首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clostridium perfringens is a cause of economically significant enteritis in livestock. Beta2 toxin, encoded by one of two cpb2 alleles, is implicated as a virulence factor in this disease. Previous studies determined that the consensus cpb2 allele is preferentially associated with C. perfringens isolated from pigs. In C. perfringens strain 13, the consensus cpb2 allele is found on the plasmid pCP13, which also carries cna, encoding a putative collagen binding protein, CpCna. This protein was shown to be a bona fide collagen adhesin, as recombinant, HIS-tagged CpCna bound collagen type I as determined by Far Western blotting. Genomic DNA from C. perfringens isolated from a variety of host species were subjected to PCR to determine the prevalence of cna in these strains and correlate its carriage with the presence and type of cpb2 allele. The cna gene was found in 55.8% of isolates from all host species (n=208) and 68.1% of porcine isolates (n=119). In cpb2+ isolates, cna was present in 69.9% of isolates from all hosts (n=153), but was found in 98.7% of porcine isolates (n=75). Furthermore in porcine isolates, the consensus cpb2 allele and cna were absolutely correlated with the presence of pcp12, a pCP13-encoded gene, and pcp12 was never found in any isolate that lacks either cpb2 allele. The finding that CpCna binds collagen and that the cna gene is associated with the consensus cpb2 allele implicates CpCna as a potential virulence factor in porcine enteritis caused by C. perfringens.  相似文献   

2.
Currently, the factors/toxins responsible for Clostridium perfringens-associated avian enteritis are not well understood. To assess whether specific C. perfringens' toxinotypes are associated with avian enteritis, the isolates of C. perfringens from 31 cases of avian necrotic or ulcerative enteritis submitted between 1997 and 2005 were selected for retrospective analysis using multiplex PCR. C. perfringens was isolated from chickens, turkeys, quail, and psittacines. The toxinotypes of isolates from diseased birds were compared against the toxinotype of 19 C. perfringens isolates from avian cases with no evidence of clostridial enteritis. All C. perfringens isolates were classified as type A regardless of species or disease history. Although many isolates (from all avian groups) had the gene encoding the C. perfirngens beta2 toxin, only 54% produced the toxin in vitro when measured using Western blot analysis. Surprisingly, a large number of healthy birds (90%) carried CPB2-producing isolates, whereas over half of the cpb2-positive isolates from diseased birds failed to produce CPB2. These data from this investigation do not suggest a causal relationship between beta2 toxin and necrotic enteritis in birds.  相似文献   

3.
This study examined the prevalence and expression of the "consensus" and the "atypical"cpb2 genes in Clostridium perfringens isolates from cattle, chickens, dogs, goats, horses, pigs and sheep using polymerase chain reaction (PCR), sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Western blotting. Almost all porcine isolates (12/14) carried and expressed the consensus form of cpb2 but, when present in 108 non-porcine isolates, the gene was usually the atypical form (40 atypical versus 9 consensus). Western blotting showed expression in 30 of 40 (75%) atypical cpb2-positive isolates, considerably more frequently than reported previously. CPB2 was expressed by almost all (20/21) the consensus cpb2-positive isolates, regardless of source.  相似文献   

4.
The novel beta 2-toxin of Clostridium perfringens has recently been described as the cause of enteric diseases in animals. The biological activity of beta 2-toxin is similar to that of the beta1-toxin with a possibly weaker cytotoxic activity. However, the production of beta 2-toxin in vitro is not seen in all beta 2-toxin-gene (cpb2)-positive C. perfringens strains, and to deduce a clinical importance solely from the detection of cpb2 is difficult. Detection of cpb2-positive C. perfringens from various animal species with and without enteric diseases demonstrates the wide distribution of cpb2 in nature, and the presence of cpb2 gene is therefore not considered a risk by itself. Predisposing factors like low trypsin activity in the intestinal tract, antibiotic and/or antiphlogistic treatment or changes in diet can result in the selection of beta 2-toxigenic C. perfringens which may lead to enteritis or enterotoxaemia.  相似文献   

5.
6.
Investigations were performed on shedding of C. perfringens in sows from four different pig farms. In two farms where no outbreaks of necrotizing enteritis had been observed, no strains of C. perfringens producing beta-toxin were detected in the faeces of sows. In contrast, C. perfringens strains producing beta-toxin were detected in sows on both farms suffering outbreaks of acute necrotizing enteritis. Strains of C. perfringens producing beta-toxin were invariably positive for the beta 2-toxin gene. However, strains carrying the beta 2-toxin gene only (i.e. negative for beta-toxin) were present in animals on all farms with roughly similar frequencies (mean 28.2% carriers). Some sows carried C. perfringens strains of both toxin genotypes simultaneously. Whereas these data further support the role of betatoxin as a cause of necrotizing enteritis, the role of beta 2-toxin in intestinal disease of piglets remains unclear. To establish the role of faecal shedding vs. environmental contamination as reservoirs of C. perfringens type C, strains were isolated from teats and feedlot trough swabs (toxin genotype beta/beta 2), as well as from fodder (genotype beta 2). However, sows carried this pathogen intermittently and in small numbers. This renders an individual, reliable diagnosis of carrier sows very difficult. Ribotyping of 34 C. perfringens isolates of different toxin genotypes showed five distinct profiles. Different toxin genotypes can belong to the same ribotype, and the same toxin genotype can be present in different ribotypes. Thus, even if a majority (79.4%) of strains investigated in a limited geographic region belonged to ribotype 1, ribotyping offered discrimination of strains beyond toxin typing.  相似文献   

7.
Clostridium perfringens is ubiquitous in the environment and the intestinal tracts of most mammals, but this organism also causes gas gangrene and enteritis in human and animal hosts. While expression of specific toxins correlates with specific disease in certain hosts, the other factors involved in commensalism and host pathogenesis have not been clearly identified. A multilocus sequence typing (MLST) scheme was developed for C. perfringens with the aim of grouping isolates with respect to disease presentation and/or host preference. Sequence data were obtained from one virulence and seven housekeeping genes for 132 C. perfringens isolates that comprised all five toxin types and were isolated from 10 host species. Eighty sequence types (STs) were identified, with the majority (75%) containing only one isolate. eBURST analysis identified three clonal complexes, which contained 59.1% of the isolates. Clonal complex (CC) 1 contained 31, predominantly type A isolates from diverse host species. Clonal complex 2 contained 75% of the bovine type E isolates examined in this study. Clonal complex 3 consisted predominantly of porcine type A and type C isolates. Interestingly, these porcine isolates (n=32) all carried consensus cpb2 and cna genes, encoding beta2 toxin and CpCna, a collagen binding protein, respectively. This compares to carriage of both these genes by only 3.6% of porcine isolates not present in clonal complex 3 (n=28). The data obtained indicates that MLST may be used to identify host species relationships with respect to these C. perfringens isolates.  相似文献   

8.
Clostridium perfringens has been implicated in a broad array of enteric infections including the fatal haemorrhagic enteritis/enterotoxaemia syndrome in cattle. The beta2 toxin (CPB2), encoded by cpb2, is suspected to be implicated in this syndrome. However, among C. perfringens isolates from cattle suspected of clostridial disease, an atypical allele was recently found to predominate at the cpb2 locus and atypical corresponding CPB2 proteins were shown to be poorly expressed, thus arguing against a biologically significant role of the beta2 toxin in clostridial diseases in cattle. This study compared genotype and phenotype of the beta2 toxin between C. perfringens isolates from a group of healthy calves (n=14, 87 isolates) and from a group of enterotoxaemic calves (n=8, 41 isolates). PCR results revealed the exclusive presence of the typical "consensus"cpb2 in the enterotoxaemic group. Western blot analysis demonstrated that the typical variant of CPB2 was often expressed in isolates from enterotoxaemic calves (43.9%) and infrequently in isolates from healthy cattle (6.9%). These data suggest that the typical variant of the CPB2 toxin may play a role in the pathogenesis of cattle enterotoxaemia.  相似文献   

9.
Clostridium perfringens which is a causative agent of several diseases in animals and humans is capable of producing a variety of toxins. Isolates are typed into five types on the basis of the presence of one or more of the four major toxins genes, i.e. cpa, cpb, etx, and iap. A decade ago another toxin termed beta2 (beta2) and its gene (cpb2) were identified. Two alleles of cpb2 are known and a possible link between differences in gene expression and allelic variation has been reported. A correlation between the level of expression and the origin of the isolates has also been suggested. The demonstration and typing of the cpb2 gene in the genome of isolates can be seen as a vital part of research on the role of the beta2 toxin in the pathogenesis of disease. This study describes a PCR with a single primer set which in contrast to published primer sets recognizes both alleles. Subsequent restriction enzyme analysis of the PCR product enables typing of the alleles. Applying this protocol on a total of 102 isolates, a sub-variant was found which occurred only in C. perfringens isolates from pigs and appeared to be the predominant variant found in C. perfringens isolates from this species.  相似文献   

10.
A study was carried out in the South of Italy to assess the role of clostridia in neonatal diseases of lambs and kids. Eighty-seven lambs and 15 kids belonging to 25 flocks were examined and Clostridium perfringens was the microorganism most commonly identified. C. perfringens isolates were analysed by polymerase chain reaction (PCR), in order to determine the prevalence of the genes cpa, cpb, cpb2, etx, iap and cpe. The most prevalent toxin-type of C. perfringens was found to be type A found in 84% of the cases with clostridial enterotoxaemia. No C. perfringens type B, C or E were found. C. perfringens type D was isolated in 16% of the cases. About 24% of the isolates were cpb2 positive. The prevalence of cpb2 across the different C. perfringens types varied. The beta(2)-toxin gene cpb2 was detected in 4/21 (19%) type A isolates, in 1/2 type D isolates, and in 1/2 type DE (cpe-carrying type D) isolates. The high rate of positivity to cpb2 among the isolates suggests that a vaccine based on the beta(2)-toxin, should be included in the vaccination schedule of the animals to confer adequate protection and to prevent the disease.  相似文献   

11.
Clostridial enteric infections in pigs.   总被引:1,自引:0,他引:1  
Clostridium perfringens types A and C and Clostridium difficile are the principal enteric clostridial pathogens of swine. History, clinical signs of disease, and gross and microscopic findings form the basis for a presumptive diagnosis of C. perfringens type-C enteritis. Confirmation is based on isolation of large numbers of type-C C. perfringens and/or detection of beta toxin in intestinal contents. Diagnosis of C. perfringens type-A infection, however, remains controversial, mostly because the condition has not been well defined and because type-A organisms and their most important major (alpha) toxin can be found in intestinal contents of healthy and diseased pigs. Isolation of large numbers of C. perfringens type A from intestinal contents, in the absence of other enteric pathogens, is the most reliable criterion on which to base a diagnosis. Recently, beta2 (CPB2) toxin-producing C. perfringens type A has been linked to disease in piglets and other animals. However, implication of CPB2 in pathogenesis of porcine infections is based principally on isolation of C. perfringens carrying cpb2, the gene encoding CPB2, and the specific role of CPB2 in enteric disease of pigs remains to be fully defined. Clostridium difficile can also be a normal inhabitant of the intestine of healthy pigs, and diagnosis of enteric infection with this microorganism is based on detection of its toxins in feces or intestinal contents.  相似文献   

12.
Due to the diminished use of growth-promoting antibiotics in the European Union, Clostridium perfringens induced necrotic enteritis and subclinical disease have become important threats to poultry health. A study was set up to genotypically and phenotypically characterise C. perfringens isolates from poultry flocks with different health status. Animals from healthy flocks were sampled by cloacal swabs, while intestinal and liver samples of animals suffering from necrotic enteritis were analysed. A total of 27 isolates was obtained from 23 broiler flocks without clinical problems and 36 isolates were obtained from 8 flocks with clinical problems. Using PFGE typing, high genetic diversity was detected between isolates from different flocks. Isolates derived from flocks where disease outbreaks occurred were clonal within each flock, but each flock harboured a different clone. All isolates were of toxin type A. Isolates from 5 out of 35 PFGE types carried the cpb2 gene, encoding the beta2 toxin, and isolates from 2 out of 35 PFGE types harboured the cpe gene, encoding the enterotoxin. In vitro alpha toxin production for all isolates was quantified by enzyme-linked immunosorbent assay. It was shown that in vitro alpha toxin production of C. perfringens isolates from diseased flocks was not higher than in vitro alpha toxin production from isolates derived from healthy flocks.  相似文献   

13.
To investigate the possible role of cpb2-positive type A Clostridium perfringens in neonatal diarrheal illness in pigs, the jejunum and colon of matched normal and diarrheic piglets from 10 farms with a history of neonatal diarrhea were examined grossly and by histopathology, and tested for C. perfringens, for C. perfringens beta2 (CPB2) toxin, as well as for Clostridium difficile toxins, Salmonella, enterotoxigenic Escherichia coli, rotavirus, transmissible gastroenteritis (TGE) virus, and coccidia. Clostridium perfringens isolates were tested using a multiplex real-time polymerase chain reaction (PCR) to determine the presence of cpa, consensus and atypical cpb2, and other virulence-associated genes. The numbers of C. perfringens in the intestinal contents were lower in diarrheic piglets (log10 5.4 CFU/g) compared with normal piglets (log10 6.5 CFU/g) (P < 0.05). The consensus cpb2 was present in 93% of isolates in each group, but atypical cpb2 was less common (56% healthy, 32% diarrheic piglets isolates, respectively, P < 0.05). The presence of CPB2 toxin in the intestinal contents of normal and diarrheic piglets did not differ significantly. Clostridium difficile toxins and rotavirus were each detected in 7 of the 21 (33%) diarrheic piglets. Rotavirus, C. difficile toxins, Salmonella, or enterotoxigenic E. coli were concurrently recovered in different combinations in 4 diarrheic piglets. The cause of diarrhea in 8 of the 21 (38%) piglets on 6 farms remained unknown. The etiological diagnosis of diarrhea could not be determined in any of the piglets on 2 of the farms. This study demonstrated that the number of cpb2-positive type A C. perfringens in the intestinal contents was not a useful approach for making a diagnosis of type A C. perfringens enteritis in piglets. Further work is required to confirm whether cpb2-carrying type A C. perfringens have a pathogenic role in enteric infection in neonatal swine.  相似文献   

14.
为验证重组α毒素对携带非典型cpb2基因的A型产气荚膜梭菌的免疫保护性,本研究应用PCR技术,从某牛场牛源A型产气荚膜梭菌G1分离株中扩增出1 194 bp的α毒素编码基因(cpa)和795 bp的β2毒素编码基因(cpb2)。经BLAST分析显示,G1分离株携带的cpb2基因与14个菌株的非典型cpb2基因的氨基酸序列同源性为95.1%~98.9%,与典型cpb2基因(L77695)的氨基酸序列同源性为61.7%。这表明,G1的cpb2基因为非典型cpb2基因。同时分别将cpa和cpb2基因扩增产物克隆于原核表达载体中,构建重组表达质粒pET-a和pET-b2,重组菌经IPTG诱导表达重组蛋白,将其纯化后单独及联合免疫小鼠进行免疫保护试验。结果显示,单独免疫重组α毒素蛋白组以及联合免疫重组β2毒素蛋白组的小鼠,均可以抵抗至少6倍最小致死量(MLD)的G1外毒素(包含α毒素和非典型β2毒素)的攻击,也可以完全抵抗至少6 MLD的G2外毒素(不包含β2毒素)的攻击。表明,重组α毒素蛋白对含有及不含有非典型β2毒素的A型产气荚膜梭菌均具有良好的免疫保护作用。  相似文献   

15.
Four hundred and twenty intestinal content samples (not including intestinal tissues) of freshwater fishes (60 silver carps, 100 carps, 100 crucian carps, 60 catfishes and 100 zaieuws) caught from one water reservoir were examined bacteriologically for the occurrence of C. perfringens. Isolates were examined by polymerase chain reaction (PCR) for genes encoding the four lethal toxins (alpha, beta, epsilon and iota) for classification into toxin types and for genes encoding enterotoxin and the novel beta2 toxin for further subclassification. C. perfringens could be isolated in 75 intestinal contents samples (17.9%) from freshwater fish including: 13 silver carps, 2 carps, 12 crucian carps, 40 zaieuws, and 8 catfishes. In 75 isolates, 58 strains (77.3%) were C. perfringens toxin type C (alpha and beta toxin positive), 13 strains (17.3%) were toxin type A (alpha toxin positive) and 4 strains (5.3%) were toxin type B (alpha, beta and epsilon toxin positive). In addition, the gene encoding for beta2 toxin was found in 47 strains (62.7%) of all the isolates, seven from type A, two from type B, and 38 from type C. The gene encoding for enterotoxin was not found in any isolate. These amplified toxin gene fragment were cloned and sequenced and compared with reference strains, the identity varied from 98.15% to 99.29%. This is the first report of C. perfringens alpha, beta, epsilon, beta2 toxins in freshwater fish and of beta, epsilon toxins in fish in general, and is the first discovery that the beta2 toxin could be detected in strains of type B. The origin of this bacterium and its importance to human food poisoning in freshwater fish is discussed.  相似文献   

16.
Up to 60% of cases of equine colitis have no known cause. To improve understanding of the causes of acute colitis in horses, we hypothesized that Clostridium perfringens producing enterotoxin (CPE) and/or beta2 toxin (CPB2) are common and important causes of severe colitis in horses and/or that C. perfringens producing an as-yet-undescribed cytotoxin may also cause colitis in horses. Fecal samples from 55 horses (43 adults, 12 foals) with clinical evidence of colitis were evaluated by culture for the presence of Clostridium difficile, C. perfringens, and Salmonella. Feces were also examined by enzyme-linked immunosorbent assay (ELISA) for C. difficile A/B toxins and C. perfringens alpha toxin (CPA), beta2 toxin (CPB2), and enterotoxin (CPE). Five C. perfringens isolates per sample were genotyped for the following genes: cpa, cpb, cpb2 consensus, cpb2 atypical, cpe (enterotoxin), etx (epsilon toxin), itx (iota toxin), netB (necrotic enteritis toxin B), and tpeL (large C. perfringens cytotoxin). The supernatants of these isolates were also evaluated for toxicity for an equine cell line. All fecal samples were negative for Salmonella. Clostridium perfringens and C. difficile were isolated from 40% and 5.4% of samples, respectively. All fecal samples were negative for CPE. Clostridium perfringens CPA and CPB2 toxins were detected in 14.5% and 7.2% of fecal samples, respectively, all of which were culture-positive for C. perfringens. No isolates were cpe, etx, netB, or tpeL gene-positive. Atypical cpb2 and consensus cpb2 genes were identified in 15 (13.6%) and 4 (3.6%) of 110 isolates, respectively. All equine C. perfringens isolates showed far milder cytotoxicity effects than a CPB-producing positive control, although cpb2-positive isolates were slightly but significantly more cytotoxic than negative isolates. Based on this studied population, we were unable to confirm our hypothesis that CPE and CPB2-producing C. perfringens are common in horses with colitis in Ontario and we failed to identify cytotoxic activity in vitro in the type A isolates recovered.  相似文献   

17.
One hundred and fourteen strains of Clostridium perfringens, isolated from the intestinal contents of cattle, sheep, and chickens with enteritis or other disease conditions were studied for their ability to produce enterotoxin. Reversed passive hemagglutination, fluorescent antibody and immunodiffusion tests were used. On the basis of the reversed passive hemagglutination titres, supported by the other two tests, enterotoxigenicity of the strains was arbitrarily classified into two categories: highly enterotoxigenic and potentially enterotoxigenic, with 12% falling into each category. All the highly enterotoxigenic strains originated from cases of enteritis and included all three animal species. Apart from enterotoxigenicity, one C. perfringens strain produced beta toxin (type C) and 21 strains produced large amounts of alpha-toxin. The latter strains were predominantly associated with necrotic enteritis in chickens.  相似文献   

18.
Forty-two Clostridium perfringens type A strains isolated from cases of diarrhoea in pigs were tested for their ability to sporulate and produce enterotoxin in three different sporulation media. Enterotoxin was produced by 11 of the 42 C perfringens type A isolates (26.2 per cent). Thirteen isolates (30.9 per cent) produced spores at a frequency of 10 per cent or more. Spore production was recorded in 24 (57.1 per cent) of the isolates. The titres of enterotoxin produced by the isolates ranged from 1:2 to 1:64. The enterotoxin produced was compared with that produced by a reference strain and found to be identical. Ninety-eight of 106 sow sera from four different farms were found to possess antibodies to C perfringens type A enterotoxin with titres ranging from 1:2 to 1:64. Spores of C perfringens type A were detected in pig faeces and intestinal contents in 20 of 23 cases of enteritis at levels of up to 5 x 10(6) cells/g of faeces. Smaller numbers of spores, up to 2 x 10(4)/g were present in five of 10 samples from non-diarrhoeic pigs. Enterotoxin was demonstrated by Vero cell assay in five of the 23 samples from diarrhoeic pigs but in none of the 10 samples from non-diarrhoeic animals. It was clear from these studies that C perfringens type A strains in pigs could sporulate and produce enterotoxin in vitro and in vivo and that enteritis might be associated with sporulating organisms in vivo.  相似文献   

19.
Twenty-four Actinobacillus suis isolates obtained from several species of non-porcine mammals were compared to the representative porcine strains, ATCC 15557 (serotype O1) and H89-1173 (serotype O2), by O serotyping, DNA fingerprinting, PCR amplification of apxICA, apxIICA and apxIIICA toxin genes and by rrs (16S rRNA) gene sequencing. Only two strains, both equine, reacted with O1 antiserum while two others, one canine and the other feline, reacted with O2 antiserum. One equine strain reacted weakly with both antisera. No amplification of apx genes was found with the non-porcine O1 or the "not O1/O2" strains but amplification of the apxICA and apxIICA genes was observed with the two O2 strains. In addition, these two O2 strains had both BamHI and BglII fingerprints that were very similar to the porcine O2 reference strain, H89-1173 and rrs gene sequences that were identical to the A. suis reference strain ATCC 15557. Taken together, these data suggest that although many non-porcine A. suis isolates are not A. suis (sensu stricto), some isolates are genotypically as well as phenotypically similar to A. suis.  相似文献   

20.
从新疆维吾尔自治区某牛场采集的3份疑似出血性肠炎病料中分离到8株产气荚膜梭菌,用PCR扩增保守基因16SrRNA,并进行序列测定和同源性分析,再通过多重PCR方法扩增型特异性基因进行分离菌株的分型鉴定。结果显示,所分离的8株产气荚膜梭菌之间16S rRNA基因同源型为100%,与GenBank参比序列同源性在99.8%以上,确定为产气荚膜梭菌。遗传进化分析表明,本次分离的8株产气荚膜梭菌之间拥有共同起源,但与所用的参考菌株分属不同来源。多重PCR扩增结果显示,8株菌株均为产气荚膜梭菌A型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号