首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to compare 4 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, 2x-low-cost filtration, bag filtration, and use of a filter tested against particles derived from dioctylphthalate (DOP). The HEPA-filtration system used a prefilter screen, a bag filter (Eurovent [EU] 8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (prefilter), 2 fiberglass furnace filters, and 2 electrostatic furnace filters. Bag filtration involved the use of a filter rated EU8 and a minimum efficiency reporting value (MERV) of 14. The 95%-DOP, 0.3-microm-filtration system involved a pleat-in-pleat V-bank disposable filter with a 95% efficiency rating for particles 0.3 microm or greater in diameter and ratings of EU9 and MERV 15. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct containing the treatments. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 0 of the 10 HEPA-filtration replicates, 2 of the 10 bag-filtration replicates, 4 of the 10 low-cost-filtration replicates, 0 of the 10 95%-DOP, 0.3-microm-filtration replicates, and all 10 of the control replicates. Using a similar approach, we further evaluated the HEPA- and 95%-DOP, 0.3-microm-filtration systems. Infection was not observed in any of the 76 HEPA-filtration replicates but was observed in 2 of the 76 95%-DOP, 0.3-microm replicates and 42 of the 50 control replicates. Although the difference between the 95%-DOP, 0.3-microm and control replicates was significant (P < 0.0005), so was the level of failure of the 95%-DOP, 0.3-microm system (P = 0.02). In conclusion, under the conditions of this study, some methods of air filtration were significantly better than others in reducing aerosol transmission of PRRSV, and HEPA filtration was the only system that completely prevented transmission.  相似文献   

2.
The purpose of this study was to evaluate the ability of a commercial air-filtration system to reduce aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV). The system consisted of a pre-filter and 2 filters with EU8 and EU13 ratings. In each of 4 trials, 5 PRRSV-infected donor pigs and 1 naive recipient pig (each 25 kg) were housed in opposing chambers connected by a 1.3-m-long duct. The system filtered air entering 1 recipient-pig chamber (filtered facility) from the donor-pig chamber but not a 2nd recipient-pig chamber (nonfiltered facility). The donor pigs had been experimentally infected with PRRSV MN-184, an isolate previously documented to be shed at a high frequency in contagious aerosols. On days 3 to 7 after infection of the donors, the 2 groups were housed in their respective chambers for 6 h and then in separate facilities, where samples were collected for testing by polymerase chain reaction and enzyme-linked immunosorbent assay over 14 d. Aerosol transmission was observed in 6 of the 20 replicates in the nonfiltered facility, whereas all pigs remained PRRSV-negative in the filtered facility; the difference was significant at P < 0.01. Thus, under the conditions of this study, the air-filtration system evaluated appeared to be highly effective at reducing aerosol transmission of PRRSV.  相似文献   

3.
The aim of this study was to develop a model to evaluate the aerosol transmission of porcine reproductive and respiratory disease virus (PRRSV). PRRSV (MN 30-100 strain, total dose 3 x 10(6) virus particles) was aerosolised and transported up to 150 m and a portable air sampler was used to collect air samples at 1, 30, 60, 90, 120 and 150 m (five replicates at each distance) and the air samples were tested by TaqMan PCR and virus isolation. The infectivity of the aerosolised PRRSV was tested by exposing six PRRSV-naive pigs for three hours to aerosolised virus that had been transported 150 m. PRRSV RNA was detected in all five replicate air samples collected at 1, 30, 60 and 90 m, in four of the five collected at 120 m, and in three of the five collected at 150 m. Infectious PRRSV was detected by virus isolation at 1 and 30 m (all five replicates), 60, 90 and 120 m (three of the five) and 150 m (two of the five). There was a 50 per cent reduction in the log concentration of PRRSV RNA every 33 m. Three of the six pigs exposed to PRRSV-positive aerosols became infected, and PRRSV RNA was detected in air samples and on swab samples collected from the interior of the chambers that housed the infected pigs while they were being exposed.  相似文献   

4.
The objective of this study was to evaluate the role of different variables (animal age, bacterial coinfection, and isolate pathogenicity) on the shedding of Porcine reproductive and respiratory syndrome virus (PRRSV) in aerosols. Animals were grouped according to age (2 versus 6 mo) and inoculated with a PRRSV isolate of either low (MN-30100) or high (MN-184) pathogenicity. Selected animals in each group were also inoculated with Mycoplasma hyopneumoniae. The pigs were anesthetized and aerosol samples (1000 breaths/sample) collected on alternating days from 1 to 21 after PRRSV inoculation. The results indicated that animal age (P = 0.09), M. hyopneumoniae coinfection (P = 0.09), and PRRSV isolate pathogenicity (P = 0.15) did not significantly influence the concentration of PRRSV in aerosols. However, inoculation with the PRRSV MN-184 isolate significantly increased the probability of aerosol shedding (P = 0.00005; odds ratio = 3.22). Therefore, the shedding of PRRSV in aerosols may be isolate-dependent.  相似文献   

5.
6.
Mechanical transmission of porcine reproductive and respiratory syndrome virus (PRRSV) throughout a coordinated sequence of events that replicated common farm worker behavior during warm weather (10°C to 16°C) was assessed using a field-based model. The model involved fomites (boots and containers), vehicle sanitation, transport, and personnel movement. In a previous study, the model successfully demonstrated mechanical transmission of PRRSV in 8 out of 10 replicates during cold weather. A field strain of PRRSV was inoculated into carriers consisting of soil samples, which were adhered to the undercarriage of a vehicle. The vehicle was driven approximately 50 km to a commercial truck washing facility where the driver's boots contacted the carriers during washing, introducing the virus to the vehicle interior. The vehicle was then driven 50 km to a simulated farm site, and the driver's boots mechanically spread virus into the farm anteroom. Types of containers frequently employed in swine farms contacted drippings from the footwear on the anteroom floor. The truck wash floor, vehicle cab floor mats, boot soles, anteroom floor, and the ventral surface of containers were sampled to track the virus throughout the model. Ten replicates were conducted, along with sham-inoculated controls, and control replicates. In 2 replicates, infectious PRRSV was detected on the anteroom floor and in 1 replicate, infectious PRRSV was detected on the surface of the container by swine bioassay. All sham-inoculated controls and protocol controls were negative. These results indicate that mechanical transmission of PRRSV throughout a coordinated sequence of events in warm weather can occur, but in contrast to data from studies conducted during cold weather, it appears to be a relatively infrequent event.  相似文献   

7.
The purpose of this study was to evaluate the potential for houseflies (Musca domestica) to mechanically transport and transmit porcine reproductive and respiratory syndrome virus (PRRSV) between pig populations under controlled field conditions. The study employed swine housed in commercial livestock facilities and a release-recapture protocol involving marked (ochre-eyed) houseflies. To assess whether transport of PRRSV by insects occurred, ochre-eyed houseflies were released and collected from a facility housing an experimentally PRRSV-inoculated population of pigs (facility A) and collected from a neighboring facility located 120 m to the northwest that housed a naïve pig population (facility B). All samples were tested for PRRSV RNA by polymerase chain reaction (PCR). To assess transmission between the 2 populations, blood samples were collected from naïve pigs in facility B at designated intervals and tested by PCR. A total of 7 replicates were conducted. During 2 of 7 replicates (1 and 5), PCR-positive ochre-eyed houseflies were recovered in facility B and pigs in this facility became infected with PRRSV. Chi-squared analysis indicated that the presence of PRRSV in an insect sample was significantly (P = 0.0004) associated with infection of facility B pigs. Porcine reproductive and respiratory syndrome virus was not recovered from other reported routes of transmission during the study period, including air, fomites, and personnel. In conclusion, while an insufficient number of replicates were conducted to predict the frequency of the event, houseflies may pose some level of risk for the transport and transmission of PRRSV between pig populations under field conditions.  相似文献   

8.
To evaluate the transmission of Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus (PRRSV) by aerosol as either a single or mixed infection, 28 pigs were inoculated intratracheally with M hyopneumoniae on day 0 and infected intranasally with PRRSV on day 35; they were housed together in a barn. To assess the aerosol transmission of M hyopneumoniae as a single infection, one trailer (A) containing 10 five-week-old sentinel pigs was placed along the south side of the infected barn (1 m from the fans) on day 28. To assess the mixed infection, two trailers (B and C), each containing 10 five-week-old sentinel pigs, were placed along each side of the barn on day 42. The sentinel pigs in the three trailers were exposed to the exhaust from the fans for seven days. No M hyopneumoniae infection was detected in the sentinel pigs in trailer A, but it was detected in the sentinel pigs in trailers B and C. No PRRSV was detected in any of the sentinel pigs.  相似文献   

9.
Using a field-based model, mechanical transmission of porcine reproductive and respiratory syndrome virus (PRRSV) was assessed throughout a coordinated sequence of events that replicated common farm worker behavior during cold weather (< 0°C). The model involved fomites (boots and containers), vehicle sanitation, transport, and the movement of personnel. A field strain of PRRSV was inoculated into carriers consisting of snow and water, and carriers were adhered to the undercarriage of a vehicle. The vehicle was driven approximately 50 km to a commercial truck washing facility where the driver's boots contacted the carriers during washing, introducing the virus to the vehicle interior. The vehicle was then driven 50 km to a simulated farm site, and the driver's boots mechanically spread virus into the farm anteroom. Types of containers frequently employed in swine farms (styrofoam semen cooler, metal toolbox, plastic lunch pail, and cardboard animal health product shipping parcel) contacted drippings from footwear on the anteroom floor. The truck wash floor, vehicle cab floor mats, boot soles, anteroom floor, and the ventral surface of containers were sampled to track the virus throughout the model. Ten replicates were conducted, along with sham-inoculated controls. At multiple sampling points PRRSV nucleic acid was detected in 8 of 10 replicates. In each of the 8 PCR-positive replicates, infectious PRRSV was detected on the surfaces of containers by virus isolation or swine bioassay. All sham-inoculated controls were negative. These results indicate that mechanical transmission of PRRSV can occur during coordinated sequence of events in cold weather.  相似文献   

10.
Four intervention strategies were tested for their ability to prevent the mechanical transmission of porcine reproductive and respiratory syndrome virus (PRRSV): the use of disposable plastic boots to prevent contamination of personal footwear, the use of boot baths to disinfect PRRSV-contaminated plastic boots, the use of plastic slatted (Polygrate) flooring in the anteroom to prevent PRRSV contamination of incoming personal footwear, and the use of bag-in-a-box shipping methods to prevent PRRSV contamination of the contents of a container destined for a swine farm. Ten PRRSV-positive replicates and 10 PRRSV-negative (sham-inoculated) replicates were used for each strategy. Swabs were collected from selected sites and tested by TaqMan polymerase chain reaction for PRRSV RNA and by swine bioassay to confirm the presence of infectious PRRSV. Results indicated that the use of disposable boots, bleach boot baths or bag-in-a-box shipping methods was highly efficacious in preventing mechanical transmission of PRRSV. In contrast, the use of Polygrate flooring in the anteroom did not prevent contamination of personal footwear. The numbers of PRRSV-positive samples from the Polygrate surface and the soles of incoming footwear placed directly on the Polygrate surface were not significantly different (P = 0.24) from those of footwear that directly contacted the floor of the contaminated anteroom. Although these results are promising, this study should be considered a pilot project and the intervention strategies not considered biosecurity protocols. The model used may or may not represent field conditions. Therefore, the information should be used to develop larger experimental studies, with sufficient statistical power, in combination with field-based epidemiologic studies to better assess the role of mechanical transmission of PRRSV under field conditions.  相似文献   

11.
We conducted an experiment to determine the ability of vaccine against Porcine reproductive and respiratory syndrome virus (PRRSV) to reduce the transmission of PRRSV among pigs. At the end of the experiment, transmission rates did not differ significantly (P = 0.61) between the vaccinated and nonvaccinated pigs, the mean R-values being 0.598 (95% confidence interval [CI] 0.136 to 3.218) and 0.264 (95% CI 0.008 to 2.266), respectively. The unusually low rate of PRRSV transmission in both groups may not have provided a sufficient challenge to detect a vaccine effect. Several factors could affect the rate of PRRSV transmission: isolate virulence, inoculation dose, inoculation route, number of passages of the challenge virus in cell culture, and population size. Of these, isolate virulence appears to be the most important factor associated with the low transmissibility observed in this study. More studies comparing rates of transmission between PRRSV isolates with diverse levels of virulence are needed to better understand this association.  相似文献   

12.
OBJECTIVE: To determine effects of intranasal inoculation with porcine reproductive and respiratory syndrome virus (PRRSV) or Bordetella bronchiseptica on challenge with nontoxigenic Pasteurella multocida in pigs. ANIMALS: Seventy 3-week-old pigs. PROCEDURE: In experiment 1, pigs were not inoculated (n= 10) or were inoculated with PRRSV (10), P. multocida (10), or PRRSV followed by challenge with P. multocida (10). In experiment 2, pigs were not inoculated (n = 10) or were inoculated with B. bronchiseptica (10) or PRRSV and B. bronchiseptica (10); all pigs were challenged with P. multocida. Five pigs from each group were necropsied 14 and 21 days after initial inoculations. RESULTS: Pasteurella multocida was not isolated from tissue specimens of pigs challenged with P. multocida alone or after inoculation with PRRSV. However, in pigs challenged after inoculation with B. bronchiseptica, P. multocida was isolated from specimens of the nasal cavity and tonsil of the soft palate. Number of bacteria isolated increased in pigs challenged after coinoculation with PRRSV and B. bronchiseptica, and all 3 agents were isolated from pneumonic lesions in these pigs. CONCLUSIONS AND CLINICAL RELEVANCE: Infection of pigs with B. bronchiseptica but not PRRSV prior to challenge with P. multocida resulted in colonization of the upper respiratory tract and tonsil of the soft palate with P. multocida. Coinfection with PRRSV and B. bronchiseptica predisposed pigs to infection of the upper respiratory tract and lung with P. multocida. Porcine reproductive and respiratory syndrome virus and B. bronchiseptica may interact to adversely affect respiratory tract defense mechanisms, leaving pigs especially vulnerable to infection with secondary agents such as P. multocida.  相似文献   

13.
This study was conducted to delineate potential sites of exit and duration of shedding of porcine reproductive and respiratory syndrome virus (PRRSV). Two experiments of 6 pigs each were conducted. Pigs were farrowed in isolation, weaned at 7 days of age, and housed in individual HEPA filtered isolation chambers. In each experiment, 3 pigs served as controls and 3 were inoculated intranasally with PRRSV (ATCC VR-2402) at 3 weeks of age. In a first experiment, on days 7, 14, 21, 28, 35, and 42 post inoculation (PI), pigs were anesthetized and intubated. The following samples were collected: serum, saliva, conjunctival swabs, urine by cystocentesis, and feces. Upon recovery from anesthesia, the endotracheal tube was removed, rinsed, and the rinse retained. In the second experiment, the sampling schedule was expanded and serum, saliva, and oropharyngeal samples were collected from day 55 to day 124 PI at 14 day intervals. Virus was isolated in porcine alveolar macrophages up to day 14 from urine, day 21 from serum, day 35 from endotracheal tube rinse, day 42 from saliva, and day 84 from oropharyngeal samples. No virus was recovered from conjunctival swabs, fecal samples, or negative control samples. This is the first report of isolation of PRRSV from saliva. Virus-contaminated saliva, especially when considered in the context of social dominance behavior among pigs, may play an important role in PRRSV transmission. These results support previous reports of persistent infection with PRRSV prolonged recovery of virus from tonsils of swine.  相似文献   

14.
A study was conducted to assess the effect of UV(254) on the concentration and viability of PRRSV on surfaces and materials commonly encountered on swine farms. A standard quantity (5 × 10(6)TCID(50), total dose) of a PRRSV modified live vaccine virus was inoculated onto 2 matched sets of surfaces/materials including wood, plastic, latex, rubber, styrofoam, metal, leather, cloth, concrete, cardboard, glass and paper. One set was exposed to UV(254) radiation (treatments) and the other to incandescent light (controls) for a 24h period. During this time, treatments and controls were swabbed at 10 min intervals from 0 to 60 min post-inoculation (PI) and again at 24h PI. The quantity of PRRSV RNA on each item at each sampling time was calculated by RT-PCR and the presence of viable PRRSV in each sample was determined by swine bioassay. A significant reduction (p<0.0001) in the quantity of PRRSV RNA was demonstrated at 24h PI independent of treatment. In addition, a significant reduction (p=0.012) in the number of UV(254)-treated surfaces which harbored viable virus was observed at 60 min (0/12 positive) when compared to control surfaces (5/12 positive). In addition, all UV(254) treated samples collected between 10 and 50 min PI were bioassay negative. These results suggest that UV(254) is an effective means to inactivate PRRSV on commonly encountered farm surfaces and materials and inactivation can be accomplished following 10 min of exposure.  相似文献   

15.
The current study was performed to determine if porcine reproductive and respiratory syndrome virus (PRRSV) could be transmitted to pigs by feeding muscle tissue obtained from recently infected pigs. Muscle obtained from pigs infected with either a European strain (EU donor pigs) or American strain (US donor pigs) of PRRSV was fed to PRRSV-free receiver pigs. The donor pigs were slaughtered 11 days post-infection (dpi). PRRSV was detected by conventional virus isolation in muscle at 11 dpi from 7 of 12 EU donor pigs and 5 of 12 US donor pigs. In contrast to conventional virus isolation, all muscle samples from infected pigs were positive for viral nucleic acid by PCR, except for muscle from one animal infected with the American strain of PRRSV. Five hundred grams of raw semimembranosus muscle from each of the donor pigs was fed over a 2 days period (250 g per day) to each of two receiver pigs (48 receiver pigs). The receiver pigs were housed separately in five groups. One of the five groups was fed muscle obtained from US donor pigs that was also spiked with the American strain of PRRSV. Sentinel pigs were placed in-contact with the group of receiver pigs fed spiked muscle. All receiver pigs became viraemic by 6 days post-feeding (dpf). There was evidence of horizontal transmission with sentinel pigs, in-contact with receiver pigs, becoming viraemic. The study demonstrates that PRRSV could be infectious through the oral route via the feeding of meat obtained from recently infected pigs.  相似文献   

16.
This study was conducted to determine whether the ingestion of mannan oligosaccharide (MOS, Bio-Mos) alters the immune response of nursery pigs challenged with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 64 pigs (3 wk old), free of PRRSV, were used in 2 separate but similar experiments conducted sequentially. Pigs were blocked by initial BW. Sex and ancestry were equalized across treatments. Pigs were randomly assigned from within blocks to 1 of 4 treatments in a 2 × 2 factorial arrangement [2 types of diet: control (0%) and MOS addition (0.2%); 2 levels of PRRSV: with and without]. There were 8 replicate chambers of 2 pigs each. After 2 wk of a 4-wk period of feeding the treatments, pigs were intranasally inoculated with PRRSV or a sterile medium at 5 wk of age. The PRRSV challenge decreased ADG, ADFI, and G:F throughout the experiment (P < 0.001). Feeding MOS improved G:F of the pigs during d 7 to 14 (P=0.041) postinfection (PI). Serum concentrations of tumor necrosis factor (TNF)-α, C-reactive protein, and haptoglobin were increased by PRRSV (P < 0.001). The MOS × PRRSV interaction was significant for TNF-α at d 14 PI (P=0.028), suggesting that infected pigs fed MOS had less TNF-α than those fed the control. Dietary MOS increased serum IL-10 at d 14 PI (P=0.036). Further, MOS-fed pigs had greater numbers of white blood cells (WBC) at d 3 (P=0.048) and 7 PI (P=0.042) and lymphocytes at d 7 PI (P=0.023) than control-fed pigs. In contrast, PRRSV decreased (P < 0.01) WBC numbers until d 14 PI. Dietary MOS appeared (P=0.060) to increase the neutrophils in PRRSV-infected pigs at d 3 PI, but no (P=0.202) MOS × PRRSV interaction was found. Infection with PRRSV increased rectal temperature (RT) of pigs at d 3 PI (P < 0.001) and continued to affect the infected pigs fed the control diet until d 14 PI. The MOS × PRRSV interaction for RT was found at d 7 (P < 0.01) and 10 (P=0.098) PI, indicating that the infected pigs fed MOS had a decreased RT compared with those fed the control. This could explain why feed efficiency was improved by MOS. No effect (P > 0.05) of treatments on viremia or PRRSV-specific antibody was observed. These results suggest that MOS is associated with rapidly increased numbers of WBC at the early stage of infection and alleviates PRRSV-induced effects on G:F and fever. The results also indicate that the reduced intensity of inflammation by MOS may be related to changes in inflammatory mediator levels at the end of the acute phase.  相似文献   

17.
Abstract

In two separate tests rapid sand filtration was evaluated as a means of removing the waterborne triactinomyxon actinospores (TAMs) of Myxobolus cerebralis, the causative agent of salmonid whirling disease, from contaminated water. In the first test we independently evaluated two sizes of sandblast sands: #4010 (effective size, (ES) = 250 μm) and #4060 (ES = 300 μm). The product number relates to the sand's size composition, and each had a different effective size. Effective size is defined by that size fraction at which only 10% of smaller particles remain. Rainbow trout Oncorhynchus mykiss were stocked into two separate systems with filters containing either one or the other size of sand, and TAMs were added to each system three times per week for all but the final 2 weeks of the 16-week test. A positive control (in which fish were exposed to the same number of TAMs without filtration) and a negative control (in which fish were not exposed to TAMs) were also included. Infection quantified by the pepsin?trypsin digest method showed no infection in fish from the two filter treatments. The average myxospore load among the positive controls was over 90,000 spores per fish head. In a final test, a nonreplicated comparison of filtration systems was conducted. The three systems used were as follows: (1) a drum filter in line with a UV filter, (2) a media filter followed by an ultraviolet (UV) unit, and (3) a sand filter containing three layers of sand. Water contaminated with TAMS was run through each filtration system, as well as through a positive control system, to raceways containing rainbow trout. Both of the dual-component commercial systems were 100% effective at preventing infection; the sand filter was 92% effective.  相似文献   

18.
为了解猪繁殖与呼吸综合征病毒(PRRSV)的变异情况,本研究利用RT-PCR方法对2006年~2009年在我国部分地区分离鉴定的7株PRRSV分别进行9段基因片段扩增,测序分析表明,获得的病毒全基因序列与PRRSV JXA1变异株高度同源。并与GenBank中登录的其他70株PRRSV全基因序列进行遗传分析,根据构建的遗传进化树分析表明,中国大陆PRRSV分离株包含美洲型和欧洲型,美洲型可分为3个亚群,亚群1主要为以JXA1株为代表的病毒株,本研究中的7个分离株均为亚群1,其GP5主要中和抗原表位高度变异;亚群2主要为以CH-1a株为代表的病毒株;亚群3主要为以VR-2332株为代表的病毒株。欧洲型病毒株BJEU06-1、NMEU09-1分属于不同亚型。本实验为深入研究该病毒的遗传与变异及其分子流行病学研究奠定基础。  相似文献   

19.
中药复方提取物经临床验证对预防猪繁殖与呼吸综合征病毒(PRRSV)、猪圆环病毒2型等引起的疾病有效。本试验测定细胞安全浓度范围内中药复方提取物对细胞抗PRRSV感染能力的影响。试验用中药主要成分为虎杖、女贞子、杠板归等。提取方法为水浸,旋转蒸发干燥。制成生药原液浓度为25mg/mL,稀释成2500、1250、625.0、312.5、156.25、78.13、39.06、19.53、9.77、4.88ug/mL。培养细胞选用Marc-145。试验方法:1)细胞培养液中加入0.1mL中药提取物培养2h后加入PRRSV病毒液0.1mL,培养72h;2)细胞培养液中加入病毒液0.1mL培养2h后加入中药提取物0.1mL,培养72h;3)同时将各浓度中药提取物0.1mL和病毒液0.1mL加入细胞培养液中;3种加药方式均设细胞对照和病毒对照,每个浓度设4~6个重复。结果表明,第1种加药方式下,19.53—2500ug/mL效果显著,其中39.06ug/mL效果最好;第2种加药方式下,156.25~2500ug/mL效果显著,1250ug/mL效果最佳;第3种方式下,19.53—2500ug/mL效果显著,2500ug/mL效果最好。这可能是中药复方提取物预防PRRSV感染的作用机制之一。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号