首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
Core soil sampling followed by laboratory analysis is the traditional method used to map soil pH prior to variable rate application (VRA) of lime on cropland. A recently developed automated soil sampling system capable of measuring soil pH on-the-go has significantly increased sampling resolution. However, adoption of such systems must be justified economically. This paper presents a method for assessing the economic benefit from automated mapping of soil pH prior to variable rate lime application. In this work, geostatistical, agronomic, and economic methods were used to generate a comprehensive numerical model for quantitative assessment of the net return over cost of liming for different lime management strategies. The strategies included: automated pH mapping, manual grid soil sampling, and whole field sampling used in combination with either variable or fixed rate liming. The model was demonstrated using a simulated field with known average pH and semivariogram model. The analysis showed the largest benefit ($6.13ha–1year–1) from using VRA with automated soil pH mapping versus VRA based on 1ha (2.5acres) manual grid point sampling for the selected simulated field conditions. A sensitivity analysis demonstrated that for a wide range of field conditions and crop prices, VRA plus automated mapping promises higher relative benefits than VRA based on either manual grid point or grid cell sampling.  相似文献   

2.
Weisz  Randy  Heiniger  Ron  White  Jeffrey G.  Knox  Ben  Reed  Lonnie 《Precision Agriculture》2003,4(3):311-330
Variable rate (VR) fertilizer application is a paradigm with potential to improve input efficiency and farm profitability. It is widely marketed by commercial applicators in the southeastern US. However, field studies comparing VR with traditional management have not demonstrated consistent, positive results. The objectives of this study were: (1) to determine the soil impact, crop response and economic potential of VR phosphorus (P) and lime application in a North Carolina Piedmont no-till field crop system using intensive soybean [Glycine max (L.) Merr.] production and (2) to economically evaluate alternatives to standard commercial grid soil sampling for directing VR P and lime. A 23-ha long-term no-till field in the SE Piedmont was divided into 0.4ha plots assigned to either VR or uniform P and lime application. Grid soil sampling and VR P and lime application were done prior to four crops over 3 years: full season soybean, wheat (Triticum aestivum L.)–double cropped soybean, and full season soybean. Soil test P, pH and crop yield response to VR P were inconsistent. Soil pH in areas with low pH initially did increase in response to VR lime, but it took two to three applications to bring all of these areas to the target pH. Once VR-liming raised initially low soil pH to levels close to target, yield of soybean, but not wheat, were up to 0.74Mgha–1 higher than with uniform lime. Even with significantly higher soybean yields associated with VR lime, 3 years of grid sampling and VR application were not profitable compared to uniform application. The results indicated that VR lime could be profitable if the initial grid sampling data were used either for 2 consecutive years, or if it was used to restrict future grid sampling to specific areas requiring further VR lime.  相似文献   

3.
A major concern of producers has always been how to reduce the amount of inputs required for crop production while maintaining or improving yields. One area of research addressing this issue is site-specific weed management (SSWM). The objective of this research was to evaluate the possibility of using SSWM herbicide applications to reduce overall production costs when site-specific weed populations are known. Weed populations of three soybean fields (B-East, B-South, B-North), located at the Black Belt Branch Experiment Station, Brooksville, MS, were estimated in 1998 and 1999. Sampling occurred July 8–9, 1998 (8 weeks after planting), and June 30–July 1, 1999 (6 WAP). An established 10 m × 10 m Universal Transmercator (UTM) grid coordinate system was used to divide the fields into 100 m2 cells, with the sample point located in the center of each cell. Optimal herbicide recommendations were obtained for each sample location within each field by subjecting the weed information to the Herbicide Application Decision Support System (HADSS). An average of the weed populations for the entire field was also subjected to HADSS to obtain an optimal recommendation for a broadcast application for comparison purposes. Data from 1998 resulted in 25% and 15% of the field not requiring a herbicide treatment for the B-North and B-South when compared to the whole-field recommendations to receive broadcast treatments. However, B-East received a no treatment recommendation for the whole-field analysis. The no treatment recommendation was attributed to the sicklepod population exceeding a level deemed economically controllable by HADSS. However, when SSWM recommendations were generated, 49% of the field received no treatment recommendation, while 51% resulted in a herbicide application as an economical choice. In 1999, glyphosate-resistant transgenic soybean was used, thereby increasing the POST herbicide treatment options available in HADSS. Herbicide treatment recommendations resulted in 100%, 56%, and 91% of the total area requiring herbicide treatments for B-East, B-North, and B-South, respectively. Comparing the projected net returns for each field can develop a better estimate of the value of SSWM. In 1998, data from the B-East resulted in a projected net return increase of $21.63 ha–1 over that of the broadcast application. Estimated net return increased $5.42 ha–1 at B-North, with simulated SSWM applications over broadcast applications, and $14.67 ha–1 increase at B-South. Net returns for 1999 resulted in only a $0.32 ha–1 increase by using SSWM for B-East, but a $21.00 and $13.56 ha–1 increase for B-North and B-South, respectively. The extra expenses of SSWM, such as sampling and technology costs, are not included in the net returns calculations and, when included, would reduce the difference between SSWM and conventional methods. This research has demonstrated the potential value of SSWM from an economic standpoint; environmental benefits through reductions in herbicide applications are also apparent.  相似文献   

4.
Six soybean, Glycine max (L.) Merrill, fields were examined to compare estimated costs and benefits for uniform and site-specific management (SSM) programs for the bean leaf beetle, Cerotoma trifurcata (Forster). Beetle counts and soybean yield were field-collected, insecticide and sampling costs were estimated. In five fields, site-specific management produced only slightly greater return. The inclusion of sampling costs in each scenario resulted in higher return for the uniform scenario. The uniform management scenario estimated pest pressure as well as the site-specific scenario when beetle populations were high or low. In one field with moderate pest pressure, the SSM scenario would have increased insecticide use. The estimations in this study are based on hypothetical scenarios and the application equipment to target insecticides based on map coordinates is not readily available. The economic estimations provide examples of current limitations of site-specific management that need to be addressed before this technology becomes valuable for soybean insect management.  相似文献   

5.
The goal of this research was to determine the potential for use of site-specific management of corn hybrids and plant densities in dryland landscapes of the Great Plains by determining (1) within-field yield variation, (2) yield response of different hybrids and plant densities to variability, and (3) landscape attributes associated with yield variation. This work was conducted on three adjacent fields in eastern Colorado during the 1997, -98, and -99 seasons. Treatments consisted of a combination of two hybrids (early and late maturity) and four plant densities (24,692, 37,037, 49,382 and 61,727 plants ha-1) seeded in replicated long strips. At maturity, yield was measured with a yield-mapping combine. Nine landscape attributes including elevation, slope, soil brightness (SB) (red, green, and blue bands of image), ECa (shallow and deep readings), pH, and soil organic matter (SOM) were also assessed. An analysis of treatment yields and landscape data, to assess for spatial dependency, along with semi variance analysis, and block kriging were used to produce kriged layers (10 m grids). Linear correlation and multiple linear regression analysis were used to determine associations between kriged average yields and landscape attributes. Yield monitor data revealed considerable variability in the three fields, with average yields ranging from 5.43 to 6.39 Mg ha-1 and CVs ranging from 20% to 29%. Hybrids responded similarly to field variation while plant densities responded differentially. Economically optimum plant densities changed by around 5000 plants ha-1 between high and low-yielding field areas, producing a potential savings in seed costs of $6.25 ha-1. Variability in yield across the three landscapes was highly associated with landscape attributes, especially elevation and SB, with various combinations of landscape attributes accounting for 47%, 95%, and 76% of the spatial variability in grain yields for the 1997, -98, and -99 sites, respectively. Our results suggest site-specific management of plant densities may be feasible.  相似文献   

6.
Nutrient data obtained from soil chemical tests were analyzed in an activity analysis model to identify limiting factors in peanut production on the Texas High Plains. A production function was estimated for the study field, and limiting factors were identified at individual sites where the production function indicated that yield did not respond. The estimated production function also enabled us to conduct a cost-return analysis of variable- and blanket-rate fertilizer applications. The results showed that peanut yields did not respond to most of the nutrients included in the study, which confirmed conclusions from previous studies in the study region. Calcium and nitrogen were the only two limiting factors identified in this study. Significant economic returns could be obtained by site-specific fertilizer application. The average economic return from variable-rate calcium fertilizer application was $27.84 ha−1 and from blanket-rate it was $10.73 ha−1. The return from variable-rate nitrogen fertilizer application was about $20 ha−1 and from a blanket-rate it was about $14 ha−1. There seems to be quite a strong economic incentive to adopt variable-rate application for calcium and nitrogen fertilizer application.
Jeff JohnsonEmail:
  相似文献   

7.
Effective variable-rate nitrogen (N) management requires an understanding of temporal variability and field-scale spatial interactions (e.g. lateral redistribution of nutrients). Modeling studies, in conjunction with field data, can improve process understanding of agricultural management. CropSyst-Microbasin (CS-MB) is a fully distributed, 3-dimensional hydrologic cropping systems model that simulates small (10 s of hectares) heterogeneous agricultural watersheds with complex terrain. This study used a highly instrumented 10.9 ha watershed in the Inland Pacific Northwest, USA, to: (1) assess the accuracy of CS-MB simulations of field-scale variability in water transport and crop yield in comparison to observed field data, and (2) quantify differences in simulated yield and farm profitability between variable-rate and uniform fertilizer applications in low, average and high precipitation treatments. During water years 2012 and 2013 (a “water year” refers to October 1st through the following September 30th, where a given water year is named for the calendar year on September 30th), the model simulated surface runoff with a Nash–Sutcliffe efficiency (NSE) of 0.7, periodic soil water content (comparison to seasonal soil core measurements) with a root mean square error (RMSE) ≤0.05 m3 m?3, and continuous soil water content (comparison to in situ soil sensors) at 15 of 20 microsites with NSE ≥0.4. The model predicted 2013 field variability in winter wheat yield with RMSE of 1100 kg ha?1. Simulated uniform N management resulted in 0–35 kg ha?1 greater field average yield in comparison to variable-rate management. The savings in fertilizer costs under variable-rate N management resulted in $23–$32 ha?1 greater field average returns to risk. This study demonstrated the capacity of CS-MB to further understanding of simulated and observed field-scale spatial variability and simulated crop response to low, medium and high annual precipitation.  相似文献   

8.
The general objectives of this study were to evaluate (i) the specificity of the spatial and temporal dynamics of apparent soil electrical conductivity (ECa) measured by a electromagnetic induction (EMI) sensor, over 7 years, in variable conditions (of soil moisture content (SMC), soil vegetation cover and grazing management) and, consequently, (ii) the potential for implementing site-specific management (SSM). The DUALEM 1S sensor was used to measure the ECa in a 6 ha pasture experimental field four times between June 2007 and February of 2013. Soil spatial variability was characterized by 76 samples, geo-referenced with the global positioning system (GPS). The soil was characterized in terms of texture, moisture content, pH, organic matter content, nitrogen, phosphorus and potassium. This study shows a significant temporal stability of the ECa patterns under several conditions, behavior that is an excellent indicator of reliability of this tool to survey spatial soil variability and to delineate potential site-specific management zones (SSMZ). Significant correlations were obtained in this work between the ECa and relative field elevation, pH, silt and soil moisture content. These results open perspectives for using the EMI sensor as an indicator of SMC in irrigation management and of needs of limestone correction in Mediterranean pastures. However, it is interesting to extend the findings to other types of soil to verify the origin of the lack of correlation between the ECa data measured by DUALEM sensor and properties such as the clay, organic matter or phosphorus soil content, fundamental parameters for establishment of pasture SSM projects.  相似文献   

9.
Precision agriculture relies on site-specific interventions determined by the spatial variability of factors driving plant growth. The main objective of this study was to assess the efficiency of variable-rate seeding of corn (Zea mays L.) with delineated management zones. This study involved two experiments carried out in Não-Me-Toque, Rio Grande do Sul, Brazil. For the first experiment, carried out in 2009/2010, management zones were delineated by the farmer’s knowledge of the crop field. The field was split into low (LZ), medium (MZ) and high (HZ) crop performance zones. In the second experiment, carried out in 2010/2011, management zones were delineated by overlaying standardized yield data from nine crop seasons (seven of soybean and two of corn). The experiment was carried out with a randomized block design with three management zones and five corn seeding rates ranging from 50 000 to 90 000 seeds per ha?1. The soil was a Rhodic Hapludox with a subtropical climate. Optimization of the corn plant population within the field increased grain yield compared to the reference plant population (70 000 plants ha?1). Yield increases in the LZ, due to corn plant population reduction in relation to the target population, were 1.20 and 1.90 Mg ha?1 for first and second experiments, respectively. This resulted in economic gains of 19.8 and 28.7 %, respectively. Yield increases in the HZ were 0.89 and 0.94 Mg ha?1, respectively, and were due to an increase in plant population in relation to the target population. This resulted in economic gains of 5.6 and 6.6 % for the first and second experiments, respectively. In the MZ, the adjustment of the target plant population was not necessary. Optimizing corn population according to management zones is a promising tool for precision agriculture in Southern Brazil.  相似文献   

10.
Understanding tillage system interaction with landscape variability is important in prescribing appropriate tillage systems that are profitable and environmentally sound. A three-year (1997–1999) study was conducted on a gently sloping, poorly drained lacustrine landscape to evaluate tillage, landscape, and soil interactions on grain yield. Tillage systems investigated were a reduced tillage (RT) system [no-tillage after soybean (Glycine max (L.) Merr), fall chisel plowing after corn (Zea mays (L.) var. mays)], and a conventional tillage (CT) system (fall chisel plowing after soybean and fall moldboard plowing after corn). Fall primary tillage was followed with a pre-plant field cultivation in the spring. Runoff and pollutant losses from the two tillage systems were also measured under a 63 mm h–1 simulated rainfall. Runoff and pollutant (total solids, chemical oxygen demand, total P, dissolved molybdate reactive P) losses were similar, or lower (6.6, 8.0, 7.7, 5.5, and 4.1 times, respectively) in the RT than the CT system. Tillage system, landscape elevation, and soil type interactions on crop yield varied depending upon whether it was a wet or dry growing season. Using the interactions, soybean yield differences among the modeled fixed-RT, fixed-CT, and variable tillage (VT) systems in a wet year were less than 0.1 Mg ha–1. During a dry year, corn yield was higher in the RT and the VT systems than in the CT system. When no new purchase of tillage equipment(s) is necessary to implement the RT, VT, or CT system, the modest yield benefits during relatively dry years, plus the improved runoff water quality by using reduced tillage system in all or part of the landscape, would justify the use of RT and VT systems over the CT system in the lacustrine landscape.  相似文献   

11.
12.
Variable Rate Technology (VRT) has the potential to increase crop yields and improve water quality relative to Uniform Rate Technology (URT). The effects on profitability and water quality of adopting VRT for nitrogen (N) and lime were evaluated for corn production on four claypan soil fields in north central Missouri under average to better than average weather conditions. Variable N and lime rates were based on measured topsoil depth and soil pH, respectively. VRT rates were compared to two different uniform N applications (URT-Nl based on the topsoil depth within these claypan soil fields, and URT-N2 based on a typical N rate for corn production in this area). Expected corn yield was predicted based on topsoil depth, soil pH, N rate, and lime rate. Water quality benefits of VRT relative to URT were evaluated based on potential leachable N. Sensitivity analyses were performed using simulated topsoil data for topsoil depth and soil pH. Results showed that VRT was more profitable than URT in the four sample fields under URT-N1, and in two of the four fields under URT-N2. Greater variation in topsoil depth and soil pH resulted in higher profitability and greater water quality benefits with VRT. Results support adoption of VRT for N and lime application for other claypan soil fields with characteristics similar to those in the fields used in this study.  相似文献   

13.
Germination conditions are determined by hydraulic, thermal and mechanical properties of the soils. In heterogeneous fields, the most favourable seeding depth varies spatially. To investigate the influence of seeding depth on emergence and grain yield of corn, corn was planted in depths of 40, 50, 60, 70, 80 and 90 mm in three experimental years (2006–2008). The apparent soil electrical conductivity was measured with an EM38. The apparent electrical conductivity was used as a proxy for soil texture, top-soil thickness, effective root zone thickness, soil water content and soil structure. The spatial dependencies among emergence, yield and apparent electrical conductivity were considered by including spatial models into the statistical analysis. The results showed significant correlations of the apparent soil electrical conductivity, of the experimental year, and of the seeding depth with the emergence of corn. Deeper planted corn (80 or 90 mm) resulted in more emergence than shallow planted corn (+4.4% in 2006, +1.2% in 2007 and +1.5% in 2008). The emergence decreased with increasing apparent soil electrical conductivity values. The corn grain yield was significantly affected by the soil electrical conductivity, by emergence and by the experimental year. Increasing apparent soil electrical conductivity values were correlated with decreasing yield (from 7.5 to 3.4 Mg ha−1 in 2006, from 10.8 to 5.3 Mg ha−1 in 2007 and from 8.4 to 2.9 Mg ha−1 in 2008). Increasing emergence resulted in increasing yield.  相似文献   

14.
碱性缓释肥对水稻吸收积累Cd的影响   总被引:3,自引:0,他引:3  
选择长株潭地区典型化工点源污染、污水灌溉面源污染和大气沉降面源污染的镉(Cd)污染稻田,研究碱性缓释肥对稻田土壤有效Cd、水稻Cd含量的影响。结果表明:与常规施肥相比,北山、梅林桥、大同桥三个试验点施用碱性缓释肥的水稻产量增加290.8(+3.9%)~605.0(+7.3%)kg·hm~(-2),平均增产467.8 kg·hm~(-2)(+5.7%,P0.05);三个试验点施用石灰和碱性缓释肥均能提高土壤p H,降低土壤有效Cd含量,其效果为碱性缓释肥小于石灰;三个试验点施用石灰和碱性缓释肥均能显著降低水稻稻米和茎叶Cd含量,在北山、大同桥酸性土壤中碱性缓释肥降低稻米Cd含量的效果优于石灰,两地的稻米Cd含量分别较施用石灰下降0.023mg·kg~(-1)(-13.5%)和0.080 mg·kg~(-1)(-26.7%),梅林桥偏中性的土壤上则为石灰降低稻米Cd含量的效果优于碱性缓释肥。  相似文献   

15.
Knowledge of the spatial variability of soil properties and of forage yield is needed for informed use of soil inputs such as variable rate technology (VRT) for lime and fertilizers. The objective of this research was to map and evaluate the spatial variability of soil properties, yield, lime and fertilizer needs and economic return of an alfalfa pasture. The study was conducted in a 5.3 ha irrigated alfalfa pasture in Sao Carlos, SP, Brazil that was directly grazed and intensively managed in a 270-paddock rotational system. Alfalfa shoot dry matter yield was evaluated before grazing. Soil samples were collected at 0–0.2 m depth, and each sample represented a group of 2 or 3 paddocks. Apparent soil electrical conductivity (ECa) was measured with a contact sensor. The cost of producing 1 ha of alfalfa was estimated from the amount of lime and fertilizer needed and was then used to estimate the total cost of production for the dairy system. The alfalfa dry matter yield was used to simulate the pasture stocking rate, milk yield, gross revenue and net profit. The spatial variability of soil properties and site-specific liming and fertilizer needs were modeled using semi-variograms with VESPER software, the soil fertility information and economic return were modeled with SPRING software. The results showed that geostatistics and GIS were effective tools for revealing soil and pasture spatial variability and supporting management strategies. Soil nutrients were used to classify the soil spatial distribution map and design site-specific lime and fertilizer application maps. Spatial variation in forage and spatial estimates of stocking and milk yield are adequate pasture management tools. Spatial analyses of needs, forage availability and economic return are management tools for avoiding economic problems, as well as potential environmental problems, caused by unbalanced nutrient supplies and over- or under-grazing.  相似文献   

16.
The identification of homogeneous management zones (MZs) within a field is a basis for site-specific management (SSM). We assessed the method of defining MZs based on the spatio-temporal homogeneity of six soil properties and above-ground biomass data from paddy rice, winter wheat and soybean over 3 years on a farm with 124 contiguous small paddy fields. The soil data were recorded at 372 soil sampling sites on a rectangular grid over the farm. A non-hierarchical cluster analysis was applied to the soil data and the algorithm grouped the sites into three clusters with similar soil properties. These clusters represent soil fertility and soil drainage. The three clusters were not randomly distributed across the fields, but formed contiguous areas associated with landscape position. This was due to the spatial variation of the soil in the study area. We delineated five MZs based on the spatial structure of the soil heterogeneity of the study area. The validity of the MZs was evaluated using the biomass data from paddy rice, winter wheat and soybean in each MZ; this depended mainly on soil fertility when conditions were dry. When the growing season precipitation was greater than the 10-year average, the biomass of winter wheat and soybean depended on soil drainage. This suggested that the delineation of MZs for site-specific management in fields under a paddy-upland crop rotation system should be based on several soil properties. The biomass data from the three crops over 3 years was not effective for delimiting MZs.  相似文献   

17.

Grid sampling allows a variable rate of lime to be applied and has been marketed as a cost saver to producers. However, there is little research that shows if this precision application is profitable or not. Previous research on variable-rate lime has considered only a small number of fields. This paper uses soil sampling data from 111 fields provided by producers in Oklahoma and Kansas. The 5-year average net present values are compared between variable-rate and uniform-rate lime for grain-only wheat production, dual-purpose wheat grain and forage production, and a wheat–soybean rotation. Sensitivity analysis was done for varying grain prices as well as grain yield potential. When using historical average yields and recent prices for Oklahoma, variable rate was not profitable on average for these 111 fields for either a grain-only, dual-purpose, or wheat–soybean production. However, when yield or prices were above average, variable rate was profitable. Thus, variable rate liming can be profitable for these fields, but it requires either above average yields, a high value crop, or above average prices.

  相似文献   

18.
采用小区对比的方法分析石灰对土壤pH值、大豆的影响,结果表明,石灰能够提高酸性土壤pH值、降低大豆株高、增加大豆茎粗,有提高大豆产量的作用。每667m^2施石灰30 kg,增产6.2%,达到显著水平;每667m^2施石灰15 kg、45 kg,增产2.6%、4.5%,均未达到显著水平。  相似文献   

19.
赤泥、石灰对Cd污染稻田改制玉米吸收积累Cd的影响   总被引:12,自引:7,他引:5  
利用Cd污染稻田改制玉米的大田试验,研究了施用赤泥、石灰对玉米吸收积累Cd的影响。结果表明,施用赤泥、石灰对春玉米、秋玉米产量无显著影响,但与施用石灰相比,施用赤泥能显著增加玉米产量和生物量;施用赤泥、石灰皆显著提高了土壤pH值、显著降低了土壤有效态Cd含量,减少了玉米对Cd的吸收积累;春玉米、秋玉米施用赤泥后其籽粒Cd含量分别比对照降低了27.5%和21.1%,施用石灰后则分别降低了26.4%和31.1%;施用赤泥、石灰皆抑制了玉米对Cd的富集和转运,且赤泥抑制玉米茎、叶、籽粒富集Cd的能力优于石灰,但石灰阻控玉米由茎向籽粒及叶片中转运Cd的能力优于赤泥。大田试验结果还表明,稻田改制玉米结合赤泥、石灰等钝化剂的施用可能是一条实现Cd污染农田安全可持续利用的有效途径,也利于保障国家粮食安全和农产品质量安全。  相似文献   

20.
Increasing crop production is necessary to maintain food security for the growing global population.Reducing the gap between actual and potential yield is one of the important ways to increase yield per unit area.Potential yield and the yield gap of soybean were determined for Golestan Province,Iran,using Soybean Simulation Model (SSM-i Crop2) and Geographical Information System (GIS).Information from 24 weather stations and soil data of the region were used.Yield gap and production gap were calculated at county and province levels.The average actual yield of soybean in this province was2.28 t ha~(–1) while the province’s potential yield was 4.73 t ha~(–1),so the yield gap was estimated 2.44 t ha~(–1).Thus,there is a great potential for increasing soybean yield in Golestan,which is possible through improving crop management of soybean in farmers’fields.The average water productivity of soybean was estimated to be 0.81 kg m~(–3).Spatial distribution of water productivity in soybean farms showed that the highest and the lowest water productivities (0.99 and 0.44 kg m~(–3)) were in western and eastern regions of the province,respectively,in accordance to vapour pressure deficit.It was concluded that soybean production in the province could increase by 66%(from 109 970 to 182 170 tons) if 80% of the current yield gap could be removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号