首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Limited genetic knowledge is available regarding crossability between hexaploid triticale (2n= 6x= 42, 21″, AABBRR, amphiploid Triticum turgidum L.‐Secale cereale L.) and rye (2n= 14, 7″, RR). Our objectives were to determine (1) the crossability between triticales and rye and (2) the inheritance of crossability between F2 progeny from intertriticale crosses and rye. First, ‘8F/Corgo’, a hexaploid triticale, was crossed as a female with two landrace ryes, ‘Gimonde’ and, ‘Vila Pouca’ and two derived north European cultivars, ‘Pluto’ and ‘Breno’. These crosses produced 21.7, 20.9, 5.9, and 5.6%, seed‐set or crossability, respectively, showing that the landrace ryes produced higher seed‐set than the cultivars. Second, ‘Gimonde’ rye was crossed as a male with four triticales for 3 years. The control cross, ‘Chinese Spring’ wheat × rye, produced 80‐90% seed‐set. Of the four triticales, ‘Beagle’ produced 35.7‐56.8% seed‐set. The other three triticales produced less than 20% seed‐set, showing that the triticales differ in crossability with ‘Gimonde’ rye. Third, six FiS from intertriticale crosses (‘8F/Corgo’בBeagle’, ‘Beagle’בCachirulo’, ‘Lasko’בBeagle’, ‘8F/Corgo’בCachirulo’, ‘Lasko’בCachirulo’, ‘Lasko’ב8F/Corgo’) were crossed to ‘Gimonde’ rye. Results indicated that lower crossability trait was partially dominant in the two F1S from crosses involving ‘Beagle’(high crossability) with‘8F/Corgo’ and ‘Cachirulo’(low crossability) and completely dominant in the ‘Beagle’בLasko’ cross, as it happens in wheat. Fourth, segregants in four F2 populations (‘Lasko’בBeagle’, ‘8F/Corgo’בBeagle’, ‘Lasko’ב8F/Corgo’, and‘8F/Corgo’בCachirulo’) were crossed with rye. Segregation for crossability was observed, although distinct segregation classes were blurred by environmental and perhaps other factors, such as self‐incompatibility alleles in rye. Segregation patterns showed that ‘Beagle’, with high crossability to rye, carries either Kr1 or Kr2. The three triticales with low crossability with rye were most likely homozygous for Kr1 and Kr2. Therefore, it is likely that the Kr loci from A and B genomes acting in wheat also play a role in triticale × rye crosses.  相似文献   

2.
Summary To satisfy farmer and consumer preferences, breeding efforts to increase yield potential in common bean must take into account the interrelated effects of growth habit, seed size, maturity, and gene pool on yield expression in segregating populations. To examine the relationships among these traits, a genetic study was conducted to determine the effect of growth habit on yield and seed size in crosses among five bean lines from diverse gene pools. Two parental bean lines had determinate, type I growth habits and large seed size typical of the Neuva Granada-Andean gene pool. Two other lines were tropical Mesoamerican types with type II growth habits and small seed size; and the fifth line, G13625, a landrace of the Jalisco gene pool from the Mexican highlands, had a type IV climbing growth habit and medium seed size. Individual F2 plants from each cross and parental lines were evaluated for growth habit and yield component traits under high input field conditions. The following season, the evaluations were repeated on random F3 plants. Of the five parental lines, only G13625 showed significant GCA effects for yield in both the F2 and F3 generations. Improved yielding ability of G13625 progeny was associated with an increased expression of climbing bean growth habit traits: guide length, climbing ability, node number on main stem, and plant height. Crosses between Andean x Mesoamerican and Andean x Jalisco genotypes, as well between growth habit type I (Andean x Andean) and between type II (Mesoamerican x Mesoamerican) had very low parent-offspring heritability values for yield. Yield heritability was only significant for crosses between Mesomerican x Jalisco gene pools. An apparent simple genetic control of growth habit modification towards semi-climbing and climbing types is proposed as the major reason for increased yields in these crosses. No genetic linkage between genes controlling growth habit and seed size was detected which might restrict the development of high yielding large-seeded type II lines.  相似文献   

3.
Cross compatibility between Abelmoschus esculentus and A. moschatus   总被引:1,自引:0,他引:1  
Interspecific cross compatibility between cultivated and wild okra (Abelmoschus esculentus and A. moschatus) and pollen tube growth behaviour in the crosses among a local cultivar of A. esculentus, A. moschatus and their F1s were studied. Fruit set was observed in all the crosses except one and seed setting was absent in two of the crosses which set fruit. All seed produced were shrivelled but F1 plants were obtained from two crosses where cultivated okra was used as the seed parent. The F1 plants were perennial in nature with very low pollen viability and seed set. A high percentage of pollen germination and profuse pollen tube penetration in the style were observed in the cross A. esculentus × A. moschatus but low pollen tube penetration with abnormal pollen tubes was observed in the reciprocal cross. The number of pollen tubes was very low but they appeared to be normal in the backcross A. esculentus × F1, but were generally abnormal in the reciprocal cross. Both pre- and postzygotic barriers seemed to occur in crosses between the two species. The present studies indicate that these barriers can be overcome and desirable characters from A. moschatus transferred to cultivated okra using conventional hybridisation techniques. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Combining ability of seed vigor and seed yield in soybean   总被引:4,自引:0,他引:4  
Youngkoo Cho  Roy A. Scott 《Euphytica》2000,112(2):145-150
Studies have shown no consensus in relationships between seed yield and vigor in soybean [Glycine max (L.) Merrill]. The lack of information regarding the inheritance of seed vigor prompted this study to determine the types of gene action and combining ability estimates for seed vigor and its related traits. Five high and six low seed vigor soybean genotypes were crossed in a diallel, and selfed to produce 55 F2 progenies, which were examined, along with the parents, for seed vigor, yield, and seed weight. Significant genotype and environment effects were found for seed vigor and yield. General combining ability (GCA) effects for seed vigor and seed yield were significant (p≤ 0.01) and larger than specific combining ability (SCA) effects. Significant GCA and SCA effects were found for seed weight, indicating that both additive and non additive genetic effects were involved in conditioning seed weight. The ratios of mean square, 2GCA / (2GCA+SCA), were 0.96 for seed vigor and 0.93 for seed yield. These ratios indicated that additive gene effects were more important than non additive gene effects for seed vigor and seed yield in these crosses. Mean seed vigor(83.8%), as determined by accelerated aging germination, and mean seed yield (2,155 kg ha-1)in high vigor × high vigor crosses were higher than the high vigor × low vigor and low vigor × low vigor crosses. Mean percent accelerated aging germination rates in F2 populations from diallel crosses were significantly related to mid-parent seed vigor(r2 = 0.52**) and midparent seed size (r2 = 0.31**). These results indicated that levels of seed vigor can be improved through breeding, while maintaining high yields because of the predominance of GCA effects in both seed vigor and seed yield. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
X. P. Liu    J. X. Tu    B. Y. Chen  T. D. Fu 《Plant Breeding》2005,124(1):9-12
A yellow‐seeded doubled haploid (DH) line no. 2127‐17, derived from a resynthesized Brassica napus L., was crossed with two black‐seeded Brassica cultivars ‘Quantum’ and ‘Sprint’ of spring type. The inheritance of seed colour was investigated in the F2, and BC1 populations of the two crosses and also in the DH population derived from the F1 of the cross ‘Quantum’× no. 2127‐17. Seed colour analysis was performed with the colorimeter CR‐300 (Minolta, Japan) together with a visual classification system. The immediate F1 seeds of the reciprocals in the two crosses had the same colour as the self‐pollinated seeds of the respective black‐ and yellow‐seeded female parents, indicating the maternal control of seed colour. The F1 plants produced yellow‐brown seeds that were darker in colour than the seeds of no. 2127‐17, indicating the partial dominance of yellow seed over black. In the segregating BC1 progenies of the two crosses, the frequencies of the black‐ and yellow‐seeded plants fit well with a 1 : 1 ratio. In the cross with ‘Quantum’, the frequencies of yellow‐seeded and black‐seeded plants fit with a 13 : 3 ratio in the F2 progeny, and with a 3 : 1 ratio in the DH progeny. However, a 49 : 15 segregation ratio was observed for the yellow‐seeded and black‐seeded plants in the F2 progeny of the cross with ‘Sprint’. It was postulated from these results that seed colour was controlled by three pairs of genes. A dominant yellow‐seeded gene (Y) was identified in no. 2127‐17 that had epistatic effects on the two independent dominant black‐seeded genes (B and C), thereby inhibiting the biosynthesis of seed coat pigments.  相似文献   

6.
The cytoplasmic male‐sterility (CMS)/fertility‐restoration system is important for hybrid sunflower (Helianthus annuus L.) seed production. The objective of this study was to characterize two novel alloplasmic CMSs, designated CMS GRO1 and CMS MAX3, with defective anthers, narrow disc florets with no swollen corolla, and short, narrow ray flowers derived from two tetraploid amphiploids (AMPs). Among 26 tested lines, only AMP Helianthus cusickii/P 21 and HA 410 failed to restore male‐fertility. Segregation of CMS, male‐fertile plants and plants with reduced male‐fertility was observed both in the testcross progeny of a six line half‐diallel cross of F1s with CMS MAX3 and in an F2 population of CMS GRO1 × RHA 274. Male‐fertility restoration was controlled by at least two dominant genes. Detailed analysis of the mitochondrial genes may provide insight into the differences between these CMSs and other CMS lines. The new CMSs will facilitate the studies of the incompatibility between cytoplasmic and nuclear genes, especially for the alloplasmic CMS involving perennial species, and also provide unique ornamental flower types and CMS sources for hybrid sunflower breeding.  相似文献   

7.
D. J. Bing    R. K. Downey    G. F. W. Rakow 《Plant Breeding》1995,114(6):481-484
The possibility of gene transfer between Brassica napus and Sinapis arvensis was evaluated. Six spring-type cultivars of B. napus and four strains of S. arvensis were reciprocally crossed through controlled crosses. No hybrid was yielded from any cross. However, one hybrid with 28 chromosomes was obtained from B. napus×S. arvensis through ovule culture. The hybrid plant was highly sterile and set no seed on open pollination. Two F2 plants, with 35 and 36 chromosomes respectively, were obtained through self-pollination by hand. Backcross of B. napus produced 23 plants carrying some characteristics of S. arvensis, but backcross to S. arvensis failed to produce a plant. The chromosome counts of the BC1F1 plants indicated that gametes with more than nine chromosomes were favoured during the meiosis. The data demonstrated that gene transfer from S. arvensis to B. napus was very difficult under controlled cross and backcross, while to transfer genes from B. napus to S. arvensis would be extremely remote even under the most favorable conditions.  相似文献   

8.
T. Hodgkin 《Euphytica》1980,29(1):65-71
Summary In a study of partial self-compatibility in Brassica oleracea, flower number, seeded siliqua and seed production were recorded on self-and cross-pollinated inflorescences of the progenies of a half diallel between six in bred Brussels sprout plants homozygous for the same moderately recessive incompatibility allele S45.On both self-and cross-pollinated inflorescences significant amounts of additively controlled genetic variation were found for seed set per flower. For cross-pollinated inflorescences this was also the case for the two components of seed set, seeded siliquae per flower and seeds per seeded siliquae, but for self-pollinated ones only seeded siliquae production showed significant additive variation. Considerable heterosis and gene interaction were always present and a simple additive dominance model did not explain the variation.Two of the parents transmitted lower levels of partial self-compatibility to their progenies and, in one of these, dominant genes appeared to be responsible. The most important feature determining the production of self seeds was found to be the number of flowering sites at which the incompatibility mechanism failed rather than the number of seeds produced at each site.  相似文献   

9.
Common bean populations from crosses between lines of different races are thought to be more promising for selection of high yield potential than those from intra-racial crosses. Three distinct diallel crosses were made to test this hypothesis and to determine the possibility of substituting diallel crosses for multivariate techniques that estimate genetic divergence. The crosses were between races Mesoamerica × Mesoamerica, Mesoamerica × Durango and Jalisco, and Mesoamerica × Nueva Granada. The parents and the resulting F4 populations were evaluated at Lavras-MG, Lambari-MG and Patos de Minas-MG, Brazil. The diallel analysis of seed yield was done and the genetic divergence estimated by Mahalanobis distance. Estimates of general and specific combining ability indicated that some inter-racial populations were more promising for selection to increase seed yield than intra-racial populations. However, due to their undesirable seed color and size, and growth habit, especially in a short term breeding program, the chances of obtaining high yielding lines with an acceptable bean is reduced. Genetic divergence was not a good measure to choose the parents because usually, the most divergent groups included were not adapted lines. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The gene effects of Cicer reticulatum on both double‐podding as qualitative traits and yield criteria as quantitative traits in interspecific hybridization with cultivated chickpea (Cicer arietinum) have not yet been elucidated, despite the easy acquisition of hybrid progeny between two species. This study sought to answer three questions concerning qualitative and quantitative traits in reciprocal crosses between C. arietinum and C. reticulatum. (i) Is there a similarity in the gene effects of flower colour, pigmentation and double‐podded traits in reciprocal interspecific crosses? (ii) What are the expressivity and penetrance of the double‐podded trait in interspecific crosses? (iii) Which heterosis predicts the occurrence and the extent of transgressive variation? The materials for this study were F1, F2 and F3 progeny derived from a reciprocal cross between C. arietinum and C. reticulatum. As qualitative traits, purple flower colour, pigmentation and single‐podded traits in C. reticulatum were governed by a dominant single gene. Purple flower colour and pigmentation were detected to be linked traits as all progeny had the same phenotypes. As quantitative traits, yield criteria in progeny which were double‐podded had higher values than the single‐podded counterparts. Expressivity and penetrance of the double‐podding trait were superior in progeny derived from C. reticulatum × C. arietinum. The results showed that fruitful heterosis was more useful than residual heterosis in F3 as residual heterosis was mostly negative and fruitful heterosis was suggested in self‐pollinated species such as chickpea that lacks inbreeding depression. Interspecific transgression was significant with respect to chickpea improvement because it represented a potential source of novel genetic variation.  相似文献   

11.
 选择4个棕色棉品种(系)与5个白色棉品种进行不完全双列杂交,得正反交组合各20个,测定了吐絮期正反交组合的净光合速率、胞间CO2浓度、叶绿素含量,叶绿素a/b、PSII的最大光化学效率,分析杂交F1代光合参数的杂种优势表现与正反交之间的差异。结果表明:吐絮期杂种F1各项光合参数没有明显的正向中亲优势、正向超亲优势。正反交组合之间,除胞间CO2浓度存在显著差异外,其它光合参数差异不显著,胞间CO2浓度受到细胞质效应影响。正交组合F1叶绿素含量与胞间CO2浓度存在显著正相关,反交组合F1净光合速率与胞间CO2浓度存在极显著正相关。  相似文献   

12.
In a self-fertilised crop like lentil, the identification of transgressive segregants for economically important trait such as seed yield is an important aspect of any practical breeding programme. The prediction of expected transgressive segregants in F1 generation obtained as a ratio of additive genic effect [d] and additive variance (D) i.e. [d]/√D was studied in 28 crosses of lentil generated in a diallel fashion involving four parents each of macrosperma (exotic) and microsperma (Indian) types, respectively, resulting in three hybridization groups. The seed material advanced to F2, F3 and F4 generations through single seed descent method was evaluated to determine the observed transgressive segregants for seed yield/plant. The observed frequency of crosses showing more than 20% transgressive segregants in F2 to F4 generations were exhibited in 9(32%) crosses, of which 7(77%) crosses were of macrosperma × microsperma type. Genotypes Precoz and HPL-5 of the exotic group (macrosperma) produced maximum number of transgressive segregants with the genotypes L-259, L-4145 and PL-406 of the Indian origin (microsperma). Goodness of fit (non-significant χ2 value) in F2 generation was observed for 19(68%) crosses of the total genepool, out of which 9(56%) crosses each in F3 and F4 generation belonged to the macrosperma × microsperma group, depicting it as the gene pool of paramount importance to obtain maximum transgressive segregants, therefore establishing the efficacy of the method used.  相似文献   

13.
Summary The causes of low crossability between Pennisetum species were studied. In the compatible cross P. typhoides x P. violaceum, the pollen tube growth was normal and there was good seed set. In P. typhoides x P. cenchroides, pollen tubes reached the ovary but no seed set was obtained indicating ovarian incompatibility. The stylar incompatibility was found in the crosses of P. typhoides with P. schweinfurthii, P. hohenackeri, P. orientale and P. squamulatum. In crosses P. typhoides x P. polystachyon and P. typhoides x P. pedicellatum, mostly pollen tubes did not grow beyond stigmatic surface and only few reached the style. Stigmatic as well as stylar incompatibilities seem to be the reasons for no seed set in these crosses.  相似文献   

14.
B. B. Singh    U. P. Singh    B. Rai  R. M. Singh 《Plant Breeding》1986,97(4):357-363
The components of genetic variation were studied in four F2 crosses (PG3× 5064, T163× B.V., T163× Arkel and 5064 × ED) for quantitative characters such as days to flowering, plant height, pod number, seed number, test weight and yield/plant. The overall epistasis (T type) was, in general, a major contributor for genetically controlling the expression of the characters in all the- four crosses except for the character seed number in crosses 1 and JV, where the j + l component at epistasis played a significant role in determining the expression of this attribute:. Though the ‘j + l’ component of the epistasis was significant, it was relatively less important than the ‘i’ type epistasis. Both the additive and dominance components of the genetic variation were highly significant for all the trans studied in all die four sets of crosses. The expression of the dominance was directional only for a few characters in certain crosses. The degree of dominance lies in the partial range, and heritability estimates obtained were high for most of the trails. The possible application of cross prediction in the isolation of superior recombinant inbred lines in pea is discussed.  相似文献   

15.
Summary Dwarlism in F1 hybrids has been observed in over 100 crosses of dry beans (Phaseolus vulgaris L.) at the Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia. In each cross, one parent always had small seeds and the other parent either medium or la ge ones. This apparent incompatibility between the two groups of germplasm was controlled by two complementary, dominant genes: DL1 and DL2. Smallseeded bean lines carried gene DL1 and originated in Brazil, Colombia, Guatemala, and Mexico; medium for large-seeded bean lines carried gene DL2 and were from Bolivia, Brazil, Chile, Colombia, Turkey, The United States, and West Germany. Thes two genes have probably played an important role in the evolution of dry bean forms of different seed sizes by serving as a genetic barrier or isolating mechanism, thus limiting free genetic recombination between the two germplasm groups.Apparent differences in the adaptiveness and yielding ability of the two groups of bean germplasm, smallys, medium- and large-seeded, and some breeding implications for manipulation of the genes causing F1 hybrid dwarfism were also discovered.  相似文献   

16.
Summary S allele genotypes of I1 progenies from eight I0 red clover (Trifolium pratense L.) clones were determined under isolated field conditions. Each I1 progeny was vegetatively increased and isolated under a cage for pollination by honey bees. Clones within each I1 progeny producing relatively large and small amounts of seed were classified homozygous and heterozygous, respectively, for S allele genotype. S allele genotypes were verified by extensive sib crosses in the greenhouse, and almost complete agreement was found with the field classification. I2 progenies were reciprocally test-crossed with their parental I0 clones to detect any changes in S specificity and also to confirm the previous S genotype classifications in the I1 generation. It was concluded that the reliability of field and greenhouse sib classification of S genotypes is based on the strength of the incompatibility reaction in each particular clone. Most I1's showed a strong incompatibility reaction as evidenced by low seed set for heterozygous S genotypes, but one progeny showed a weak incompatibility reaction which resulted in S genotype misclassifications. An S specificity was changed in one I2 progeny.Contribution from the Kentucky Agricultural Experiment Station. This paper (72-3-151) is published with the approval of the Director, Kentucky Agricultural Experiment Station, Lexington, Kentucky 40506, USA.  相似文献   

17.
R. Hovav    K. C. Upadhyaya    A. Beharav  S. Abbo 《Plant Breeding》2003,122(6):539-541
The effect of the major flowering gene (PPD) on seed weight of chickpea was studied on 450 F3 families from reciprocal crosses between a small‐seeded, early‐flowering (PPD/PPD) type and a large‐seeded, late flowering (PPD/PPD) cultivar. F4 progeny tests were carried out to determine the PPD genotypes of each individual F3. The effects of the PPD gene and the polygenes on mean seed weight were both significant. Genetic correlations between time to flowering and seed weight were positive and relatively high, suggesting that in certain genetic backgrounds it might be difficult to breed early‐flowering cultivars without compromising seed weight.  相似文献   

18.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

19.
Summary The crossability of 12 Cucumis species of African and Asiatic origin was studied in a diallel cross, in order to find ways to realise the cross between the common cucumber (C. sativus L.) and its wild relatives which carry resistances against diseases and pests.Self-pollinations and cross-pollinations within species gave normal pollen tube growth and seet set. The different accessions within a species, as a rule reacted alike in interspecific crosses. In crosses between African species different crossing patterns were found, viz. bilateral congruity, bilateral incongruity and unilateral incongruity. Within C. sativus all accessions intercrossed freely, except one, which displayed unilateral incongruity.Good seed was harvested from several crosses and in some cases embryo culture was needed for further development of seeds. No good seeds were obtained from any cross between a species of the African group and C. sativus L.  相似文献   

20.
Summary Reciprocal cross differences were studied in a 6×6 diallel full set comprising of thirty hybrid combinations of groundnut in the F1 generation.Reciprocal cross differences were observed for growth habit in four pairs of crosses, for leaf colour, flower colour and stem pigmentation in two pairs of crosses each. It was observed that the inheritance of flower colour, stem pigmentation and testa colour which exhibited different shades of purple colour was likely to be governed by pleiotropic gene(s). Among the quantitative characters significantly positive reciprocal effects were observed in different crosses for number of mature pods per plant, weight of pods per plant and shelling percent. Marked reciprocal cross differences were observed for pod and kernel characters like pod filling, pod beak, pod constriction and testa colour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号