首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peatlands cover about 21% of the landscape and contain about 80% of the soil carbon stock in western Canada. However, the current rates of carbon accumulation and the environmental controls on ecosystem photosynthesis and respiration in peatland ecosystems are poorly understood. As part of Fluxnet-Canada, we continuously measured net ecosystem carbon dioxide exchange (NEE) using the eddy covariance technique in a treed fen dominated by stunted Picea mariana and Larix laricina trees during August 2003–December 2004. The total carbon stock in the ecosystem was approximately 51,000 g C m−2, with only 540 g C m−2 contributed by live above ground vegetation. The NEE measurements were used to parameterize simple physiological models to assess temporal variation in maximum ecosystem photosynthesis (Amax) and ecosystem respiration rate at 10 °C (R10). During mid-summer the ecosystem had a relatively high Amax (approx. 30 μmol m−2 s−1) with relatively low R10 (approx. 4 μmol m−2 s−1). The peak mid-day NEE uptake rate during July and August was 10 μmol m−2 s−1. The ecosystem showed large seasonal variation in photosynthetic and respiratory activity that was correlated with shifts in temperature, with both spring increases and fall decreases in Amax well predicted by the mean daily air temperature averaged over the preceding 21 days. Leaf-level gas exchange and spectral reflectance measurements also suggested that seasonal changes in photosynthetic activity were primarily controlled by shifts in temperature. Ecosystem respiration was strongly correlated with changes in ecosystem photosynthesis during the growing season, suggesting important links between plant activity and mycorrhizae and microbial activity in the shallow layers of the peat. Only very low rates of respiration were observed during the winter months. During 2004, the peatland recorded a net annual gain of 144 g C m−2 year−1, the result of a difference between gross photosynthesis of 713 and total ecosystem respiration of 569 g C m−2 year−1.  相似文献   

2.
Modeling how the role of forests in the carbon cycle will respond to predicted changes in water availability hinges on an understanding of the processes controlling water use in ecosystems. Recent studies in forest ecosystem modeling have employed data-assimilation techniques to generate parameter sets that conform to observations, and predict net ecosystem CO2 exchange (NEE) and its component processes. Since the carbon and water cycles are linked, there should be additional process information available from ecosystem H2O exchange. We coupled SIPNET (Simple Photosynthesis EvapoTranspiration), a simplified model of ecosystem function, with a data-assimilation system to estimate parameters leading to model predictions most closely matching the net CO2 and H2O fluxes measured by eddy covariance in a high-elevation, subalpine forest ecosystem. When optimized using measurements of CO2 exchange, the model matched observed NEE (RMSE = 0.49 g C m−2) but underestimated transpiration calculated independently from sap flow measurements by a factor of 4. Consequently, the carbon-only optimization was insensitive to imposed changes in water availability. Including eddy flux data from both CO2 and H2O exchange to the optimization reduced the model fit to the observed NEE fluxes only slightly (RME = 0.53 g C m−2), however this parameterization also reproduced transpiration calculated from independent sap flow measurements (r2 = 0.67, slope = 0.6). A significant amount of information can be extracted from simultaneous analysis of CO2 and H2O exchange, which improved the accuracy of transpiration estimates from measured evapotranspiration. Conversely, failure to include both CO2 and H2O data streams can generate results that mask the responses of ecosystem carbon cycling to variation in the precipitation. In applying the model conditioned on both CO2 and H2O fluxes to the subalpine forest at the Niwot Ridge AmeriFlux site, we observed that the onset of transpiration is coincident with warm soil temperatures. However, after snow has covered the ground in the fall, we observed significant inter-annual variability in the fraction of evapotranspiration composed of transpiration; evapotranspiration was dominated by transpiration in years when late fall air temperatures were high enough to maintain photosynthesis, but by sublimation from the surface of the snowpack in years when late fall air temperatures were colder and forest photosynthetic activity had ceased. Data-assimilation techniques and simultaneous measurements of carbon and water exchange can be used to quantify the response of net carbon uptake to changes in water availability by using an ecosystem model where the carbon and water cycles are linked.  相似文献   

3.
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.  相似文献   

4.
Eddy-covariance measurements of net ecosystem exchange of CO2 (NEE) and estimates of gross ecosystem productivity (GEP) and ecosystem respiration (RE) were obtained in a 2-4 year old Eucalyptus plantation during two years with very different winter rainfall. In the first (drier) year the annual NEE, GEP and RE were lower than the sums in the second (normal) year, and conversely the total respiratory costs of assimilated carbon were higher in the dry year than in the normal year.Although the net primary production (NPP) in the first year was 23% lower than that of the second year, the decrease in the carbon use efficiency (CUE = NPP/GEP) was 11% and autotrophic respiration utilized more resources in the first, dry year than in the second, normal year. The time variations in NEE were followed by NPP, because in these young Eucalyptus plantations NEE is very largely dominated by NPP, and heterotrophic respiration plays only a relatively minor role.During the dry season a pronounced hysteresis was observed in the relationship between NEE and photosynthetically active radiation, and NEE fluxes were inversely proportional to humidity saturation deficit values greater than 0.8 kPa. Nighttime fluxes of CO2 during calm conditions when the friction velocity (u*) was below the threshold (0.25 m s−1) were estimated based on a Q10 temperature-dependence relationship adjusted separately for different classes of soil moisture content, which regulated the temperature sensitivity of ecosystem respiration.  相似文献   

5.
Sporadic rain events that occur during summer play an important role in the initiation of biological activity of semi-arid grasslands.To understand how ecosystem processes of a buffel grass(Cenchrus ciliaris L.)-dominated grassland respond to summer rain events,an LI 6 400 gas exchange system was used to measure the leaf gas exchange and plant canopy chambers were used to measure net ecosystem CO2exchange(NEE) and ecosystem respiration(Reco), which were made sequentially during periods before rain(dry) and after rain(wet). Gross ecosystem photosynthesis(GEP) was estimated from NEE and Reco fluxes, and light use efficiency parameters were estimated using a rectangular hyperbola model. Prior to the monsoon rain, grassland biomass was non-green and dry exhibiting positive NEE(carbon source) and low GEP values during which the soil water became increasingly scarce. An initial rain pulse(60 mm) increased the NEE from pre-monsoon levels to negative NEE(carbon gain) with markedly higher GEP and increased green biomass. The leaf photosynthesis and leaf stomatal conductance were also improved substantially. The maximum net CO2uptake(i.e.,negative NEE) was sustained in the subsequent period due to multiple rain events. As a result, the grassland acted as a net carbon sink for 20 d after first rain. With cessation of rain(drying cycle), net CO2 uptake was reduced to lower values. High sensitivity of this grassland to rain suggests that any decrease in precipitation in summer may likely affect the carbon sequestration of the semiarid ecosystem.  相似文献   

6.
Long term flux measurements of different crop species are necessary to improve our understanding of management and climate effects on carbon flux variability as well as cropland potential in terrestrial carbon sequestration. The main objectives of this study were to analyse the seasonal dynamics of CO2 fluxes and to establish the effects of climate and cropland management on the annual carbon balance.CO2 fluxes were measured by means of the eddy correlation (EC) method over two cropland sites, Auradé and Lamasquère, in South West France for a succession of three crops: rapeseed, winter wheat and sunflower at Auradé, and triticale, maize and winter wheat at Lamasquère. The net ecosystem exchange (NEE) was partitioned into gross ecosystem production (GEP) and ecosystem respiration (RE) and was integrated over the year to compute net ecosystem production (NEP). Different methodologies tested for NEP computation are discussed and a methodology for estimating NEP uncertainty is presented.NEP values ranged between −369 ± 33 g C m−2 y−1 for winter wheat at Lamasquère in 2007 and 28 ± 18 g C m−2 y−1 for sunflower at Auradé in 2007. These values were in good agreement with NEP values reported in the literature, except for maize which exhibited a low development compared to the literature. NEP was strongly influenced by the length of the net carbon assimilation period and by interannual climate variability. The warm 2007 winter stimulated early growth of winter wheat, causing large differences in GEP, RE and NEE dynamics for winter wheat when compared to 2006. Management had a strong impact on CO2 flux dynamics and on NEP. Ploughing interrupted net assimilation during voluntary re-growth periods, but it had a negligible short term effect when it occurred on bare soil. Re-growth events after harvest appeared to limit carbon loss: at Lamasquère in 2005 re-growth contributed to store up to 50 g C m−2. Differences in NEE response to climatic variables (VPD, light quality) and vegetation index were addressed and discussed.Net biome production (NBP) was calculated yearly based on NEP and considering carbon input through organic fertilizer and carbon output through harvest. For the three crops, the mean NBP at Auradé indicated a nearly carbon balanced ecosystem, whereas Lamasquère lost about 100 g C m−2 y−1; therefore, the ecosystem behaved as a carbon source despite the fact that carbon was imported through organic fertilizer. Carbon exportation through harvest was the main cause of this difference between the two sites, and it was explained by the farm production type. Lamasquère is a cattle breeding farm, exporting most of the aboveground biomass for cattle bedding and feeding, whereas Auradé is a cereal production farm, exporting only seeds.  相似文献   

7.
Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher in 2002 than 2001 during most of the growing season and peak aboveground biomass production (253.9 g m−2) in 2002 was 60% higher than in 2001. Maximum respiration rates were approximately 9 μmol m−2 s−1 in 2002 while only approximately 5 μmol m−2 s−1 in 2001. Large diurnal variation in TER, which occurred during times of peak biomass and adequate soil moisture, was primarily controlled by changes in temperature. The temperature sensitivity coefficient (Q10) for ecosystem respiration was on average 1.83 ± 0.08, and it declined in association with reductions in soil moisture. Approximately 94% of the seasonal and interannual variation in R10 (standardized rate of respiration at 10 °C) data was explained by the interaction of changes in soil moisture and aboveground biomass, which suggested that plant aboveground biomass was good proxy for accounting for variations in both autotrophic and heterotrophic capacity for respiration. Soil moisture was the dominant environmental factor that controlled seasonal and interannual variation in TER in this grassland, when variation in temperature was held constant. We compared respiration rates measured with chambers and that determined from nighttime eddy covariance (EC) measurements. Respiration rates measured by both techniques showed very similar seasonal patterns of variation in both years. When TER was integrated over the entire growing season period, the chamber method produced slightly higher values than the EC method by approximately 4.5% and 13.6% during 2001 and 2002, respectively, much less than the estimated uncertainty for both measurement techniques. The two methods for calculating respiration had only minor effects on the seasonal-integrated estimates of net ecosystem CO2 exchange and ecosystem gross photosynthesis.  相似文献   

8.
From 1999 to 2002, the variations in carbon flux due to management practices (shrub removal, thinning) and climate variability were observed in a young ponderosa pine forest originated from clear-cutting and plantation in 1990. These measurements were done at the Blodgett Forest Ameriflux site located in the Sierra Nevada Mountains of California. Thinning in spring 2000 decreased the leaf area index (LAI) by 34% and added 496 g C m−2 of wood and leaf debris at the soil surface. Total ecosystem respiration was not significantly affected by thinning (1261 g C m−2 in 1999 and 1273 g C m−2 in 2000), while canopy photosynthesis decreased by 202 g C m−2. As a result the ecosystem shifted from a net sink of CO2 in 1999 (−201 g C m−2) to a small net source in 2000 (13 g C m−2). Woody and leaf debris resulting from thinning only accounted for maximum 1% and 7% of the total respiration flux, respectively. Thinning did not affect the relative proportion of the different components of respiration to an observable degree. Low soil water availability in summer 2001 and 2002 decreased the proportion of soil respiration to the total respiration. It also imposed limitations on canopy photosynthesis: as a result the ecosystem shifted from a sink to a source of carbon 1 month earlier than in a wetter year (1999). The leaf area index and biomass of the stand increased rapidly after the thinning. The ecosystem was again a sink of carbon in 2001 (−97 g C m−2) and 2002 (−172 g C m−2). The net carbon uptake outside the traditionally-defined growing season can be important in this ecosystem (NEE = −50 g C m−2 in 2000), but interannual variations are significant due to differences in winter temperatures.  相似文献   

9.
Rhizosphere soil microbial index of tree species in a coal mining ecosystem   总被引:1,自引:0,他引:1  
Microbial characterization of the tree rhizosphere provides important information relating to the screening of tree species for re-vegetation of degraded land. Rhizosphere soil samples collected from a few predominant tree species growing in the coal mining ecosystem of Dhanbad, India, were analyzed for soil organic carbon (SOC), mineralizable N, microbial biomass carbon (MBC), active microbial biomass carbon (AMBC), basal soil respiration (BSR), and soil enzyme activities (dehydrogenase, urease, catalase, phenol oxidase, and peroxidase). Among the tree species studied, Aegle marmelos recorded the highest value for MBC (590 mg kg−1), urease (190.5 μg NH4+-N g−1 h−1), catalase (513 μg H2O2 g−1 h−1), dehydrogenase (92.3 μg TPF g−1 h−1), phenol oxidase (0.057 μM g−1 h−1) and BSR/AMBC (0.498 mg CO2-C mg biomass−1 day−1); Tamarindus indica for mineralizable N (69.5 mg kg−1); Morus alba for catalase (513 μg H2O2 g−1 h−1) and phenol oxidase (0.058 μM g−1 h−1); Tectona grandis for peroxidase (0.276 μM g−1 h−1), AMBC/MBC (99.4%), and BSR/MBC (0.108 mg CO2-C mg biomass−1 day−1); Ficus religiosa for AMBC (128.4 mg kg−1) and BSR (12.85 mg CO2-C kg−1 day−1); Eugenia jambolana for MBC/SOC (8.03%); Butea monosoperma for AMBC/SOC (1.32%) and Azadirachta indica for BSR/AMBC (0.1134 mg CO2-C mg biomass−1 day−1). Principal component analysis was employed to derive a rhizosphere soil microbial index (RSMI) and accordingly, dehydrogenase, BSR/MBC, MBC/SOC, EC, phenol oxidase and AMBC were found to be the most critical properties. The observed values for the above properties were converted into a unitless score (0–1.00) and the scores were integrated into RSMI. The tree species could be arranged in decreasing order of the RSMI as: A. marmelos (0.718), A. indica (0.715), Bauhinia bauhinia (0.693), B. monosperma (0.611), E. jambolana (0.601), Moringa oleifera (0.565), Dalbergia sissoo (0.498), T. indica (0.488), Morus alba (0.415), F. religiosa (0.291), Eucalyptus sp. (0.232) and T. grandis (0.181). It was concluded that tree species in coal mining areas had diverse effects on their respective rhizosphere microbial processes, which could directly or indirectly determine the survival and performance of the planted tree species in degraded coal mining areas. Tree species with higher RSMI values could be recommended for re-vegetation of degraded coal mining area.  相似文献   

10.
Net ecosystem carbon dioxide exchange was measured in two contrasting peatlands in northern Alberta, Canada using the eddy covariance technique during the growing season (May–October). Sphagnum spp. made up approximately 66% of the total LAI (1.52 m2 m−2) at the poor fen and the total N content of Sphagnum capitula was 7.8 mg g−1 at the peak of the growing season. In contrast, the dominant plant species at the extreme-rich fen site, the perennial sedge, Carex lasiocarpa, accounted for approximately 60% of the total LAI (1.09 m2 m−2), and had leaf total N content of 19.3 mg g−1 at peak biomass. In addition, the peak aboveground biomass was higher at the poor fen (230.9 g m−2) than at the extreme-rich fen (157.1 g m−2). Both sites had maximum daily rates of net CO2 uptake of approximately 5 μmol m−2 s−1, and typical nighttime rates of CO2 loss of approximately 2 μmol m−2 s−1 during the peak of the growing season. Calculations of maximum photosynthetic and respiratory capacity were consistently higher at the extreme-rich fen. The poor fen was a net sink for CO2 during 4 of the 6 months (peaking at 44 g C m−2 in July), while only slight net losses of CO2 (3 g C m−2) occurred in May and September. In contrast, the extreme-rich fen was calculated to be a significant net sink for CO2 only during 2 months of the growing season (peaking at 30 g C m−2 in August), while significant net losses of CO2 occurred in May (8 g C m−2) and in October (13 g C m−2). The plant species at the poor fen site were active earlier and later in the growing season, while it took longer for C. lasiocarpa to develop leaf tissue, and leaf senescence and reduction in photosynthetic activity occurred earlier in the fall at the extreme-rich fen. When integrated over the 6-month growing season, the poor fen was a net sink (90 g C m−2) that was three times larger than the extreme-rich fen (31 g C m−2). The ratio of cumulative total ecosystem respiration to gross primary production was 0.7 at the poor fen and 0.9 at the extreme-rich fen.  相似文献   

11.
The seasonal fluxes of heat, moisture and CO2 were investigated under two different rice environments: flooded and aerobic soil conditions, using the eddy covariance technique during 2008 dry season. The fluxes were correlated with the microclimate prevalent in each location. This study was intended to monitor the environmental impact, in terms of C budget and heat exchange, of shifting from lowland rice production to aerobic rice cultivation as an alternative to maintain crop productivity under water scarcity.The aerobic rice fields had higher sensible heat flux (H) and lower latent heat flux (LE) compared to flooded fields. On seasonal average, aerobic rice fields had 48% more sensible heat flux while flooded rice fields had 20% more latent heat flux. Consequently, the aerobic rice fields had significantly higher Bowen ratio (0.25) than flooded fields (0.14), indicating that a larger proportion of the available net radiation was used for sensible heat transfer or for warming the surrounding air.The total C budget integrated over the cropping period showed that the net ecosystem exchange (NEE) in flooded rice fields was about three times higher than in aerobic fields while gross primary production (GPP) and ecosystem respiration (Re) were 1.5 and 1.2 times higher, respectively. The high GPP of flooded rice ecosystem was evident because the photosynthetic capacity of lowland rice is naturally large. The Re of flooded rice fields was also relatively high because it was enhanced by the high photosynthetic activities of lowland rice as manifested by larger above-ground plant biomass. The NEE, GPP, and Re values for flooded rice fields were −258, 778, and 521 g C m−2, respectively. For aerobic rice fields, values were −85, 515, and 430 g C m−2 for NEE, GPP, and Re, respectively. The ratio of Re/GPP in flooded fields was 0.67 while it was 0.83 for aerobic rice fields.This short-term data showed significant differences in C budget and heat exchange between flooded and aerobic rice ecosystems. Further investigation is needed to clarify seasonal and inter-annual variations in microclimate, carbon and water budget of different rice production systems.  相似文献   

12.
The net ecosystem productivity (NEP) of boreal aspen is strongly affected by comparative rates of annual potential evapotranspiration (Ea) and precipitation (Pa). Changes in Ea versus Pa during future climate change will likely determine changes in aspen NEP and consequently the magnitude of the carbon sink/source of a significant part of the boreal forest. We hypothesize that the effects of Ea versus Pa on aspen NEP can be modelled with a soil–root–canopy hydraulic resistance scheme coupled to a canopy energy balance closure scheme that determines canopy water status and thereby CO2 uptake. As part of the ecosystem model ecosys, these schemes were used to model diurnal declines in CO2 and latent heat (LE) exchange during a 3-year drought (2001–2003) at the Fluxnet-Canada Research Network (FCRN) southern old aspen site (SOA). These declines were consistent with those measured by eddy covariance (EC) at SOA, except that ecosystem CO2 effluxes modelled during most nights were larger that those measured by EC or gap-filled from other EC measurements. Soil CO2 effluxes in the model were close to, but sometimes smaller than, those measured by automated surface chambers at SOA. Diurnal declines in CO2 exchange during the drought caused declines in annual NEP in the model, and in gap-filled EC measurements (model versus EC in g C m−2: 275 versus 367 ± 110 in 2001, 82 versus 144 ± 43 in 2002 and 23 versus 104 ± 31 in 2003). Lower modelled NEP was attributed to the larger modelled CO2 effluxes. Ecosys was then used to predict changes in aspen net biome productivity (NBP = NEP  C lost from disturbance) caused by 6-year versus 3-year recurring droughts during 100-year fire cycles under current climate versus climate change projected under the IPCC SRES A1B scenario. Although NBP was adversely affected during recurring 6-year droughts under current climate, it recovered quickly during non-drought years so that long-term NBP was maintained at 4 g C m−2 year−1. NBP rose by 10, 108 and 126 g C m−2 year−1 during the first, second and third centuries under climate change with recurring 3-year droughts, indicating a gradual rise in sink activity by boreal aspen. However recurring 6-year droughts during climate change caused recurring negative NBP (C losses), gradually depleting aspen C reserves and eventually causing dieback of the aspen overstory during the third century of climate change. This dieback was followed by a large decline in NBP.We conclude that NBP of boreal aspen will rise gradually under current projections of climate change, except under prolonged (e.g. 6 years) recurring droughts, which would eventually cause aspen to die back and substantial amounts of C to be lost.  相似文献   

13.
Eddy covariance measurements and estimates of biomass net primary production (NPP) in combination with soil carbon turnover modelled by the Roth-C model were used to assess the ecosystem carbon balance of an agricultural ecosystem in Thuringia, Germany, growing winter wheat in 2001. The eddy CO2 flux measurements indicate an annual net ecosystem exchange (NEE) uptake in the range from −185 to −245 g C m−2 per year. Main data analysis uncertainty in the annual NEE arises from night-time u1 screening, other effects (e.g. coordinate rotation scheme) have only a small influence on the annual NEE estimate. In agricultural ecosystems the fate of the carbon removed during harvest plays a role in the net biome production (NBP) of the ecosystem, where NBP is given by net ecosystem production (NEP=−NEE) minus non-respiratory losses of the ecosystem (e.g. harvest). Taking account of the carbon removed by the wheat harvest (290 g C m−2), the agricultural field becomes a source of carbon with a NBP in the order of −45 to −105 g C m−2 per year. Annual carbon balance modelled with the Roth-C model also indicated that the ecosystem was a source for carbon (NBP −25 to −55 g C m−2 per year). Based on the modelling most of carbon respired resulted from changes in the litter and fast soil organic matter pool. Also, the crop and management history, particularly the C input to soil in the previous year, significantly affect next year’s CO2 exchange.  相似文献   

14.
Net carbon flux partitioning was used to disentangle abiotic and biotic drivers of all important component fluxes influencing the overall sink strength of a Mediterranean ecosystem during a rapid spring to summer transition. Between May and June 2006 we analyzed how seasonal drought affected ecosystem assimilation and respiration fluxes in an evergreen oak woodland and attributed variations in the component fluxes (trees, understory, soil microorganisms and roots) to observations at the ecosystem scale. We observed a two thirds decrease in both ecosystem carbon assimilation and respiration (Reco) within only 15 days time. The impact of decreasing Reco on the ecosystem carbon balance was smaller than the impact of decreasing primary productivity. Flux partitioning of GPP and Reco into their component fluxes from trees, understory, soil microorganisms and roots showed that declining ecosystem sink strength was due to a large drought and temperature-induced decrease in understory carbon uptake (from 56% to 21%). Hence, the shallow-rooted annuals mainly composing the understory have a surprisingly large impact on the source/sink behavior of this open evergreen oak woodland during spring to summer transition and the timing of the onset of drought might have a large effect on the annual carbon budget. In response to seasonal drought Reco was increasingly dominated by respiration of heterotrophic soil microorganisms, while the root flux was found to be of minor importance. Soil respiration flux decreased with drought but its contribution to total daily CO2-exchange increased by 11.5%. This partitioning approach disentangled changes in respiratory and photosynthetic ecosystem fluxes that were not apparent from the eddy-covariance or the soil respiration data alone. By the novel combination of understory vs. overstory carbon flux partitioning with soil respiration data from trenched and control plots, we gained a detailed understanding of factors controlling net carbon exchange of Mediterranean ecosystems.  相似文献   

15.
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re.  相似文献   

16.
This paper summarizes results from 8 years (1996–2003) of eddy covariance-based ecosystem CO2 exchange measurements at the Borden Forest Research Station (44°19′N, 79°56′W). The site represents a mid-latitude, 100-year-old, mixed deciduous and coniferous forest dominated by red maple, aspen and white pine. The years 1996 and 1997 were relatively cold, had a late spring and received below average photosynthetic photon flux density (PPFD). This contrasts with an early spring, warmer soil and air temperatures during 1998–1999, and with distinctly wet year of 2000 and dry years of 2001–2003. The combination of early spring, warmer air and soil temperature and relatively high level of PPFD was associated with higher net ecosystem productivity (NEP) that peaked during 1999. Photosynthetic capacity was reduced and NEP showed a mid-growing season depression during the dry years of 2001–2003. Annual average ecosystem respiration (R) determined from a light response model was 30% less than R derived from a logistic respiration equation, relating night time CO2 flux and soil temperature. However these independently determined R values were well correlated indicating that the site is unaffected by fetch and spatial heterogeneity problems. Based on the combined 8 years of growing season daytime data, an air temperature of 20–25 °C and a vapor pressure deficit (VPD) of 1.3 kPa were found to be the optimal conditions for CO2 uptake by the canopy. Over the 1996–2003 period, the forest sequestered carbon at an average rate of 140 ± 111 gC m−2 y−1. The corresponding gross ecosystem photosynthesis (GEP) and R over this period were 1116 ± 93 gC m−2 y−1 and 976 ± 68 gC m−2 y−1, respectively. The annual carbon sequestration ranged from 19 gC m−2 in 1996 to 281 gC m−2 in 1999. However, these estimates were sensitive to frictional velocity threshold () used for screening data associated with poor turbulent mixing at night. Increasing from 0.2 m s−1 (based on the inflection point in the nighttime CO2 flux vs. u* relationship) to 0.35 m s−1 (determined using a selection algorithm based on change-point detection) modified the 8-year mean NEP estimate from 140 ± 111 gC m−2 y−1 to 65 ± 120 gC m−2 y−1. Both approaches show that the Borden forest was a low to moderate sink of carbon over the 8-year period.  相似文献   

17.
Closing the energy budget at flux measurement sites is problematic, even when the fetch extends over flat, homogeneous surfaces with low vegetation cover. We used the residual energy balance and ordinary least square (OLS) linear regression methods to quantify spatial variability in soil heat flux contributing to energy balance closure (EBC), by deploying a mobile energy system within the footprints of three Eddy-covariance towers located in the steppe of Inner Mongolia, China. The EBC at the study sites had a daily average residual of 8–19 W m−2 with OLS slopes of 0.83–0.96. The EBC was better achieved at the wet site than at the dry site. The spatial variability in soil heat flux was 48 W m−2 (13% of Rn) during the day and 15 W m−2 (34%) at night, with an average of 29 W m−2 (24%) across the three sites. A 9% OLS slope difference due to this variability was recorded from our eight plot measurements. A large amount of missing energy (110 W m−2 at peak) could occur with decreasing OLS slope of 23% across the three grassland sites when soil heat flux is not taken into account. In particular, heat storage in the top soil layer not only influenced the magnitude of EBC, but also adjusted soil heat flux to match the ‘truth schedule’. Heat storage in the top soil layer comprised half of the soil heat flux when the heat flux plate was deployed at a depth of 30 mm. If this part of heat storage was neglected, the residual of EBC would increase as large as 60 W m−2 with OLS slope decreasing 9%. Comparing them with the multiple-location soil heat flux measurements, the single-location measurements from near the Eddy-covariance towers obtained a slightly better EBC with the OLS slope increasing by 4%.  相似文献   

18.
Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397–403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime ecosystem respiration.  相似文献   

19.
Temporal and spatial variability of soil respiration (Rs) was measured and analyzed in a 74-year-old, mixedwood, boreal forest in Ontario, Canada, over a period of 2 years (August 2003–July 2005). The ranges of Rs measured during the two study years were 0.5–6.9 μmol CO2 m−2 s−1 for 2003–2004 (Year 1) and 0.4–6.8 μmol CO2 m−2 s−1 for 2004–2005 (Year 2). Mean annual Rs for the stand was the same for both years, 2.7 μmol CO2 m−2 s−1. Temporal variability of Rs was controlled mainly by soil temperature (Ts), but soil moisture had a confounding effect on Ts. Annual estimates of total soil CO2 emissions at the site, calculated using a simple empirical RsTs relationship, showed that Rs can account for about 88 ± 27% of total annual ecosystem respiration at the site. The majority of soil CO2 emissions came from the upper 12 to 20 cm organic LFH (litter–fibric–humic) soil layer. The degree of spatial variability in Rs, along the measured transect, was seasonal and followed the seasonal trend of mean Rs: increasing through the growing season and converging to a minimum in winter (coefficient of variation (CV) ranged from 4 to 74% in Year 1 and 4 to 62% in Year 2). Spatial variability in Rs was found to be negatively related to spatial variability in the C:N ratio of the LHF layer at the site. Spatial variability in Rs was also found to depend on forest tree species composition within the stand. Rs was about 15% higher in a broadleaf deciduous tree patch compared to evergreen coniferous area. However, the difference was not always significant (at 95% CI). In general, Rs in the mixedwood patch, having both deciduous and coniferous species, was dominated by broadleaf trees, reflecting changing physiological controls on Rs with seasons. Our results highlight the importance of discerning soil CO2 emissions at a variety of spatial and temporal scales. They also suggest including the LFH soil layer and allowing for seasonal variability in CO2 production within that layer, when modeling soil respiration in forest ecosystems.  相似文献   

20.
CO2 exchange was measured on the forest floor of a coastal temperate Douglas-fir forest located near Campbell River, British Columbia, Canada. Continuous measurements were obtained at six locations using an automated chamber system between April and December, 2000. Fluxes were measured every half hour by circulating chamber headspace air through a sampling manifold assembly and a closed-path infrared gas analyzer. Maximum CO2 fluxes measured varied by a factor of almost 3 between the chamber locations, while the highest daily average fluxes observed at two chamber locations occasionally reached values near 15 μmol C m−2 s−1. Generally, fluxes ranged between 2 and 10 μmol C m−2 s−1 during the measurement period. CO2 flux from the forest floor was strongly related to soil temperature with the highest correlation found with 5 cm depth temperature. A simple temperature dependent exponential model fit to the nighttime fluxes revealed Q10 values in the normal range of 2–3 during the warmer parts of the year, but values of 4–5 during cooler periods. Moss photosynthesis was negligible in four of the six chambers, while at the other locations, it reduced daytime half-hourly net CO2 flux by about 25%. Soil moisture had very little effect on forest floor CO2 flux. Hysteresis in the annual relationship between chamber fluxes and soil temperatures was observed. Net exchange from the six chambers was estimated to be 1920±530 g C m−2 per year, the higher estimates exceeding measurement of ecosystem respiration using year-round eddy correlation above the canopy at this site. This discrepancy is attributed to the inadequate number of chambers to obtain a reliable estimate of the spatial average soil CO2 flux at the site and uncertainty in the eddy covariance respiration measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号