS) in Japanese eel. Fish averaging 12.8 ± 0.47 g (mean ± SD) were randomly distributed into five treatments with triplicate tanks. A basal control diet (CON) and four synbiotic diets supplementing B. subtilis + MOS (BSM), B. subtilis + FOS (BSF), B. licheniformis + MOS (BLM), and B. licheniformis + FOS (BLF). Weight gain and specific growth rate of fish fed all synbiotic diets were higher than those of fish fed CON. Immune‐related gene expression of heat shock protein 70 and immunoglobulin M of fish fed BSF and BLM were significantly higher than those of fish fed CON. Fish fed BSF and BLM had significantly higher intestinal villi length than those of fish fed BLF and CON (p < .05). Disease resistance against Aeromonas hydrophila of fish fed all synbiotic diets were significantly higher than those of fish fed CON (p < .05). Therefore, these results indicated that dietary B. subtilis with FOS (BSF) and B. licheniformis with MOS (BLM) could have beneficial effects on intestinal morphology, and immune‐related gene expression in Japanese eel.  相似文献   

18.
We evaluated the effects of different proportions of dietary protein (5%, 10%, 15%, 20%, 25% and 30% protein) on the activity of digestive enzymes of normal and albino Apostichopus japonicus. The experimental diets were fed for 60 days, the optimal conditions for digestive enzyme activity in sea cucumbers were studied. The optimal temperature for protease was 29.3°C and the optimal pH was 1.8. The optimal temperature for amylase was 34.3°C and the optimal pH was 6.7. The optimal temperature for cellulase was 56°C and the optimal pH was 5.9. The activity of intestinal protease increased at first and then decreased as the proportion of dietary protein increased, reaching the maximum when the proportion of protein was 19.7%. The activity of protease in the intestine of normal sea cucumber was significantly lower than that of albino sea cucumber, and the activity of amylase was significantly higher than that of albino sea cucumber. This study is expected to provide a basis for further explaining the ecological difference of albino and normal A. japonicus.  相似文献   

19.
This study was conducted to evaluate the dietary α‐tocopherol (vitamin E) requirement in juvenile sea cucumber, Apostichopus japonicus. Sea cucumbers averaging 1.48 ± 0.07 g (mean ± SD) were randomly distributed into 18 rectangular plastic tanks of 20 L capacity in a recirculating system (20 animals per tank). Six semi‐purified experimental diets with average protein and crude lipid levels (dry matter) of 29.7 ± 0.36% and 4.39 ± 0.23% (mean ± SD), respectively were formulated to contain 0 (E4), 15 (E12), 30 (E23), 60 (E44), 120 (E77) and 600 (E378) mg α‐tocopherol/kg diet, supplied as dl‐α‐tocopheryl acetate. Diets were analyzed for α‐tocopherol content by HPLC and the α‐tocopherol levels were 4.01, 12.4, 23.1, 44.3, 77.4 and 378 mg α‐tocopherol/kg diet for E4, E12, E23, E44, E77 and E378 diets, respectively. Casein and defatted fish meal were used as the protein sources in the diets while wheat flour was the carbohydrate source. Sea cucumbers were fed each of the six experimental diets in triplicate groups. At the end of the 14‐week feeding trial, weight gain (WG), specific growth rate (SGR) and feed efficiency (FE) of sea cucumbers fed on E23, E44, E77 and E378 diets were significantly (P < 0.05) higher than those of animals fed on E4 and E12 diets. However, there were no significant differences in WG, SGR and FE among sea cucumbers fed on E23, E44, E77 and E378 diets or among those fed on E4 and E12 diets. Survival of sea cucumbers fed on E44, E77 and E378 diets were significantly higher than those of animals fed on E4, E12 and E23 diets. However, there were no significant differences among sea cucumbers fed on E4, E12 and E23 diets or among those fed on E44 and E77 diets. Whole‐body vitamin E concentration increased with α‐tocopherol content of the diets. Broken line analysis of WG showed an optimum dietary α‐tocopherol requirement of 41 mg α‐tocopherol/kg diet in sea cucumber. These results indicated that the optimum dietary α‐tocopherol requirement in sea cucumber in the form of dl‐α‐tocopheryl acetate could be higher than 23.1 mg α‐tocopherol/kg diet but lower than 44 mg α‐tocopherol/kg diet.  相似文献   

20.
A feeding trial aimed to determine the effects of dietary lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea cucumber, Apostichopus japonicus. Diets with six crude lipid levels (1.9, 13.8, 29.1, 43.6, 59.6 and 71.6 g kg?1) were fed to sea cucumbers (initial weights 0.65 ± 0.01 g) at a density of 30 juveniles, once a day. After 60 days, body weight gain (BWG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER) decreased with increasing dietary lipid levels. The sea cucumbers fed 1.9 g kg?1 crude lipid showed significantly higher (P < 0.05) BWG than those of the sea cucumbers fed 59.6 and 71.6 g kg?1 crude lipid. Intestinal protease and lipase activities generally increased with increasing dietary lipid levels. Eicosapentaenoic acid (EPA) content of body walls generally increased with increasing dietary lipid levels. Docosahexaenoic acid (DHA) content of body walls reached the maximum value at a dietary lipid level of 13.8 g kg?1. N‐3 highly unsaturated fatty acid content followed the same pattern of DHA. According to the growth performance and body composition of sea cucumbers, it can be indicated that the optimum dietary lipid level for juvenile sea cucumbers is between 1.9 and 13.8 g kg?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号