首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Purpose

Nutrient release, soil wettability, water binding, and matrix rigidity of soil organic matter (SOM) can be affected by cross-links between segments of SOM, cations, and water molecule bridges (WaMB). Not all cation effects on SOM can be explained with the currently accepted idea that multivalent cations cross-link organic matter segments via direct cation bridges (CaB). The objective was to understand these interactions and their effect on SOM matrix rigidity and wettability.

Materials and methods

We modified cation composition of two peats and an organic surface layer (OSL) using cation exchange resin to remove cations and solutions of Na+, Ca2+, or Al3+ to enrich samples with cations. SOM matrix rigidity was determined at 4 and >8 weeks after treatment via the WaMB transition temperature T*, using differential scanning calorimetry. Wettability was measured via sessile drop contact angle (CA).

Results and discussion

The effect of cation removal on T* depended on cation exchange capacity and initial cation content. Cation addition to OSL increased T*. This effect increased with increasing cation loading and valency, and T* correlated with CA. Classical cross-linking can neither explain the higher heterogeneous matrix of Ca-treated than Al-treated samples nor the aging-induced convergence of T* for different cations and concentrations. The latter is likely due to interaction between CaB and WaMB in SOM.

Conclusions

Associations of CaB and WaMB evolve slowly and form a supramolecular network in SOM. Those dynamic associations can fix molecular arrangements inducing water repellency and increase kinetic barriers for the release and uptake of water and nutrients from aged soil.  相似文献   

2.

Purpose

The structure and properties of the soil organic matter and its interactions with solutes may be altered by changes in soil chemistry and by the aging of soil. The main objective of this study was to investigate the effect of long-term aging and cation saturation of soil on the extractability and degradability of two hydrophobic xenobiotics in soil. In addition, it was tested if drying or freezing of soils can accelerate the relevant aging processes.

Materials and methods

The sandy topsoil was treated by either 0.1?M NaCl, CaCl2, AlCl3 solutions or water and samples were sterilized by ??-radiation and spiked with 14C-labeled nonylphenol (NP) or phenanthrene (Phe) at 10???g?g?1 of soil. Samples were then used in four parallel experimental setups: (1) 9?months of aging under sterile conditions, (2) inoculation by native original soil with further 7?months of aging (bioaging), (3) drying and wetting or (4) freezing and thawing of soils. After different time intervals, the extractability of xenobiotics with water, cyclodextrin, and ethanol was investigated.

Results and discussion

During 9?months of aging under sterile conditions a continuous decrease of NP and Phe extractability and an increase of the non-extractable fraction occurred. During the 7?months of biologically active aging, the mineralization of NP was lower than of Phe while more NP remained extractable than Phe. In comparison to the sterile aging, the bioaging led to a less formation of non-extractable residues of NP and Phe. The long-term sterile aging effects on NP-extractability were also achieved by short-term freezing and thawing of the soils, while aging of Phe was better mimicked by drying?Cwetting cycles. The effects of cation saturation of soils on xenobiotics extractability were less pronounced.

Conclusions

Sterile aging, bioaging, freezing, and thawing facilitate the formation of the non-extractable fraction of NP and Phe in the soils. Different cation treatments alter soil properties, but the effects on aging of NP and Phe in soils were negligible.  相似文献   

3.
The amounts of inorganic phosphate (P) sorbed by four contrasting unfertilized soils during 40 h were influenced by the ionic strength and cation species of the contacting solution (support medium) used, as indicated by isotherms over the final P concentration range of 0 to 1 μg P/ml and 0 to 10 μg P/ml. An increase in ionic strength enhanced P sorption during 40 h but the species of cation also influenced the amount of P sorbed, as shown by the isotherms obtained in 10?2M Ca and 3 × 10?2M Na systems. Although pH affected the amounts of P sorbed, pH effects alone could not adequately explain the differences in P sorption. Kinetic studies indicated that within the range of P addition used for each soil, the equilibrium P concentration, at infinite time, was independent of ionic strength and cation species. Consequently, the composition of the solution affected only the rate at which equilibrium was attained. The results are attributed to the effects of ionic strength on the surface charge of retaining components and the thickness of the diffuse double layer, and the effects of specilic sorption of a divalent cation on surface charge, as they relate to the rate of P sorption.  相似文献   

4.

Purpose

Sorption of xenobiotics in soils and especially to soil organic matter (SOM) determines their mobility and bioavailability in ecosystems. However, SOM as the major sorbent may be altered in its physicochemical properties upon changes in boundary conditions such as hydration. Hence, the goal of this study was to determine the influence of soil hydration on physicochemical properties of SOM and the resulting effects on sorption of xenobiotics.

Materials and methods

Samples of a Histosol with 51?% SOM were adjusted to five water contents from 10 to 75?% (w/w based on dry soil mass) and aged for water contact times of 0?weeks to 3?years. The hydrated samples were characterized with respect to thermal properties of SOM and of the incorporated water via differential scanning calorimetry and with respect to hydration-induced swelling via 1H-NMR relaxometry, and the sessile drop method was applied to determine their soil?Cwater contact angle. Sorption kinetics and isotherms of naphthalene-2-ol in the pre-treated peat samples were determined in batch experiments.

Results and discussion

SOM matrix rigidity varied with the water content and increased with water contact time. An initial minimum in SOM rigidity at ~30?% water content became maximum after ~20?weeks, also resulting in the strongest resistance towards water infiltration. We argue that the anomalies at 30?% water content are related to the critical water content for the formation of freezable water w crit in the peat samples, which was 26.2?±?0.3?%. Conditions for water-assisted molecular bridging were assumably optimal at 30?% water content. Whereas parameters of naphthalene-2-ol sorption reflecting the sorbed amount were mainly altered by the wetting properties of SOM, sorption linearity and hysteresis were influenced by the anomalies in peat matrix properties at a water content around 30?%.

Conclusions

The study revealed that the interplay of SOM and water led to highly variable and complex changes in SOM physicochemical properties. These properties may serve as a predictor for sorption of xenobiotics in soil at varying hydration conditions enabling a more precise assessment of the environmental fate of xenobiotics.  相似文献   

5.

Purpose

Bioturbation is a major process influencing the functioning of benthic ecosystems. Although controlled experiments with species in monoculture or in artificial combinations have increased the knowledge about the role of biological diversity on geochemical processes, specific interactions have been neglected, making the extrapolation of experimental results to natural systems difficult. In this context, the main objective of this study was to measure the effects of a whole natural macrobenthic community on benthic oxygen uptake.

Materials and methods

The relationships between macrofauna and oxygen uptakes were investigated in the estuarine system of the Seine, France, during the winter and fall according to the variability of river discharge. Four undisturbed sediment cores with associated macrofauna and overlying water were sampled at nine subtidal stations in order to perform whole core incubations and measure total oxygen uptake (TOU). Moreover, values of diffusive oxygen uptake (DOU) were obtained using microelectrode profiling and fauna-mediated oxygen uptake (FOU) was calculated as the difference between TOU and DOU. FOUs were thus linked to macrofaunal parameters; both traditional (species richness, abundance and biomass) and functional (trophic guilds and bioturbation modes).

Results and discussion

The average FOU (±SD) ranged from 170?±?36 to 1,324?±?701???mol?m?2?h?1, and values represented 33 to 89?% of TOU. Each of the traditional macrofauna parameters had a significant and positive correlation with FOU. In addition, abundance, biomass and species number of some functional groups (e.g. suspension feeders and biodiffusors) were also correlated to FOU, supporting the diversity?Cstability hypothesis of McArthur (Ecology 36:533?C536, 1955). Nevertheless, the relationship between FOU and other functional groups such as conveyors illustrated the idiosyncratic nature of this hypothesis, underlining the difficulty of clearly identifying the role of a macrofaunal community on oxygen exchanges at the sediment?Cwater interface.

Conclusions

Our results confirm the importance of functional biodiversity on mineralization processes as well as the need to take into account the whole community. They also suggest that future studies should focus on the functional consequences of species loss and the potential resilience of the communities as a way to maintain ecosystem processes.  相似文献   

6.

Purpose

Despite experiments with humic substances and positively charged proteins, the colloidal behavior of HS-protein mixture in the system of two immiscible liquids has been neglected. In this context, the main objective of this study was to reveal the interference of HS and globular proteins on its partition in an aqueous/organic liquid system and the adsorption at liquid/liquid interface as a model of natural organic matter interaction with proteins in nature at hydrophobic/hydrophilic surfaces.

Materials and methods

Coal humic acids (HA) and two globular proteins lysozyme and albumin were under the test. Aqueous phase was prepared in phosphate-buffered saline (pH 7.2?±?0.1, 0.16 M); p-xylene was chosen as an organic phase. Experiments were performed for fixed concentration of protein (0.1 g L?1 for lysozyme and 0.06 g L?1 for albumin) and varied HA concentration from 0.2 to 50 mg L?1. Radiotracer method including tritium thermal activation and scintillation phase method, dynamic light scattering, and optical microscopy were used to control mixed adsorption layer at the aqueous/p-xylene interface and composition of each contact phase.

Results and discussion

The results suggest that if both HA and protein are negatively charged (HA-albumin mixture), the mechanism of interaction between them in the bulk of water and at liquid/liquid interface is controlled by HA concentration. At low HA concentrations, free protein prevents HA adsorption at liquid/liquid interface and its transition to the organic phase via coulomb repulsion. At high HA concentration, the formation of hydrophilic complexes occurs via both electrostatic attraction between positively charged amino acid residues and the hydrophobic interaction. In HA-lysozyme mixture, the interaction between protein and HA is preferably provided by electrostatic attraction that provides higher hydrophobicity of HA-lysozyme complex compared with free HA. An increase in HA concentration results in partial recharge of the conjugate that leads to lysozyme amount reduction at the interface. We also measured the composition of spontaneously formed precipitate of HA-lysozyme conjugate and followed its self-organization.

Conclusions

This work demonstrates colloidal chemical behavior of net positively and negatively charged model protein by coal humic acids under environmentally relevant solution conditions in the system of two immiscible liquids that were used as a model of natural membrane. For the first time, quantities of both protein and HA in mixed adsorption layer at the liquid/liquid interface in the cases of positively and negatively charged protein have been determined.  相似文献   

7.
The canopy budget model simulates the interaction of major ions within forest canopies based on throughfall and precipitation measurements. The model has been used for estimating dry deposition and canopy exchange fluxes in a wide range of forest ecosystems, but different approaches have been reported. We give an overview of model variations with respect to the time step, type of open-field precipitation data, and tracer ion, and discuss the strengths and weaknesses of different assumptions on ion exchange within forest canopies. To examine the effect of model assumptions on the calculated fluxes, nine approaches were applied to data from two deciduous forest plots located in regions with contrasting atmospheric deposition, i.e. a beech (Fagus sylvatica L.) plot in Belgium and a mixed sugar maple (Acer saccharum Marsh.) plot in Quebec. For both forest plots, a semi-annual time step in the model gave similar results as an annual time step. Na+ was found to be more suitable as a tracer ion in the filtering approach than Cl? or ${\text{SO}}_4^{2 - } $ . Using bulk instead of wet-only precipitation underestimated the potentially acidifying deposition. To compute canopy uptake of ${\text{NH}}_4^ + $ and H+, ion exchange with K+, Ca2+, and Mg2+ as well as simultaneous cation and anion leaching should be considered. Different equations to allocate ${\text{NH}}_4^ + $ vs H+ uptake had most effect on the estimated fluxes of the cation that was less important at a plot. More research is needed on the relative uptake efficiency of H+, ${\text{NH}}_4^ + $ , and ${\text{NO}}_{_3 }^{\text{ - }} $ for varying tree species and environmental conditions.  相似文献   

8.

Purpose

The aim of this study was to evaluate the behaviour of P in saline Spolic Technosols flooded with eutrophic water, with and without plant rhizosphere, in order to assess the role of these soils as sinks or sources of this nutrient.

Materials and methods

Samples were taken from basic (pH?~7.8), carbonated and acidic (pH?~6.2), de-carbonated soils of salt marshes polluted by mine wastes. Three treatments were assayed: pots with Sarcocornia fruticosa, pots with Phragmites australis and pots without plants (bare soil). The pots were flooded for 15?weeks with eutrophic water (PO 4 3? ~6.92?mg?L?1) and pH, Eh and water-soluble organic carbon and PO 4 3? concentrations were monitored in the soil solution. A soil P fractionation was applied before and after the flooding period.

Results and discussion

The PO 4 3? concentration in the soil solution decreased rapidly in both soils, with and without plant, being diminished by 80?C90?% after 3?h of flooding. The Fe/Mn/Al oxides and the Ca/Mg compounds played an important role in soil P retention. In pots with S. fruticosa, the reductive conditions due to flooding induced P release from metal oxides and P retention to Ca/Mg compounds. In turn, P. australis may have favoured the release of P from carbonates, which was transferred to Fe/Mn/Al compounds.

Conclusions

The retention of P by the soil was the main mechanism involved in the removal of PO 4 3? from the eutrophic flooding water but to evaluate the capacity of these systems as long-term P sinks, the combined effect of metals, Ca/Mg compounds and specific plant species should be considered.  相似文献   

9.

Purpose

The aim of this study was to assess the applicability of ionic liquids (ILs) in the extraction of organic contaminants from sediments and in passive sampling as a receiving phase material.

Materials and methods

Solutions of two water-soluble ionic liquids (WSILs)—1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm]BF4) and N-butyl-3-methyl pyridinium tetrafluoroborate ([BMPy]BF4)—were used for the extraction of endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), 17β-estradiol (E2), and nonylphenol (NP), from different sediments. Furthermore, a hydrophobic IL (1-hexadecyl-3-methyl imidazolium hexafluorophosphate) was filled in a polyethylene (PE) membrane tubing to build an IL-PE passive sampler for sediment pore water. Uptake kinetics were studied by exposing samplers to sediments artificially contaminated by EDCs and identified by exposing samplers to field-contaminated sediments.

Results and discussion

EDCs were efficiently extracted by WSIL solutions from the two artificially contaminated sediments, with maximum extraction efficiencies of 84.2–104.6 % by the [BMIm]BF4 solution and 74.9–103.7 % by the [BMPy]BF4 solution. However, WSIL solutions are not suitable for EDC extraction from sediment with very low organic carbon contents. EDCs in sediment pore water can be efficiently taken up by the IL-PE sampler, with uptake rate constants of 2.08?×?10?2?l?g?1?day?1 (BPA), 5.74?×?10?2?l?g?1?day?1 (E2), and 2.10 l?g?1?day?1(NP).

Conclusion

BPA, E2, and NP can be extracted efficiently by IL water solution from most of the artificially and field-contaminated sediments used in this study. The IL ([HDMIm]PF6)-PE passive sampler can be used to monitor EDCs in the pore water of sediments. A good match between the calculated and measured concentrations of BPA and E2 in pore water of field-contaminated sediments was observed.  相似文献   

10.

Purpose

Sediment resuspension is among the most widely cited concerns that lead to restricted dredging timeframes. Protection of fish species is a primary concern regarding the effects of dredging operations, yet experimental data establishing thresholds for uncontaminated suspended sediment effects are largely lacking. We conducted research to determine suspended sediment effects on walleye (Sander vitreus) egg hatching success and gross morphology following exposures mimicking sediment resuspension during dredging operations.

Materials and methods

Newly spawned eggs of northern and southern walleye strains were continuously exposed for 3?days to suspended sediment concentrations of 0, 100, 250, and 500?mg?l?1, using sediment from Maumee Bay, OH, USA. These concentrations spanned the range measured in the vicinity of dredging operations in the Western Basin of Lake Erie.

Results and discussion

Northern and southern strain egg hatching rates were 53% and 39% of exposed eggs and 82% and 74% of viable eggs exposed, which are within reported ranges for this species. Data indicated no statistically significant effects of suspended sediment on hatching success. Gross morphological observations of exposed fry yielded no evidence of detrimental effects.

Conclusions

Experimental results indicated that walleye eggs are relatively tolerant to exposures likely to be encountered at dredging projects as performed in the Great Lakes region. Our results suggest that, given detailed knowledge of dredging project site-specific conditions and the mode of dredging to be used, better informed decisions can be made regarding adequate protective management practices. In many cases, flexibility could be given to the dredging contractor while maintaining a very low probability of risk to walleye spawning habitat.  相似文献   

11.

Introduction

How will the combination of climate-induced physical/chemical changes and anthropogenic pollution impact key species and biodiversity, and thus the ecosystem functions in future?

Discussion

The project AdaMus within the newly founded Biodiversity and Climate Research Centre BiKF aims to understand the prospective ecosystem stress responses and adaptive potential of species and communities to multiple stressors to provide reliable predictions of future developments in terrestric, aquatic and marine environments.

Conclusion

Long-term experiments with terrestrial, aquatic and marine species and communities will be conducted under IPCC predicted climate conditions. In terrestric and limnic experiments, additional co-stressors such as pesticides and alien species are introduced to test for interactions. In the case of marine plankton, potential consequences of multiple climate-related changes in the physical environment (temperature, salinity and oxygen) will be analysed.  相似文献   

12.

Purpose

The relative sensitivity of two freshwater invertebrate organisms to the organophosphorus insecticide fenitrothion was assessed by measuring cholinesterase (ChE) activity, a well-known biomarker of both exposure and effect to organophosphorus pesticides. The influence of different concentrations of humic acids (HAs) and particulate matter on fenitrothion bioavailability was assessed in the more sensitive species.

Materials and methods

The selected invertebrates were the dwelling feeding oligochaete Lumbriculus variegatus and the pulmonate gastropod Biomphalaria glabrata. Acute 48-h bioassays were performed exposing organisms to different fenitrothion concentrations. The concentrations that induced 50 % inhibition of enzyme activity (EC50) were calculated. Fenitrothion bioavailability was investigated using different concentrations of commercial HA or particulate matter. Sand and a diverse selection of chromatographic resins that have been proposed as analogues of natural sediments were selected. For these experiments, animals were exposed to a fenitrothion value similar to the EC50.

Results and discussion

The 48-h EC50 values were 12?±?2 and 23?±?3 μg?l?1 for L. variegatus and B. glabrata, respectively. Depending on HA concentration and the characteristics of particles, ChE activity was similar or higher than the value recorded for animals exposed only to the pesticide in aqueous solution.

Conclusion

The results indicated that L. variegatus was the more sensitive species of the two. In this species, fenitrothion bioavailability did not increase due to the presence of either different HA concentrations or particulate matter. The experimental approach may constitute a useful tool to predict the influence of dissolved organic matter and sediment particles on fenitrothion bioavailability and toxicity to non-target aquatic invertebrates.  相似文献   

13.

Purpose

Recent research has focused on using water treatment residuals (WTRs) as cost-effective materials to remove potential environmental contaminants. To better understand and predict how WTRs affect the mobility and retention of nickel (Ni) in soils with time, it is crucial that the kinetics and thermodynamics of these reactions be understood. Such information is lacking in the literature and would aid in evaluating the suitability of WTR as a soil amendment for adsorbing Ni contaminant. Accordingly, we focused on investigating the retention of Ni in differing soils and the subsequent influence of WTR application on Ni retention.

Materials and methods

To examine the effects of WTR application on the characteristics of Ni retention, equilibrium, and kinetics, sorption batch experiments were performed on three soils having different properties. The sorption data were applied to the first-order kinetic model, and the Arrhenius equation was used to determine the thermodynamic parameters.

Results and discussion

The quantity of Ni sorbed by the soils followed the trend Typic Torrifluvent > Typic Calciorthids > Typic Torripsamment. Soil sorption isotherms shift toward a higher sorption of Ni indicating addition of more sorption sites as a result of WTRs’ application. Data generated at different temperatures for soils and WTR-amended soils fitted well to Freundlich isotherm and first-order kinetic models. The energy of activation (E a) and enthalpy (ΔH #), entropy (ΔS #), and free energy of activation (ΔG #) related to Ni sorption were calculated using the Arrhenius equation. The activation energy (E a) values (51.65–130.0 kJ mol?1) and the positive ΔH # values characterize Ni sorption process onto the sorbents studied as chemisorption with an endothermic nature. The large negative ΔS # values (?262 to ?290 J?mol?1) and the large positive ΔG # values (88.11–89.14 kJ mol?1) indicate the involvement of an associative mechanism in the Ni sorption process.

Conclusions

WTR addition has led to an overall increase in Ni sorption by the amended soils. Such increase in Ni sorption provides evidence that WTR has the potential for land application as a Ni sorbent in soil remediation techniques. The sorption capacity of the soils and WTR-amended soils enhanced with an increase in temperature. Therefore, to truly understand the potential fate and mobility of Ni in the natural environment, temperature, in particular, should be considered.  相似文献   

14.

Purpose

Carbon (C) dynamics in grassland ecosystem contributes to regional and global fluxes in carbon dioxide (CO2) concentrations. Grazing is one of the main structuring factors in grassland, but the impact of grazing on the C budget is still under debate. In this study, in situ net ecosystem CO2 exchange (NEE) observations by the eddy covariance technique were integrated with a modified process-oriented biogeochemistry model (denitrification–decomposition) to investigate the impacts of grazing on the long-term C budget of semiarid grasslands.

Materials and methods

NEE measurements were conducted in two adjacent grassland sites, non-grazing (NG) and moderate grazing (MG), during 2006–2007. We then used daily weather data for 1978–2007 in conjunction with soil properties and grazing scenarios as model inputs to simulate grassland productivity and C dynamics. The observed and simulated CO2 fluxes under moderate grazing intensity were compared with those without grazing.

Results and discussion

NEE data from 2-year observations showed that moderate grazing significantly decreased grassland ecosystem CO2 release and shifted the ecosystem from a negative CO2 balance (releasing 34.00 g C?m?2) at the NG site to a positive CO2 balance (absorbing ?43.02 g C?m?2) at the MG site. Supporting our experimental findings, the 30-year simulation also showed that moderate grazing significantly enhances the CO2 uptake potential of the targeted grassland, shifting the ecosystem from a negative CO2 balance (57.08?±?16.45 g C?m?2?year?1) without grazing to a positive CO2 balance (?28.58?±?14.60 g C?m?2?year?1) under moderate grazing. The positive effects of grazing on CO2 balance could primarily be attributed to an increase in productivity combined with a significant decrease of soil heterotrophic respiration and total ecosystem respiration.

Conclusions

We conclude that moderate grazing prevails over no-management practices in maintaining CO2 balance in semiarid grasslands, moderating and mitigating the negative effects of global climate change on the CO2 balance in grassland ecosystems.  相似文献   

15.

Purpose

Many drainage basins are terminal recipients of hydrophobic contaminants such as pesticides. To minimize adverse effects of the contaminated sediments on wildlife, it is important to understand sediment contamination patterns. This study was conducted at the Salton Sea, which is a heavily polluted large lake in southern California, USA, with the purpose to identify areas with minimal contamination so as to support species conservation.

Materials and methods

We investigated the horizontal and vertical distribution of 14 organochlorine pesticides (OCPs) and 12 currently used pesticides (CUPs) in playas at locations near the drainage outfalls. The data were subjected to spatial analysis using Kriging interpolation and converted to contour maps. Statistical comparisons were made among different areas, between different sediment depths, and between air-exposed and submerged sediments.

Results and discussion

Various OCPs were found near two drainage inlets, with mean concentrations of 6?C30???g?kg?1 in air-exposed sediments and 3?C18???g?kg?1 in submerged sediments. Chlordane (detected frequency, DF?=?77?%) and DDT derivatives (DF?=?100?%) were among the most frequently detected OCP. Significantly higher concentrations were found in air-exposed sediments than in submerged sediments, and in subsurface sediments than in surface sediments (P?<?0.01), suggesting historical deposition and burial. Sediments at many locations exceeded the threshold levels for DDE. A total of seven CUPs were detected with the maximum ??CUPs concentration of up to 27???g?kg?1. Bifenthrin was the dominant CUP contaminant, representing more than 60?% of ??CUPs for most samples with the highest concentration of 26???g?kg?1.

Conclusions

Findings from this study provide a snapshot of the spatial distribution in both horizontal and vertical directions of hydrophobic pesticides in a drainage-dominated lake, and such information and the method of investigation may be used for identifying areas of minimal contamination as alternative habitats for this and other impacted lakes.  相似文献   

16.

Purpose

Colloid migration in subsurface environments has attracted considerable attention in recent years because of its suspected role in facilitating transport of strongly adsorbed contaminants to groundwater. The influence of bulk solution pH or ionic strength on model colloid (i.e., latex microsphere, amorphous silica colloids) transport is well established, while little attention has been paid to water-dispersible soil colloids. In this study, saturated packed columns were conducted to explore the mechanism of transport and fate of water-dispersible soil colloids and facilitating transport of Cu during transients in solution chemistry.

Materials and methods

Water-dispersible soil colloids were fractionated from a Cu-contaminated soil sample. Transport of soil colloidal suspensions was conducted with varying pH and ionic strengths, and then, re-entrainment of those retained colloids after completion the transport experiments was conducted by changing pore water solution transient ionic strength and pH conditions. Meanwhile, transport and fate of the Cu strongly adsorbed on the soil colloids were determined under different ionic strength conditions.

Results and discussion

The transport behavior of soil colloids in porous media was found to depend on the pH and ionic strengths of bulk solution. An increase in solution ionic strength and decrease in solution pH resulted in greater deposition which was revealed by the collision efficiency (??). It increased from 0.15 to 1.0 when solution composition changed from 0 to 50?mM NaNO3 and decreased dramatically from 1.0 to 0.035 as the solution pH converted from 2.97 to 8.94. The results were in agreement with Derjaguin?CLandau?CVerwey?COverbeek theory. Upon stepwise reduction in ionic strength of eluting fluid or enhancement in its pH, a sharp release of colloids retained in the column occurred in each step. Meanwhile, the value of FRE NaOH that reveals the effect of NaOH solution at pH?11 on the mobilization of retained colloids deposited in the primary minimum increased from 38.6% to 64.6% when the ionic strength of bulk solution changed from 0 to 50?mM NaNO3 and decreased from 86.7% to 35.8% as the solution pH from 2.97 to 8.94. In addition, the transport and fate of the Cu strongly adsorbed on soil colloids were highly consistent with the results of soil colloids.

Conclusions

The colloid collision efficiency (??) decreased as the pH of bulk solution increased and increased as the ionic strength of bulk solution increased in saturated columns packed with pure quartz sand, and NaOH solution at pH?11 poses a predominant role on mobilization of the retained colloids deposited in the primary minimum. Meanwhile, the strongly adsorbed Cu on soil colloids almost cannot be detached from its carrier under the competition of coexisted cations in the bulk solution and cotransport with its carrier under different ionic strengths.  相似文献   

17.

Background, Aims and Scope

Bioavailability of toxic compounds in soil can be defined as the fraction able to come into contact with biota and to cause toxic effects. The contact toxicity tests may detect the total toxic response of all bioavailable contaminants present in a sample. The objectives of this study were to evaluate the use of microbial contact toxicity tests for cadmium bioavailability assessment and to evaluate the relationship between sorption, soil characteristics and cadmium bioavailability.

Methods

A test soil bacterium,Bacillus cereus, was put in direct contact with the solid sample. Four unpolluted soils were selected to provide solid samples with a variety of physicochemical characteristics. The toxicity and sorption behaviour of cadmium spiked to the soil samples were determined.

Results, Discussion and Conclusions

A significant correlation between contact toxicity test results and partitioning of cadmium in the soil samples (r2= 0.79, p <0.05; n = 26) was found. The results confirm that the bioavailability of cadmium in soil depends on its sorption behaviour. Cadmium sorbed to the cation exchange sites associated with fulvic acids is non-bioavailable in the toxicity test employed in this study. It is concluded that the microbial contact toxicity test is a suitable tool for detecting cadmium bioavailablity in the soils used in this study.

Outlook

The application of microbial contact toxicity tests for bioavailability assessment can be very useful for the risk identification and remediation of soil-associated contaminants.  相似文献   

18.

Purpose

Inadequate soil use and management practices promote commonly negative impacts on the soil constituents and their properties, with consequences to ecosystems. As the soil mineralogy can be permanently altered due to soil use, this approach can be used as a tool to monitor the anthropogenic pressure. The objective of the present study was to assess the mineralogical alterations of a Brazilian regosol used for grape production for 40?years in comparison with a soil under natural vegetation (forest), aiming to discuss anthropogenic pressure on soils.

Material and methods

Soil samples were collected at depths of 0?C0.20 and 0.20?C0.40?m from vineyard production and natural vegetation sites. Physical and chemical parameters were analysed by classic approaches. Mineralogical analyses were carried out on <2?mm, silt and clay fractions. Clay minerals were estimated by the relative percentage of peak surface area of the X-ray patterns.

Results and discussion

Grape production reduced the organic matter content by 28?% and the clay content by 23?% resulting in a decreasing cation exchange capacity. A similar clay fraction was observed in both soils, containing kaolinite, illite/mica and vermiculite with hydroxy-Al polymers interlayered. Neither gibbsite nor chlorite was found. However, in the soil under native vegetation, the proportion of illite (79?%) was higher than vermiculite (21?%). Whereas, in the soil used for grape production during 40?years, the formation of vermiculite was promoted.

Conclusions

Grape production alters the proportions of soil constituents of the regosol, reducing clay fraction and organic matter contents, as well as promoting changes in the soil clay minerals with the formation of vermiculite to the detriment of illite, which suggests weathering acceleration and susceptibility to anthropogenic pressure.

Recommendations and perspectives

Ecosystems in tropical and subtropical climates can be more easily and permanently altered due to anthropogenic pressure, mainly as a consequence of a great magnitude of phenomena such as temperature amplitude and rainfall that occurs in these regions. This is more worrying when soils are located on steep grades with a high anthropogenic pressure, like regosols in Southern Brazil. Thus, this study suggests that changes in soil mineralogy can be used as an important tool to assess anthropogenic pressure in ecosystems and that soil quality maintenance should be a priority in sensible landscapes to maintain the ecosystem quality.  相似文献   

19.
Ion mass and H+ budgets were calculated for three pristine forested catchments using bulk deposition, throughfall and runoff data. The catchments have different soil and forest type characteristics. A forest canopy filtering factor for each catchment was estimated for base cations, H+, Cl? and SO 4 2? by taking into account the specific filtering abilities of different stands based on the throughfall quality and the distribution of forest types. Output fluxes from the catchments were calculated from the quality and quantity of the runoff water. Deposition, weathering, ion exchange, retention and biological accumulation processes were taken into account to calculate catchment H+ budgets, and the ratio between external (anthropogenic) and internal H+ sources. In general, output exceeded input for Na+, K+, Ca2+, Mg2+, HCO 3 ? (if present) and A? (organic anions), whereas retention was observed in the case of H+, NH 4 + , NO 3 ? and SO 4 2? . The range in the annual input of H+ was 22.8–26.3 meq m?2 yr?1, and in the annual output, 0.3–3.9 meq m?2 yr?1. Compared with some forested sites located in high acid deposition areas in southern Scandinavia, Scotland and Canada, the catchments receive rather moderate loads of acidic deposition. The consumption of H+ was dominated by base cation exchange plus weathering reactions (41–79 %), and by the retention of SO 4 2? (17–49 %). The maximum net retention of SO 4 2? was 87% in the HietajÄrvi 2 catchment, having the highest proportion of peatlands. Nitrogen transformations played a rather minor role in the H+ budgets. The ratio between external and internal H+ sources (excluding net base cation uptake by forests) varied between 0.74 and 2.62, depending on catchment characteristics and acidic deposition loads. The impact of the acidic deposition was most evident for the southern Valkeakotinen catchment, where the anthropogenic acidification has been documented also by palaeolimnological methods.  相似文献   

20.
The stability of soil aggregates is closely connected with particle interaction determined by the combination of the van der Waals attractive force and electric repulsive force according to Derjaguin–Landau–Verwey–Overbeek (DVLO) theory. Recently, hydration force and dispersion force were put forward to explain the different behaviours of cations or anions of the same valence at the ion–surface interface, namely the specific ion effect, where the application of classical DLVO theory had failed. Here, we employed two cation species, potassium and sodium (K+ and Na+), to discover how the specific ion effect would influence clay aggregate stability. The stability of K+– and Na+–montmorillonite aggregates was determined under different electrolyte concentrations, indicated by the mass percentages of particles with diameters of < 10, < 5 and < 2 µm released after aggregate breakdown. There were large differences in the stability of the K+‐ and Na+‐ aggregates, and strong specific ion effects were shown. These effects could not be explained by the differences in ionic size, hydration and ion–surface dispersion forces between K+ and Na+. We have proved that the difference in polarization between the K+ and Na+ at the charged clay surface was responsible for the specific ion effects. The difference in polarization observed between the adsorbed K+ and Na+ was hundreds to thousands of times larger than classical values; these results were also verified independently with different methods. The strong non‐classical polarization of the adsorbed cation decreased the electric field and the electrostatic repulsion between adjacent particles in the aggregates, and thus strongly increased the aggregate stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号