首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Armillaria species have a global distribution and play variable ecological roles, including causing root disease of diverse forest, ornamental and horticultural trees. Accurate identification of Armillaria species is critical to understand their distribution and ecological roles. This work focused on characterizing an unidentified Armillaria isolate from a Serbian forest using pairing, sequencing of the partial large subunit and intergenic spacer‐1 regions of rDNA (LSU‐IGS1) and the translation elongation factor‐1 alpha gene (tef‐1α) genes, and phylogenetic analyses. Despite previously obtained LSU‐IGS1 RFLP patterns that matched the newly described North American Armillaria altimontana, pairing tests and phylogenetic analyses of LSU‐IGS1 and tef‐1α sequences clearly demonstrate that the unidentified isolate is not A. altimontana. Based on LSU‐IGS1, Armillaria gallica isolates were polyphyletic, and the Serbian isolate clustered with a subset of European Agallica isolates within a well‐supported clade (99%). Based on tef‐1α, the Serbian isolate appeared as a separate, well‐supported clade (97%) that was basal to other poorly resolved, polyphyletic clades containing European Agallica isolates. It is speculated that the unidentified Armillaria isolate from Serbia could represent an evolutionary ancestral state because of its separate, basal position compared with other clades comprising polyphyletic European Agallica isolates. Alternatively, this unidentified Serbian isolate could represent an unusual hybrid because of its high‐level sequence heterogeneity, represented by multiple two‐nucleotide codes, within tef‐1α. Further characterization is needed to confirm the taxonomic status and ecological/evolutionary significance of this unique, unknown Armillaria isolate from Serbia.  相似文献   

2.
Attempts to design species‐specific PCR primers from six European Armillaria species in the ribosomal RNA genes are reported. Primers were developed on the basis of the nucleotide sequence variability of the internal transcribed spacers (ITS) and the intergenic spacer (IGS1) of the ribosomal DNA. Four sets of primers gave specific PCR products for Armillaria tabescens, Armillaria mellea and Armillaria ostoyae. However, due to the high sequence similarities between Armillaria borealis and Armillaria ostoyae and between Armillaria cepistipes and Armillaria gallica no species specific amplification was obtained for these taxa.  相似文献   

3.
Distribution, host preference and pathogenicity of Japanese Armillaria species on conifers were investigated on the basis of field collections of 65 isolates. We identified seven Armillaria species from 19 conifer species including six major Japanese plantation conifers using mating tests and sequences of the translation elongation‐1 α gene. Armillaria mellea, Armillaria ostoyae, Armillaria cepistipes and Armillaria sinapina were frequently collected, whereas Armillaria nabsnona, Armillaria tabescens and a biological species Nagasawa’s E were rare. On the basis of host condition when the isolates were collected, A. mellea, A. ostoyae, A. cepistipes and A. tabescens are considered as moderate to aggressive pathogens of conifers in Japan.  相似文献   

4.
The occurence of Armillaria species was assessed in Norway, enabling the northern‐most distribution of this genus to be determined in Europe. Four Armillaria species were found in Norway. Armillaria borealis was the most common species occurring on woody vegetation to the permafrost zone (ca. 69°N). Armillaria cepistipes was present in southern and central Norway, but was not found further than 66°N. Armillaria solidipes and Armillaria gallica were rare, found at only one locality each; 59°40′ and 59°32′, respectively. Armillaria species were found on 14 hosts, but there was no significant difference between occurrence of A. borealis and A. cepistipes on declining and dead trees. Phylogenetic analyses separated each species into separate clades. All isolates of A. borealis, except one, and most isolates of A. solidipes were in separate clades. However, a subclade within the A. borealis clade was formed of two A. ostoyae and one A. borealis isolates. Two small A. cepistipes genets were found in a declining oak stand.  相似文献   

5.
Armillaria causes problems of root rot, kill trees and decay wood in the forests of Serbia and Montenegro, but the species involved have not hitherto been identified. The aim of this study was to identify field isolates collected on 25 localities. Identification was based on restriction fragment length polymorphism (RFLP) analysis of intergenic spacer 1 (IGS1) region and comparisons of IGS1 sequence with those available on NCBI database. Phylogenetic analysis was performed on sequence information from selected isolates to determine possible interrelationships between isolates with different banding patterns and previously identified tester isolates of five European Armillaria species. Five Armillaria species were identified in 90 isolates obtained from forests in Serbia and Montenegro. Armillaria gallica was most frequently isolated, followed by A. cepistipes, A. mellea, A. ostoyae and A. tabescens; two isolates remained unidentified. Restriction digestion of IGS1 amplification products with AluI produced 10 RFLP patterns. Patterns G4 (400, 250, 180) for A. gallica and pattern X (400, 180, 140) for isolates 74 and 79 are reported for the first time in European isolates. Eight RFLP patterns were observed after restriction with TaqI. Two patterns each were observed for A. ostoyae and A. gallica, and one each for A. cepistipes, A. mellea, A. tabescens and isolates 74 and 79. Parsimony analyses based on the IGS1 region placed the isolates into four clades: one including A. mellea, the second containing A. gallica–A. cepistipes isolates, while isolates of A. ostoyae and A. borealis were in the third clade. Armillaria tabescens differed from all annulate species. Phylogenetic analysis supported the conclusion that European Armillaria species are closely related and separated from a common ancestor in the near past. According to this survey five European Armillaria species are present in the forests of Serbia and Montenegro, while A. borealis is not present in the studied ecosystems.  相似文献   

6.
Incidence of peach [Prunus persica (L.) Batsch] tree mortality attributed to Armillaria root disease was assessed from 2009 to 2011 in 15 orchards in the State of Mexico, Mexico. Incidence increased gradually every year of assessment, reaching average values of 9.7, 15.3 and 20.3% tree mortality and 23.2, 24.7 and 28.3% disease‐impacted area of the orchards during 2009, 2010 and 2011, respectively. The cultivars ‘Nemaguard’ and ‘Criollo of La Goleta’, a local rootstock used in the region, were both susceptible to the disease. To identify species of Armillaria isolated from infected peach trees, two nuclear rDNA regions (partial 5.8S‐ITS2‐LSU D‐domains and partial 3′ LSU‐IGS1) and the translation elongation factor‐1α (tef‐1α) gene were sequenced and compared with sequences of known Armillaria species. DNA sequence analysis from 49 Armillaria isolates revealed that five isolates (10.2%) were Armillaria mellea and eight isolates (16.3%) were Armillaria gallica. DNA sequences from the remaining 36 isolates (73.5%) showed no close similarity to Armillaria sequences in GenBank, and apparently represent an undescribed Armillaria species. This undescribed species was the most widely distributed in the region of study. Separate phylogenetic analyses of the LSU region (D1–D3 domains concatenated with the partial 3′ end) and the tef‐1α region show that the undescribed species is quite distinct from other Armillaria spp. reported in North America.  相似文献   

7.
Occurrence of species and clones of Armillaria in spruce stands, mixed stands and hardwood stands in close neighbourhood . From Armillarid rhizomorphs (collected around trees) and from spruce butt rots, isolates of the diploids were made. In pairings between the diploid isolates and haploid testers from the five (European) biological species (BULLER phenomenon) the mating reactions often were not clear enough to identify the diploids. So carpophores were raised from the isolates and single spore cultures were obtained. In pairings with the haploid testers Armillaria borealis, A. bulbosa and A. bulbosa were identified. Usually more than one Armillaria species and from each species more than one clone occurred in each stand.  相似文献   

8.
Mycelial fan formation was studied in five Armillaria cepistipes, ten A. borealis and ten diploid and six haploid A. ostoyae strains on excised stem segments of Picea abies. Stem segments were either non‐autoclaved or autoclaved, representing dying and dead wood, respectively. To confirm the identity of mycelial fans on non‐autoclaved stem segments, re‐isolations were made and isolates characterized with microsatellite markers. Mycelial fan formation on autoclaved stem segments was fast and reliable for most of the tested Armillaria strains. On non‐autoclaved stem segments, mycelial fan formation was slower, more erratic and less predictable. Mycelial fan formation was fastest in A. cepistipes closely followed by A. borealis and was slowest in A. ostoyae. For two A. cepistipes and four A. ostoyae strains (all diploid), growth rates of mycelial fans were estimated in a time course experiment. They ranged between 5.1 and 8.7 mm/day for autoclaved and between 1.4 and 4.7 mm/day for non‐autoclaved stem segments. The haploid A. ostoyae strains also formed mycelial fans on autoclaved stem segments, but typically slower and less reliably than the diploid strains. Whether haploid strains are able to produce mycelial fans on non‐autoclaved stem segments remains unknown because of accidental diploidization of the original haploid strains which was likely caused by basidiospores introduced into the study system on the non‐autoclaved stems. Overall, the method developed in this study may be useful for further investigations into the genetic, physiological and biochemical nature of mycelial fan formation in the genus Armillaria.  相似文献   

9.
Phylogenetic and genetic relationships among 10 North American Armillaria species were analysed using sequence data from ribosomal DNA (rDNA), including intergenic spacer (IGS‐1), internal transcribed spacers with associated 5.8S (ITS + 5.8S), and nuclear large subunit rDNA (nLSU), and amplified fragment length polymorphism (AFLP) markers. Based on rDNA sequence data, the nLSU region is less variable among Armillaria species than the ITS + 5.8S and IGS‐1 regions (nLSU < ITS + 5.8S < IGS‐1). Phylogenetic analyses of the rDNA sequences suggested Armillaria mellea, A. tabescens and A. nabsnona are well separated from the remaining Armillaria species (A. ostoyae, A. gemina, A. calvescens, A. sinapina, A. gallica, NABS X and A. cepistipes). Several Armillaria species (A. calvescens, A. sinapina, A. gallica, NABS X and A. cepistipes) clustered together based on rDNA sequencing data. Based on the isolates used in this study, it appears that techniques based on IGS‐1, ITS + 5.8S, and/or D‐domain/3′ ends of nLSU are not reliable for distinguishing A. calvescens, A. sinapina, A. gallica and A. cepistipes. However, AFLP data provided delineation among these species, and AFLP analysis supported taxonomic classification established by conventional methods (morphology and interfertility tests). Our results indicate that AFLP genetic markers offer potential for distinguishing currently recognized North American Biological Species (NABS) of Armillaria in future biological, ecological and taxonomic studies.  相似文献   

10.
Twenty-five African Armillaria isolates paired on malt-agar were divided into four groups on the basis of somatic incompatibility reactions. One of the groups is similar to the European species Armillaria mellea, while another group is provisionally designated as Armillaria heimii.  相似文献   

11.
Armillaria root disease is a contributing factor to oak decline in the Ozark Mountains of central USA. We have identified Armillaria gallica, Armillaria mellea, and Armillaria tabescens in Quercus‐Carya‐Pinus forests of the region. Presence/absence patterns of each Armillaria species as well as all possible Armillaria species combinations were analysed by contingency tables and/or stepwise logistic multiple regressions with principal characteristics of the studied sites and forest stands, both quantitative and qualitative: geographic land‐type association, bedrock type, landform position, slope direction (aspect), soil type and soil surface stone cover, down woody debris, abundance and basal area of woody vegetation and decline mortality by species. Most decline mortality consisted of two red oak species (section Erythrobalanus, Quercus coccinea and Quercus velutina), which also were most sensitive to Armillaria infection. Site characteristics related to the distributions of Armillaria species and decline mortality were also related to the preponderance of Q. coccinea and Q. velutina, regional vegetation history (i.e. conversion of Pinus echinata stands to hardwoods), and the different strategies of territory acquisition and spread of the Armillaria species involved. The presence of A. gallica may reduce the activity of more virulent Armillaria species.  相似文献   

12.
Armillaria root rot is a well‐known disease on a wide range of plants, world‐wide. In Ethiopia, the disease has previously been reported on Pinus spp., Coffea arabica and on various native hardwoods. The causal agent of the disease has been attributed to Armillaria mellea, a species now known to represent a complex of many different taxa. The aim of this study was to determine the extent of Armillaria root rot and the identity of the Armillaria sp. in Ethiopian plantations. As part of a plantation disease survey in 2000 and 2001, samples were collected in plantations at and around Munessa Shashemene, Wondo Genet, Jima, Mizan and Bedele, in south and south‐western Ethiopia. Basidiocarps were collected and their morphology studied. Morphological identification was confirmed by sequencing the intergenic spacer (IGS‐1) region of the ribosomal rRNA operon and comparing data with published sequences of Armillaria spp. Armillaria isolates were collected from Acacia abyssinica, Pinus patula, Cedrela odorata and Cordia alliodora trees. Sporocarps were found on stumps of native Juniperus excelsa. Basidiocarp morphology and sequence data suggested that the fungus in Ethiopia is similar to that causing disease of Pinus spp. in South Africa and previously identified as A. fuscipes. This identification was confirmed for all isolates, based on sequence data. Armillaria fuscipes is known to be common in southern Africa. Its widespread occurrence in Ethiopia suggests that it is also the major cause of Armillaria root rot in that country.  相似文献   

13.
Thirty isolates of Armillaria heimii from western, eastern and southern Africa were cultured for fruit body production in the laboratory. Most isolates fruited easily. Investigation of single-spore progenies revealed that all the isolates do not have the same sexual behaviour: some are heterothallic and unifactorial while others are homothallic. Two African isolates belonging to the species Armillaria mellea also appeared homothallic. Unifactorial heterothallism has not previously been described in Armillaria, species. Homothallic behaviour has been reported only in a rare European species Armillaria ectypa and in the Japanese subspecies Armillaria mellea ssp. nipponica.  相似文献   

14.
To determine the phylogenetic positions of two new species, Armillaria jezoensis and Armillaria singula, and one new subspecies, Armillaria mellea suhsp. nipponica, the nucleotide sequences of the intergenic spacers (IGS) of their ribosomal DNA were investigated, and compared with those of tour other Armillaria species from Japan, and those of nine Armillaria species from Europe and North America. We conclude that Armillaria jezoensis, and Armillaria singula belong to the Armillaria gallica cluster as Armillaria cepistipes, Armillaria gallica and Armillaria sinapina from Japan. Two isolates of Armillaria ostoyae from Japan were placed within the Armillaria ostoyae cluster. Armillaria mellea subsp. nipponica had an IGS sequence as long as the IGS of Armillaria mellea from Europe and North America. However, the IGS sequences of Armillaria mellea subsp. nipponica, whose basidium base lacks a clamp connection could not be satisfactorily aligned with the IGS sequences of other species possessing this morphological feature.  相似文献   

15.
Toxic secondary metabolites are synthesized for attack or defence in competing cultures of different basidiomycete species. In combination with incompatibility reactions changes in the pattern of secondary metabolites were also detected in dual cultures of diploid isolates of different Armillaria species (Armillaria gallica, Armillaria borealis and Armillaria cepistipes) on agar. In dual cultures the response in A. cepistipes was most pronounced and occurred combined with increasing growth inhibition of the fungus. The toxic metabolites which were formed in monocultures disappeared and the newly arising metabolites showed no antibiotic activity. The chemical structures of the compounds have been elucidated (two are described for the first time) as sesquiterpene esters of orsellinic acid derivatives. The augmenting metabolites of A. cepistipes are dehydroxylation products. A new facet of the role of secondary metabolites in the ecological interactions of fungi is described, namely, the detoxification of toxins by a competitor.  相似文献   

16.
Species of Armillaria were identified from 645 isolates obtained in a nation‐wide survey in Albania. The material was collected from ca. 250 permanent plots, established for monitoring forest health, and from forests and orchards attacked by Armillaria. Armillaria mellea s.s. occurred on several coniferous and broadleaved trees in most areas examined, although it was absent above 1100–1200 m in northern Albania. This species damaged Abies and Quercus spp. and, to a lesser extent, other forest trees. Armillaria mellea was also commonly recorded causing damage in orchards and vineyards. Armillaria gallica was a common saprophyte or weak pathogen in coniferous and deciduous forests at altitudes from 600 to 1600 m, and less commonly on oaks at lower altitudes. Armillaria ostoyae was rare in central and southern Albania, but common in northern Albania, causing significant damage to pine and other conifers, mostly at altitudes from 600 to 1800 m. Armillaria cepistipes was recorded at altitudes from 800 to 1800 m as a saprophyte or weak pathogen on conifers and deciduous trees, mostly in beech and silver fir forests. Armillaria tabescens was found in oak forests at altitudes from sea level to 900 m. In orchards, A. tabescens occasionally attacked almond and pear trees. Armillaria borealis was found in a few locations in northern Albania, at altitudes from 800 to 1800 m.  相似文献   

17.
The distribution of Armillaria species was investigated in Serbian forest ecosystems, in relation to the main host species attacked, forest‐types, geography and altitude. In total, 388 isolates were identified from 36 host species in 47 sites. Armillaria gallica was the most commonly observed species with the widest distribution and with an altitudinal range of 70–1450 m, it was the dominating Armillaria species in lowland alluvial forests and in Quercus and Fagus forests at higher elevations. Armillaria mellea occurred in Quercus spp. – dominated forests in the north and central regions at 70–1050 m. Sixty‐eight per cent of the A. mellea isolates were collected from living hosts, most commonly in declining conifer plantations. Armillaria ostoyae was distributed in the cooler coniferous forest types and plantations in the Dinaric Alps in the south of Serbia, at 850–1820 m. Armillaria cepistipes was found in the eastern and southern hilly and mountainous regions of the country, at 600–1900 m. Most isolates were obtained from conifers and rhizomorphs in the soil around decaying stumps. Armillaria tabescens was found only on dead oak material in the northern and eastern regions of the country at altitudes lower than 600 m.  相似文献   

18.
Polyacrylamide isoelectric focusing with specific staining for laccase activity was used to characterize laccase from European Armillaria species (Armillaria ostoyae, Armillaria mellea, Armillaria gallica, Armillaria cepistipes). The enzyme was extracted from culture media either supplemented, or not, with pine sawdust, and also from Pinus pinaster naturally infected by A. ostoyae, or artificially inoculated with A. mellea and A. ostoyae. Some differences in banding patterns were found for Armillana isolates according to the species and the culture media, but a common band at pI = 3.4 was found in all the extracts tested, independently of their origin (culture filtrate or wood).  相似文献   

19.
Root disease pathogens, including Armillaria, are a leading cause of growth loss and tree mortality in forest ecosystems of North America. Armillaria spp. have a wide host range and can cause significant reductions in tree growth that may lead to mortality. DNA sequence comparisons and phylogenetic studies have allowed a better understanding of Armillaria spp. taxonomic diversity. Genetic sequencing has facilitated the mapping of species distributions and host associations, providing insights into Armillaria ecology. These studies can help to inform forest management and are essential in the development of disease risk maps, leading to more effective management strategies for Armillaria root disease. Armillaria surveys were conducted on publicly owned lands in North Dakota, South Dakota, and Nebraska, U.S.A. Surveyed stands consisted of riparian forests ≥0.4 hectares in area. Armillaria was found at 78 of 101 sites. A total of 57 Armillaria isolates—associated with 12 host tree species—were used for DNA sequencing of the translation elongation factor‐1 alpha (tef1) gene. Armillaria gallica was the only species identified within the study sites. Results suggest that A. gallica is a common root pathogen of hardwood trees in riparian forests of the northern Great Plains with a wider host range and geographic distribution than previously recognized.  相似文献   

20.
Penicillium adametzii significantly inhibited the growth of Heterobasidium annosum sensu stricto on 2% potato dextrose agar after 10 days at 20–25°C. Chloroform extracts from P. adametzii culture filtrate and from culture grown on rice often decreased the dry weight of Armillaria colony and diameter of Heterobasidion colony in vitro. The effect depended on species and isolate of Armillaria, Heterobasidion and P. adametzii and concentration of the extract. Higher concentration of chloroform extract increased the dry weight of stems and roots of Pinus sylvestris plants inoculated with either of two isolates of Armillaria ostoyae and one isolate of Armillaria gallica. Lower concentrations of chloroform extract increased the dry weight of stems and roots of P. sylvestris inoculated with another isolate of A. gallica. Culture filtrate of P. adametzii decreased the length of necrosis on P. sylvestris stem inoculated with either of two of four isolates of H. annosum s.s., but if applied 1 month before inoculation, it increased the length of necrosis caused by another H. annosum s.s. isolate. Twenty fractions from the P. adametzii chloroform extract were separated by thin layer chromatography. Carboxylic acids, flavonoids and glycosides were detected in chloroform extract of P. adametzii by high performance liquid chromatography/mass spectrometer analysis. This is the first report of interactions between P. adametzii and either Armillaria or Heterobasidion with P. sylvestris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号