首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan‐based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long‐term results of therapeutic procedures including cell‐based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage‐derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT‐qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells.  相似文献   

2.
Perlecan, a basement membrane component, shows diverse functions in different organs and tissues. However, the role of perlecan in differentiation of mesenchymal stem cells (MSCs) has been barely investigated. In this study, we examined the effect of perlecan on adipogenic and osteogenic differentiation of MSCs in vitro by adding extrinsic perlecan to culture media or blocking the function of intrinsic perlecan expressed into culture media by differentiating MSCs. Extrinsic perlecan suppressed adipogenic differentiation; however, it promoted osteogenic differentiation. These functions were further confirmed by a study of blocking intrinsic perlecan. Perlecan treated with heparitinase‐I also showed the suppressive effect on adipogenic differentiation. In contrast, the promotive effect on osteogenic differentiation was found to be heparan sulfate‐dependent. Intrinsic perlecan was suggested to be effective at the late stage of adipogenic differentiation by a study of perlecan‐blocking performed at distinct periods, but was suggested to be effective at the early stage of osteogenic differentiation. Our results showed perlecan has contrasting effect on adipogenic and osteogenic differentiation of MSCs due to its diverse actions. Based on these outcomes, we recognized that employing extrinsic perlecan or blocking intrinsic perlecan is effective for regulating adipogenic and osteogenic differentiation of MSCs by restricting its direction.  相似文献   

3.
Objective Determine the effect of a 3‐dimensional alginate matrix on the growth and differentiation of cells isolated from porcine retinal pigment epithelium (RPE). Procedures Porcine RPE cells were harvested from enucleated eyecups, isolated by differential gravity sedimentation and cultured in either alginate alone (Group 1) or on plastic tissue culture plates followed by alginate (Group 2). Group 1 cells were cultured in alginate to evaluate the efficacy of the matrix as a culture medium. Group 2 cells were initially cultured on plastic to induce dedifferentiation. The cells were then harvested, suspended in alginate beads, and incubated for a second culture period to determine if the induced dedifferentiation was reversible. Results The number of Group 1 cells was significantly greater (P ≤ 0.01) at the end of the culture period. The amount of pigment and cell morphology of Group 1 cells at the end of the culture period was similar to that seen at initial cell isolation. The initial culture of Group 2 cells on plastic showed characteristic features of dedifferentiation marked by the loss of pigment and alterations in microscopic appearance. Secondary culture of dedifferentiated Group 2 cells in alginate beads resulted in a return to pigmentation and characteristic morphology for a majority of the cultured cells. Conclusions Porcine RPE cells can be propagated in alginate culture with a significant increase in cell numbers while maintaining normal morphology. Under the conditions described in the present study, the dedifferentiation of porcine RPE induced by standard in vitro culture methods is reversible.  相似文献   

4.
Chondrocytes dedifferentiate to a fibroblast‐like phenotype on plastic surfaces. Dedifferentiation is reversible if these cells are then cultured embedded in gels as alginate, agarose or collagen. Chondrocytes cultured in suspension on a non‐adherent surface are also known to form aggregates of differentiated cells. The knowledge of chondrocyte behavior in culture is relevant for tissue engineering purposes. In this report we describe a simple method to culture differentiated or redifferentiated rabbit auricular chondrocytes on plastic surfaces with a stable phenotype. When chondrocyte aggregates formed in suspension are next seeded on plastic surfaces, most of them attach to the plastic as round or polygonal cells, and this morphological differentiation, confirmed by the presence of type II collagen, is stable for long culture periods. We also report that the addition of aggregates to monolayer cultures of dedifferentiated chondrocytes results in their redifferentiation, as is shown by their morphological changes and the synthesis of type II collagen. Therefore, this simple method can be useful for the study of chondrocyte behavior on plastic surfaces and for redifferentiating previously proliferated chondrocytes in tissue engineering techniques. Furthermore, these results demonstrate that, in addition to culture conditions such as cell isolation method or cell‐density, chondrocyte behavior on plastic depends on the presence or absence of aggregates resulting from the dissociation process.  相似文献   

5.
Therapeutic treatment targeting one cell type is considered ineffective in remedying any injury to the central nervous system (CNS). Perlecan, a multi‐functional, heparan sulfate proteoglycan, shows diverse effects on distinct cell types, suggesting that it is one of the candidates that can augment the regenerative mechanisms in the injured CNS. Therefore, we examined the functions of perlecan in CNS cells in vitro by using perlecan purified from bovine kidney. Perlecan‐coated cell culture plates, unlike their type I/III collagen‐coated counterparts, did not inhibit the adhesion of neural stem/progenitor cells (NS/PCs) and neurons. The coated perlecan and the perlecan added to the culture medium suppressed astrocyte proliferation; however, perlecan added to the medium promoted NS/PC proliferation. Neurons were promoted to extend their neurites on the perlecan‐coated substrate, and perlecan added to the medium also showed a similar effect. NS/PC proliferation and neurite extension is a major regenerative reaction in CNS injury, whereas excess proliferation of astrocytes cause hypertrophy of glial scars, which repels neurons. Our in vitro study suggests that perlecan is an attractive candidate to promote regenerative mechanisms and to suppress reactions that hamper regenerative processes in cases of CNS injury.  相似文献   

6.
Chondrocytes dedifferentiate to a fibroblast-like phenotype on plastic surfaces. Dedifferentiation is reversible if these cells are then cultured embedded in gels as alginate, agarose or collagen. Chondrocytes cultured in suspension on a non-adherent surface are also known to form aggregates of differentiated cells. The knowledge of chondrocyte behavior in culture is relevant for tissue engineering purposes. In this report we describe a simple method to culture differentiated or redifferentiated rabbit auricular chondrocytes on plastic surfaces with a stable phenotype. When chondrocyte aggregates formed in suspension are next seeded on plastic surfaces, most of them attach to the plastic as round or polygonal cells, and this morphological differentiation, confirmed by the presence of type II collagen, is stable for long culture periods. We also report that the addition of aggregates to monolayer cultures of dedifferentiated chondrocytes results in their redifferentiation, as is shown by their morphological changes and the synthesis of type II collagen. Therefore, this simple method can be useful for the study of chondrocyte behavior on plastic surfaces and for redifferentiating previously proliferated chondrocytes in tissue engineering techniques. Furthermore, these results demonstrate that, in addition to culture conditions such as cell isolation method or cell-density, chondrocyte behavior on plastic depends on the presence or absence of aggregates resulting from the dissociation process.  相似文献   

7.
A polyclonal antiserum raised in sheep against human cathepsin B was tested for specificity and cross-reactivity with the horse homologue by SDS-PAGE and Western blotting, prior to being used for immunolocalization of the enzyme in equine articular cartilage. In Western blots, the antiserum recognized the 30 kDa single chain and 25 kDa heavy chain of the mature enzyme in purified bovine cathepsin B, and corresponding bands at 32 and 27 kDa in equine chondrocyte and fibroblast lysates. This antiserum was then used to compare the expression and distribution of cathepsin B in normal and dyschondroplastic cartilage of young horses.In normal articular cartilage (n=6 animals), significant amounts of enzyme were detected only in hypertrophicchondrocytes in the deep zone. The enzyme was intracellular, located in the lysosomal granules. No extracellular matrix staining was observed. Levels of cathepsin B were increased slightly above normal in the deep zone in age-matched dyschondroplastic cartilage (n=5 animals). The most striking finding, however, was the abundance of the enzyme in chondrocyte clonal clusters associated with the lesions. Cathepsin B levels were low in chondrocytes isolated from normal cartilage (n=6), but increased progressively during serial subculture, reaching a maximum at passage 5–6. In contrast, primary cultures of dyschondroplastic chondrocytes (n=3) expressed abundant cathepsin B.  相似文献   

8.
REASON FOR PERFORMING STUDY: Equine osteochondrosis results from a failure of endochondral ossification during skeletal growth. Endochondral ossification involves chondrocyte proliferation, hypertrophy and death. Until recently no culture system was available to study these processes in equine chondrocytes. OBJECTIVE: To optimise an in vitro model in which equine chondrocytes can be induced to undergo hypertrophy and physiological death as seen in vivo. METHODS: Chondrocytes isolated from fetal or older (neonatal, growing and mature) horses were cultured as pellets in 10% fetal calf serum (FCS) or 10% horse serum (HS). The pellets were examined by light and electron microscopy. Total RNA was extracted from the pellets, and quantitative PCR carried out to investigate changes in expression of a number of genes regulating endochondral ossification. RESULTS: Chondrocytes from fetal foals, grown as pellets, underwent hypertrophy and died by a process morphologically similar to that seen in vivo. Chondrocytes from horses age >5 months did not undergo hypertrophy in pellet culture. They formed intramembranous inclusion bodies and the cultures included cells of osteoblastic appearance. Pellets from neonatal foals cultured in FCS resembled pellets from older horses, however pellets grown in HS underwent hypertrophy but contained inclusion bodies. Chondrocytes from fetal foals formed a typical cartilage-like tissue grossly and histologically, and expressed the cartilage markers collagen type II and aggrecan mRNA. Expression of Sox9, collagen type II, Runx2, matrix metalloproteinase-13 and connective tissue growth factor mRNA increased at different times in culture. Expression of fibroblast growth factor receptor-3 and vascular endothelial growth factor mRNA decreased with time in culture. CONCLUSIONS: Freshly isolated cells from fetal growth cartilage cultured as pellets provide optimal conditions for studying hypertrophy and death of equine chondrocytes. POTENTIAL RELEVANCE: This culture system should greatly assist laboratory studies aimed at elucidating the pathogenesis of osteochondrosis.  相似文献   

9.
M. S. Kim    J. H. Kim    M. R. Lee    J. H. Kang    H. J. Kim    H. M. Ko    C. H. Choi    J. Y. Jung    J. T. Koh    B. K. Kim    H. K. Oh    W. J. Kim    E. J. Lee    S. H. Kim 《Anatomia, histologia, embryologia》2009,38(2):154-160
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) have been reported to play a role in the degradation of aggrecan, a major component of cartilage. This study was performed to examine the effects of alendronate on the expression of ADAMTS in developing femoral epiphyseal cartilage. Primary cultured chondrocytes from this cartilage were treated with alendronate in vitro and postnatal day 1 rats were injected subcutaneously with alendronate (1 mg/kg) every second day in vivo . The number of cultured chondrocytes and their aggrecan mRNA levels were unaffected by the alendronate treatment at 10−6 to 10−4  m concentrations. The mRNA levels of ADAMTS-1, -2 and -9 in chondrocytes were also unaffected. However, the levels of ADAMTS-5 and -4 were reduced significantly by the same treatment. The thickness of the proliferating chondrocyte layers and the aggrecan mRNA levels in the epiphysis were unaffected by the alendronate treatment in vivo . However, the hypertrophied chondrocyte layers became significantly thicker, and the size of the secondary ossification centre was reduced significantly by the same treatment ( P  < 0.05). Both ADAMTS-4 and -5 mRNA expressions were also reduced significantly in vivo . The immunoreactivity against ADAMTS-4 was seen in hypertrophied chondrocytes and reduced significantly by the alendronate treatment. These results suggested that alendronate can inhibit the degradation of aggrecan in the articular cartilage by downregulating the expression of matrix enzymes such as ADAMTS-4 and -5.  相似文献   

10.
The developmental potential of nuclei from a bovine mammary epithelial cell line (BMEC) in nuclear transfer was investigated. For nuclear transfer donors, BMEC cells (passage 15) were cultured for 4–5 days after seeding at cell densities of 1.0 × 105 cells/cm2 (high‐density group) or 0.8 × 104 cells/cm2 (low‐density group). First, the effective electric stimulation for fusion of enucleated oocytes with BMEC cells was examined. Fusion rates reached maximum with two DC pulses of 30 V/150 µm for 20 µs in the high‐density group and with two DC pulses of 25 V/150 µm for 10 µs in the low‐density group. The fusion rate (37.5%) in the high‐density group was significantly (P < 0.005) lower than in the low‐density group (71.4%). Second, the in vitro developmental potential of nuclear transfer embryos derived from BMEC cells was examined. In the high‐density and low‐density groups, 18.8% and 24.1% of fused oocytes, respectively, developed to blastocyst stage. The results of this study indicate that nuclei from BMEC cells support the development of nuclear transfer embryos to the blastocyst stage and that the efficiency of oocyte–cell fusion is affected by the culture conditions of the donor BEMC cells before nuclear transfer.  相似文献   

11.
Treatment of cartilage defects poses challenging problems in human and veterinary medicine, especially in horses. This study examines the suitability of applying scaffold materials similar to those used for human cartilage regeneration on equine chondrocytes. Chondrocytes gained from biopsies of the talocrural joint of three horses were propagated in 2D culture and grown on two different scaffold materials, hyaluronan (HYAFF®) and collagen (BioGide®), and evaluated by light and electron microscopy. The equine chondrocytes developed well in both types of materials. They were vital and physiologically highly active. On the surface of the scaffolds, they formed cell multilayers. Inside the hyaluronan web, the chondrocytes were regularly distributed and spanned the large scaffold fibre distances by producing their own matrix sheath. Half‐circle‐like depressions occasionally found in the cell membrane were probably related to movement on the flexible matrix sheath. Inside the dense collagen scaffold, only single cells were found. They passed through the scaffold strands by cell shape adaptation. This study showed that the examined scaffold materials can be used for equine chondrocyte cultivation. Chondrocytes tend to form multilayers on the surface of both, very dense and very porous scaffolds, and have strategies to span between and move in large gaps.  相似文献   

12.
Apoptotic death of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis (OA). Apoptotic pathways in chondrocytes are multi-faceted, although some cascades appear to play a greater in vivo role than others. Various catabolic processes are linked to apoptosis in OA cartilage, contributing to the reduction in cartilage integrity. Recent studies suggest that beta1-integrin mediated cell-matrix interactions provide survival signals for chondrocytes. The loss of such interactions and the inability to respond to IGF-1 stimulation may be partly responsible for the hypocellularity and matrix degradation that characterises OA. Here we have reviewed the literature in this area of cartilage cell biology in an effort to consolidate the existing information into a plausible hypothesis regarding the involvement of apoptosis in the pathogenesis of OA. Understanding of the interactions that promote chondrocyte apoptosis and cartilage hypocellularity is essential for developing appropriately targeted therapies for inhibition of chondrocyte apoptosis and the treatment of OA.  相似文献   

13.
The concentration-effect relationships of phenylbutazone, indomethacin, betamethasone, pentosan polysulphate (PPS) and polysulphated glycosaminoglycan (PSGAG), on proteoglycan synthesis by equine cultured chondrocytes grown in monolayers, and articular cartilage explants were measured. The effect of PSGAG on interleukin-1beta induced suppression of proteogycan synthesis was also investigated. Proteoglycan synthesis was measured by scintillation assay of radiolabelled sulphate (35SO4) incorporation. Polysulphated glycosaminoglycan and PPS stimulated proteoglycan synthesis in chondrocyte monolayers in a concentration-related manner with maximal effects being achieved at a concentration of 10 microg/mL. Polysulphated glycosaminoglycan reversed the concentration-related suppression of proteoglycan synthesis induced by interleukin-1beta. Neither PSGAG nor PPS exerted significant effects on radiolabel incorporation in cartilage explants. Betamethasone suppressed proteoglycan synthesis by both chondrocytes and explants at high concentrations (0.1-100 microg/mL), but the effect was not concentration-related. At low concentrations (0.001-0.05 microg/mL) betamethasone neither increased nor decreased proteoglycan synthesis. Phenylbutazone and indomethacin increased radiolabel incorporation in chondrocyte cultures but not in cartilage explants at low (0.1, 1 and 10 microg/mL), but not at high (20 and 100 microg/mL) concentrations. These findings may be relevant to the clinical use of these drugs in the treatment of equine disease.  相似文献   

14.
Objective: To characterize the impact of age, gender, location and individual animal variation on the composition of articular cartilage from the metacarpophalangeal joint of horses. Design: Cartilage specimens were obtained from the metacarpophalangeal joints of 28 male, female and castrated male horses ranging in age from one day to 27 years of age. Cartilage samples from the distal metacarpus, proximal first phalanx and proximal sesamoids were analyzed separately. Chondrocyte number, DNA content, proteoglycan concentration and total collagen content were determined for each animal and joint location. Results: Age and joint location had a significant effect on chondrocyte number and DNA content with higher cell counts and DNA content detected in cartilage from the youngest age groups and in cartilage from the metacarpus and proximal sesamoids. The influence of age on chondrocyte numbers was not significant in horses over two years of age. Both age and joint location also influenced total proteoglycan and collagen content. Lower proteoglycan and collagen concentrations were detected in younger horses, and cartilage from the metacarpus had lower proteoglycan and collagen concentrations than that from other joint locations. Gender did not appear to influence chondrocyte number or matrix content of equine articular cartilage. However, there was significant residual variation in cellularity, proteoglycan levels and collagen content between individual animals that could not be explained by the signalment factors considered in this study. Conclusions: Future studies examining equine articular cartilage should avoid direct morphologic comparisons between animals of different ages, and any comparisons made between individuals should be interpreted cautiously. In addition, in vitro tissue culture models should avoid the use of cartilage pooled from different animals or from different locations within the same joint.  相似文献   

15.
The IGF system is related to embryo quality. We aim to determine the effect of the heat stress on the mRNA expression of IGF1 and IGF2, IGFR1 and IGFR2, IGFBP2 and IGFBP4, and PAPPA in in vitro production (IVP) blastocysts from Nelore and Holstein after ovum pick up (OPU) to better understand the differences between these breeds. Oocytes from four Nelore and seven Holstein were collected in six OPU sessions. Following in vitro maturation and fertilization using six Nelore or Holstein sires, embryos were divided into control (cultured at 39°C) and heat stress (HS; exposed to 41°C for 9 h). Blastocysts were submitted to RNA extraction. The IGF1 expression was higher in blastocysts under HS in both breeds, and the expression of IGFBP2 and IGFBP4 was higher in Holstein blastocysts under HS. The high PAPPA expression and the low expression of IGFBP2 and IGFBP4 are associated with a more efficient degradation of IGFBPs, which results in greater IGF bioavailability in Nelore blastocysts and may contribute to the superior HS tolerance in Nelore, when compared to Holstein.  相似文献   

16.
OBJECTIVE: To determine the critical temperature that reduces chondrocyte viability and evaluate the ability of chondrocytes to recover after exposure to the critical temperature. SAMPLE POPULATION: Cartilage explants obtained from the humeral heads of 30 sheep. PROCEDURES: In a randomized block design, 318 full-thickness cartilage explants were collected from 30 humeral heads of sheep and cultured for up to 14 days. On the first day of culture (day 0), explants were subjected to temperatures of 37 degrees , 45 degrees , 50 degrees , 55 degrees , 60 degrees , or 65 degrees C for 5 minutes by heating culture tubes in a warming block. The ability for chondrocytes to recover after exposure to the critical temperature was determined by evaluating viability at days 0, 1, 3, 7, and 14 days after heating. Images were analyzed by use of confocal laser microscopy. RESULTS: Analysis of images revealed a significant decrease in live cells and a significant increase in dead cells as temperature increased. Additionally, the deepest layer of cartilage had a significantly lower percentage of live cells, compared with values for the 3 most superficial layers. Chondrocytes did have some ability to recover temporarily after the initial thermal insult. CONCLUSIONS AND CLINICAL RELEVANCE: A strong relationship exists between increasing temperature and cell death, with a sharp increase in chondrocyte death between 50 degrees and 55 degrees C. Chondrocytes in the deepest cartilage layer are most susceptible to thermal injury. The threshold of chondrocyte recovery from thermal injury is much lower than temperatures reached during chondroplasty by use of most radiofrequency energy devices.  相似文献   

17.
Articular chondrocytes are phenotypically unique cells that are responsible for the maintenance of articular cartilage. The articular chondrocytic phenotype is influenced by a range of soluble factors. In particular, members of the bone morphogenetic protein (BMP) family support the articular chondrocytic phenotype and stimulate synthesis of cartilaginous matrix. This study was carried out to determine the importance of BMPs in supporting the differentiated phenotype of articular chondrocytes in vitro. Exogenous BMP-2 supported expression of collagen type II and aggrecan in monolayer chondrocyte cultures, slowing the dedifferentiation process that occurs under these conditions. In contrast, BMP-2 had little effect on expression of these genes in three-dimensional aggregate cultures. Endogenous BMP-2 expression was lost in monolayer cultures, coincident with the down-regulation of collagen type II and aggrecan mRNAs, whereas BMP-2 mRNA levels were stable in aggregate cultures. Antagonism of endogenous BMP activity in aggregate cultures by Noggin or a soluble form of the BMP receptor resulted in reduced expression of collagen type II and aggrecan mRNAs, reduced collagen type II protein and sulfated glycosaminoglycan (GAG) deposition into the aggregate matrices and reduced secretion of GAGs into the culture media. These results indicate that endogenous BMPs are required for maintenance of the differentiated articular chondrocytic phenotype in vitro. These findings are of importance to cell-based strategies designed to repair articular cartilage. Articular chondrocytes require conditions that will support endogenous expression of BMPs to maintain the specialized phenotype of these cells.  相似文献   

18.
OBJECTIVE: To investigate the effects of enrofloxacin and magnesium deficiency on explants of equine articular cartilage. SAMPLE POPULATION: Articular cartilage explants and cultured chondrocytes obtained from adult and neonatal horses. PROCEDURE: Full-thickness explants and cultured chondrocytes were incubated in complete or magnesium-deficient media containing enrofloxacin at concentrations of 0, 1, 5, 25, 100, and 500 microg/ml. Incorporation and release of sulfate 35S over 24 hours were used to assess glycosaminoglycan (GAG) synthesis and degradation. An assay that measured binding of dimethylmethylene blue dye was used to compare total GAG content between groups. Northern blots of RNA from cultured chondrocytes were probed with equine cDNA of aggrecan, type-II collagen, biglycan, decorin, link protein, matrix metalloproteinases 1, 3, and 13, and tissue inhibitor of metalloproteinase 1. RESULTS: A dose-dependent suppression of 35S incorporation was observed. In cartilage of neonates, 35S incorporation was substantially decreased at enrofloxacin concentrations of 25 mg/ml. In cartilage of adult horses, 35S incorporation was decreased only at enrofloxacin concentrations of > or =100 microg/ml. Magnesium deficiency caused suppression of 35S incorporation. Enrofloxacin or magnesium deficiency did not affect GAG degradation or endogenous GAG content. Specific effects of enrofloxacin on steady-state mRNA for the various genes were not observed. CONCLUSION AND CLINICAL RELEVANCE: Enrofloxacin may have a detrimental effect on cartilage metabolism in horses, especially in neonates.  相似文献   

19.
There is increasing evidence that the chondrocyte is capable of considerable anabolic and catabolic activity. In the case of equine chondrocytes, this study demonstrates that a variety of factors involved in the pathogenesis of joint disease stimulate the production of prostaglandin E2. These include exposure to IL-1, bone fragments and LPS. In addition, an IL-1-like factor was shown to be produced by the chondrocyte itself, when stimulated by LPS, providing a possible mechanism for amplification of extra-cartilagenous signals and even autocrine control. Considered together with evidence of increased synthesis of proteoglycan molecules by chondrocytes in diseased cartilage, this offers the exciting possibility of development of therapeutic agents to assist cartilage repair.  相似文献   

20.
The objective was to determine the effects of early exercise on the articular cartilage and subchondral bone at specific sites of the distal third metacarpal and metatarsal bones of 12 young Thoroughbred horses allowed free choice exercise at pasture. Six of the horses had additional controlled exercise 5 days per week from mean age of 21+/-20 days of age (range: 3-83 days) until 17.1 months of age. Confocal laser scanning microscopy was used to quantify viable and non-viable chondrocytes. Proteoglycan scoring and modified Mankin scoring was performed and subchondral bone mineral density measured by computed tomography. The number of viable chondrocytes was significantly greater in the conditioned group, which also had a higher Safranin O/Fast Green (SOFG) score than did the group which could exercise only at pasture. There was no difference in mean bone mineral density between groups, nor was there relationship between subchondral bone mineral density and chondrocyte viability. The apparent beneficial effects of early conditioning exercise may support the use of exercise to optimise development of articular cartilage in young individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号