首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gram sorghum [ Sorghum bicolor (L.) Moench] is grown on marginal land and johnsongrass [Sorghum haiepense (L.) Pers] is the most common and hard to control weed in this crop. The agronomic performance of gram sorghum at different nitrogen (N) and johnsongrass infestation levels in the field has not been adequately investigated. Therefore, research was conducted on a Decatur silty clay loam soil (Rhodic Paleudult) to determine the influence of N rates (0, 40, 80 and 120 kg ha-1) and johnsongrass infestation levels (0, 2, 4, 6 and 8 plants per 5 m crop row) on the growth and yield of grain sorghum (cv. GK522G) and johnsongrass. Increase in N rates increased seed weight, seed yield and percent protein in grain sorghum as well as dry matter and percent protein of johnsongrass. The increase in johnsongrass infestation (from 0 to 8 plants per 5 m crop row) significantly decreased the performance of grain sorghum and johnsongrass at all the N rates. The results suggest that 40 kg N ha-1 with up to 2 johnsongrass plants per 5 m crop row or 80 kg N ha-1 with up to 4 johnsongrass plants per 5 m crop row produced grain sorghum yields equivalent to absence of johnsongrass in the crop.  相似文献   

2.
Field beans of indeterminate (cv. Nadwiślański) and determinate (cv. Tibo) growth habits were grown on field plots with a density of 20, 40 and 80 plants m−2 at two levels of nitrogen fertilization: low (20 kg N ha−1) and very high (150 kg N ha−1). At the phase of intense pod growth the number and the dry matter weight of root nodules as well as their nitrogenase activity and some features of the plants growth were determined, and in the period of ripeness the components of seed yield were established.
It was found that increased density of sowing as well as the high level of nitrogen fertilization inhibited the growth and development of root nodules and limited their nitrogenase activity in both cultivars. Plants of both varieties were characterized by a similar potential of forming the root nodules, however, in plants of the cv. Tibo the nitrogenase activity of nodules was much lower than in the cv. Nadwiślański.
Increased population density of the plants has in both varieties given increased seed yield when calculated per m2 of the soil, compensating in excess the depression of the seed yield from one plant. Such compensation did not occur in the case of the depression of nitrogen fixation under intense nitrogen fertilization.  相似文献   

3.
Experiments were conducted in two consecutive years to investigate the response of two corn (Zea mays, L.) cultivars, Eperon and Challenger, to timing of N fertilizer in a desert climate. Fertilizer was applied three times (at planting, 6 weeks after sowing (6WAS) and at 9WAS) to give a seasonal total of 180 kg N ha-1 The N treatments were Nooo (control), NLOH (60 kg N ha-1 at planting, none at 6WAS and 120 kg N ha-1 at 9WAS), NLLL (60 kg N ha-1 at sowing, 6WAS and at 9WAS) and NLOH, (60 kgN ha-1 at planting, 120 kg N ha-1 at 6WAS and none at 9WAS). Generally, N ha-1 was associated with the highest grain and dry matter yields. Plants in N treated plots had significantly larger number of leaves and ear leaf N contents than the control at mid-silk. High ear leaf N was associated with high leaf area index and dry matter yield. Based on these results, it would appear that the application of 60 kg N ha-1 at planting, followed by 120 kg N ha at 6WAS (NLHO) is the most suitable for enhancing corn yields in the desert climate.  相似文献   

4.
Influence of light quantity on growth and biological nitrogen fixation of white clover ( Trifolium repens L.)
The influence of photon irradiance (Ep; 100 to 500 μmol m−2 s−1) and of the photoperiod (16 or 11 h) on growth and nitrogenase activity of nodulated white clover plants was studied in growth chambers at two nitrate levels (1.0 and 7.5 mM NO3).
Total dry mass production, the root proportion and nitrogenase activity increased with increasing Ep and photoperiod. Nitrogenase activity generally increased proportionally to root mass. Only at low Ep (100 μmol m−2 s−1) and under a short photoperiod (11 h) was the specific nitrogenase activity per unit root mass reduced. An abrupt change in Ep led to a rapid and parallel change in nitrogenase activity and relative growth rate.
A higher NO3 concentration in the nutrient solution (7.5 mM) led to a marked decrease in specific nitrogenase activity, but increased growth between 200 and 500 μmol m−2 s−1 during early development only. At 100 μmol m−2 s−1, there was no growth response to nitrate, although its effect on nitrogenase activity was more marked than at a higher Ep.
The results show that with changing light quantity, biological nitrogen fixation of white clover adapts to the existing demand for nitrogen and does not limit growth except during early development, even when light supply is low.  相似文献   

5.
Field experiments were conducted during the wet seasons of 1991,1992 and 1993 at the Abubakar Tafawa Balewa University Farm, Bauchi (10 ° 22'N, 09 ° 47'E) to study the response of sunflower ( Helianthus annaus L.) to N rates and plant population under rainfed conditions. Four N rates (0, 50, 100 and 150 kg N ha -1) and four plant populations (40000,80000,120000 and 160000 plants ha-1) were factorially combined in a randomized complete block design with three replications. Leaf area index, shoot dry weight and seed yield (kg ha-1) increased significantly with increasing N rates from 0 to 100 kg N ha-1. The growth and yield parameters per plant decreased significantly with increasing plant populations from 40000 to 160000 plants ha-1, but the seed yield (kg ha-1) obtained at 80000 plants ha-1 was significantly higher than all the other plant populations. The interactions of N x plant population confounded the main effect of each factor on the growth and yield of sunflower. The seed yield (3425 kg ha-1) obtained from the use of 100 kg N ha-1 at 80000 plants ha-1 was significantly higher than those obtained from all other combinations of N x population and out-yielded the main effects of 100 kg N ha-1 and 80000 plants ha-1 by 18 % and 25 %, respectively. The use of 100 kg N ha-1 at 80000 plants ha-1 is therefore recommended for maximum yield of sunflower in Bauchi.  相似文献   

6.
The effects of increased yield and grain number per unit area in barley in response to nitrogen application are well known. However, the influence of applied nitrogen on the rates and durations of developmental phases in barley are less well understood. Our objective was to investigate the effect of applied nitrogen on the duration of pre-anthesis development in barley and the number of spikelets per spike in two barley cultivars, Franklin and Schooner, in two studies. We found no effect of nitrogen on the duration of the pre-anthesis period in Schooner, when applied to pots at a rate of 0 or 55 kg N ha-1, or when applied in the held at 0, 40 or 160 kg N ha-1. However, this duration was extended in Franklin in the first study by an application of 55 kg N ha-1. Both plant biomass and grain yield at maturity were increased between 0 and 55 kg N ha-1, and 0 and 160 kg N ha-1. Meld increase was largely associated with an increase in the number of tillers per plant.  相似文献   

7.
More detailed information on the causes of yield variability among wheat cultivars is needed to further increase wheat yield. Field studies were conducted in Northern Greece over the two cropping seasons of 1985—1986 and 1986—1987 to assess the effects of nitrogen fertilizer and application timing of the various component traits that determine grain yield, grain nitrogen yield and nitrogen utilization efficiency of two bread ( Triticum aestivum L.) and two durum ( Triticum durum Desf.) wheat cultivars, using yield and yield component analysis. Nitrogen at a rate of 150 kg ha-1 was applied before planting or 100 N kg ha-1 before planting and then 50 N kg ha-1 top dressed at early boot stage. Nitrogen and cultivars affected all traits examined, while split nitrogen application affected only some of the traits. Grain yields in the most cases were correlated with number of grains per unit area and grain weight and grain nitrogen yields in all cases with grain number per unit area. The contribution of the number of grains per spike to total variation in grain yield among cultivars was almost consistent (37 to 55 %), while the contribution of grain weight was more significant (up to 55 %) in high yields (>6.500kg ha-1) and number of spikes per unit area (>500). The number of grains per spike contributed from 60 to 83 % to the total variation in grain nitrogen per spike. Increased grain nitrogen concentration resulted in a reduction of its contribution in grain nitrogen yield variation. Nitrogen utilization efficiency was higher during grain filling than during vegetative biomass accumulation. The contribution of nitrogen harvest index to the variation of utilization efficiency for grain yield was higher in plants receiving nitrogen application.  相似文献   

8.
The residual effect of 2-year-old swards of clover-ryegrass mixture and ryegrass in monoculture on yield and N uptake in a subsequent winter wheat crop was investigated by use of the 15N dilution method and by mathematical modelling. The amount of N in the wheat crop, derived from clover-ryegrass residues was 25–43% greater than that derived from residues of ryegrass which had been growing in monoculture. Expressed in absolute values, the N uptake in the subsequent winter wheat crop was 23–28 kg N ha −1 greater after clover-ryegrass mixture than after ryegrass in monoculture. Up to about 54 kg N ha−1 of the N mineralised from the clover-ryegrass crop was calculated to be leached, whereas only 11 kg N ha−1 was leached following ryegrass in monoculture.  相似文献   

9.
Twenty wheat ( Triticum aestivum L.) varieties differing in plant height were grown in soil culture and evaluated for differences in nitrogen uptake and nitrogen utilization efficiency (NUE) at limited (40 kg N ha−1) and normal (120 kg N ha−1) nitrogen supply. Nitrogen uptake showed 1.4- and 1.5-fold varietal variation at harvest for limited and normal N supply, respectively. NUE for dry matter production (NE1) exhibited 1.28- and 1.38-fold genotypic variation while NUE for grain production (NE2) varied by 1.25- and 1.21-fold at limited and normal N supply, respectively. Tall varieties were found to have higher N uptake and NUE for dry matter production, while dwarf cultivars had greater NUE for grain production. Nitrogen uptake was found to be strongly positively associated with dry matter production (r=0.85 and r =0.77 at limited and normal N supply, respectively), indicating an important effect of growth rate on N uptake. NUE for biomass production, as well as for grain production, was reduced as the supply of nitrogen was increased.  相似文献   

10.
Development of hybrids between white clover ( Trifolium repens L.) and Trifolium nigrescens provides a novel route for genetically improving the reproductive capacity of white clover, provided the hybrids are agronomically viable, particularly with respect to N2 fixation. A comparative study of growth and rates of N2 fixation over 21 days was conducted with the parental species, F 1 hybrids and backcross hybrids, in flowing solution culture, without a supply of mineral N to the plants. T. nigrescens was unable to fix N2 in association with the strains of Rhizobium leguminosarum biovar. trifolii selected for inoculation. Rates of N2 fixation per plant increased in the order T. nigrescens < F 1 hybrid < T. repens < backcross 1. Specific rates of N2 fixation (days 0–21) increased in the order T. nigrescens < F 1 hybrid < backcross 1 <  T. repens . Dry matter production and nodule biomass per plant increased at a higher rate in backcross 1 hybrids than in T. repens. The results suggest that the potential for N2 fixation by backcross 1 hybrids is at least as great as that by T. repens .  相似文献   

11.
Nitrogen Balance of Legume-Wheat Cropping Sequences   总被引:1,自引:0,他引:1  
In a lysimeter trial the legumes faba bean ( Vicia faba ), red clover ( Trifolium repens ), and alfalfa ( Medicago sativa ) were grown for two years, followed by winter wheat on all plots in the third year. Plots fertilized with mineral nitrogen and a rye/maize – wheat cropping sequence were included for comparisons. These four cropping sequences were replicated twice in 1982–1984 and 1985–1987, respectively. Two soils, a loamy sand and a sandy loam were used.
On average of both soils:
– N fixation during two years was 461 kg N/ha, 803 kg N/ha, and 790 kg N/ha for faba bean, red clover, and alfalfa, respectively.
– Leaching of nitrogen occurred mainly during the periods of winter fallow or, in case of the perennial legumes, after incorporation of residues into the soil and planting of wheat. Average leaching for all 6 years was 49, 28, and 29 kg ha−1 year−1 for faba bean, red clover, and alfalfa, respectively.
– In the period of wheat growth and before planting the new crop (1.5 years) in 1984/85 51–64 kg N/ha and 1986/87 68–94 kg N/ha were leached after growing legumes. Leaching was less for rye/maize fertilized with mineral N, 41 kg N/ha in 1984/85, and 51 kg N/ha in 1986/87, respectively.
– Winter wheat grown after legumes took up 18 kg N/ha < 47 kg N/ha < 65 kg N/ha on average of both soils and 2 years (1984, 1987) after faba bean, red clover, and alfalfa, respectively. This indicates a nitrogen recovery of 24–44% of the legume N potentially available, and consequently a loss by leaching from 56 to 76 %.
On the sandy loam amount of drainage water and N leaching were lower, and faba bean and wheat yields higher than on the loamy sandy soil.  相似文献   

12.
Two field experiments were conducted during] 994-95 to study the effect of spray of 10−5 M GA3 at 40 days after sowing on mustard ( Brassica juncea (L.) Czern & Coss.) cv. Varuna grown with basally applied 0, 40, 80 and 120 kg N ha−1 (Expt. 1) and 0,15, 30 and 45 kg P ha−1 (Expt. 2) on pod number per plant, seeds per pod, 1000 seed weight, seed yield, biological yield, harvest index and fatty acid composition of oil. No significant difference between water and GA3 spray was found when basally applied nitrogen was 0 or 40 kg N ha−1. N80 proved to be the best for yield characteristics. In another experiment on phosphorus, GA3 and 30 kg P ha−1 individually enhanced the yield, but interaction of GA3 and P remained non-significant. The fatty acid composition of oil in both experiments was significantly affected only by nitrogen and phosphorus treatments for oleic acid and erucic acid. It was found that return in the form of yield was more for every kg applied fertilizer under GA, spray treatment. The response was more for N fertilizer in comparison to P. GA3 at a low level of fertilization significantly increased the return from fertilization.  相似文献   

13.
The absorption and utilization of nitrogen (N) by plants are affected by salinity and the form of N in the root medium. A hydroponic study was conducted under controlled conditions to investigate growth and N uptake by barley ( Hordeum vulgare L.) supplied with five different NH4+-N/NO3-N ratios at electrical conductivity of 0 and 8 dS m−1. The five NH4+-N/NO3-N ratios were 0/100, 25/75, 50/50, 75/25 and 100/0, each giving a total N supply of 100 mg N l−1 in the root medium. A mixed N supply of NH4+ and NO3 resulted in greater accumulation of N in plants than either NO3 or NH4+ as the sole N source. Plants produced a significantly higher dry matter yield when grown with mixed N nutrition than with NH4+ or NO3 alone. Total dry matter production and root and shoot N contents decreased with increasing salinity in the root medium. The interaction between salinity and N nutrition was found to be significant for all the variables. A significant positive correlation (r=0.97) was found between nitrogen level in the plant shoot and its dry matter yield.  相似文献   

14.
土壤氮素氨化、硝化及固氮作用是影响作物氮素吸收及氮肥损失的主要因素, 为揭示氮肥减量下玉米-大豆套作系统的土壤氮素转化特性及排放规律, 利用大田定位试验研究了3种模式(玉米单作MM、大豆单作MS、玉米-大豆套作IMS)和3种施氮水平(不施氮NN: 0; 减量施氮RN: 180 kg hm -2; 常量施氮CN: 240 kg hm -2)对土壤硝化作用、氨化作用、固氮作用及氨挥发、N2O排放、NO3 --N累积的影响。结果表明, IMS较相应单作提高了土壤硝化和氨化作用, IMS的氨挥发损失率和N2O损失率较MM降低21.6%和29.7%; IMS下玉米土壤的NO3 --N积累量显著高于MM, 而大豆土壤的NO3 --N积累量显著低于MS。各施氮处理间, RN较CN降低了玉米土壤的氨化与硝化作用, 增加了大豆土壤的硝化和固氮作用。IMS下RN的玉米、大豆全生育期固氮作用较CN增加29.7%和32.0%, 年均氨挥发总量和N2O排放量较CN降低37.2%和41.0%。玉米-大豆套作系统在减量施氮下通过提高土壤氮素氨化、硝化与固氮作用, 减少氮素排放损失, 增强耕层土壤NO3 --N积累, 为作物氮素吸收提供了充足氮源。  相似文献   

15.
The development of irrigated pastures in the Sudan is still at its infancy. The present study determined the influence of 2 cutting heights (2.5 and 5.0 cm) and 4 cutting frequencies (4-, 6-, 8-, and 10-week) on forage yield as dry matter and forage sucrose of Rhodes grass ( Chloris gayana Kunth. cv. Massaba ) and Ruzi grass ( Brachiaria ruziziensis Germain et Everard cv. Congo Signal ) under irrigated conditions. Forage yield interactions involving species X cutting height X cutting frequency were significant. These yield interactions were attributed to differences in growth period and growth rhythm of the two species. On average, Rhodes exhibited a short growth period (13 months) compared to Ruzi grass (20 months). Forage yield and forage sucrose were, on average, superior in Ruzi compared to Rhodes grass. Forage yield and forage sucrose averaged 5.2 t ha−1 and 7.2 % fw sucrose in Ruzi compared to 2.8 t ha−1 and 6.9 % fw sucrose in Rhodes grass. Forage yield and forage sucrose of both species were negatively correlated with cutting frequency. The highest forage yield may be obtained at an 8-week cutting frequency in Rhodes (45.6 t ha−1 yr−1) compared to a 10-week cutting frequency in Ruzi grass (88 t ha−1 yr−1). Results suggest that very high forage yields as dry matter and forage sucrose of Rhodes and Ruzi grass may be possible under irrigated conditions in the Sudan at a cutting frequency of between 8 to 10 weeks.  相似文献   

16.
Soybean ( Glycine max L.) nitrogen nutrition is ensured by both symbiotic nitrogen fixation and mineral nitrogen assimilation. The relationship between these two modes of N nutrition was analysed in 3 growth types (determinate, semi-determinate and undeterminate) of soybean. The nitrate reductase activity and nitrogenase activity (acetylene reduction) of plants grown in the field and greenhouse showed that these enzymatic activity acted simultaneously or successively during the growth cycle, depending on the availability of inorganic nitrogen in the growing medium. Undeterminate soybean types had a higher potential nitrate reductase activities than determinate types.
The proportion of N2 fixed as measured by 15N labelling or stem ureide content indicated that determinate soybeans derived a higher proportion of their N from N2 fixation than the undeterminates.  相似文献   

17.
Field experiments were conducted to determine the direct and residual contributions of legumes to the yield and nitrogen (N) uptake of maize during the wet seasons of 1994 and 1995 at the University Farm, Abubakar Tafawa Balewa University, Bauchi, Nigeria, located in the Northern Guinea savannah of Nigeria. Nodulating soybean, lablab, green gram and black gram contributed to the yield and N uptake of maize either intercropped with the legumes or grown after legumes as a sole crop. Direct transfer of N from the nodulating soybean, lablab, green gram and black gram to the intercropped maize was 24.9–28.1, 23.8–29.2, 19.7–22.1 and 18.4–18.6 kg N ha–1, respectively. However, the transfer of residual N from these legumes to the succeeding maize crop was 18.4–20.0, 19.5–29.9, 12.0–13.7 and 9.3–10.3 kg N ha–1, respectively. Four years of continuous lablab cropping resulted in yields and N uptake of the succeeding maize crop grown without fertilizer N that were comparable to the yields and N uptake of the succeeding maize crop supplied with 40–45 kg N ha–1 and grown after 4 years of continuous sorghum cropping. It may therefore be concluded that nodulating soybean, lablab, green gram and black gram may be either intercropped or grown in rotation with cereals in order to economize the use of fertilizer N for maize production in the Nigerian savannah.  相似文献   

18.
A field study was conducted to estimate the nitrogen fixation by soybean [ Glycine max (L.) Merr.], using the A-value and the N-difference methods, and to examine the N partitioning within the plant. The cultivar Clark and its non-nodulating isoline (as reference crop) were grown in a silty clay (Typic Xerothent) soil, in 1991 and 1992. 15N-Labelled fertilizer was surface applied in solution, at rates of 20 and 100 kg N ha−1 to the nodulating and non-nodulating soybean, respectively. Plant samples were taken at full bloom (R2), beginning of seed growth (R5) and physiological maturity (R7). There was little nitrogen fixation at the early growth stages but it increased rapidly during the seed filling period. At R7 nitrogen fixed was estimated by the A-value method as 155 kg N ha-1 in 1991 and as 240 kg N ha−1 in 1992. The corresponding estimates by the N-difference method were significantly smaller. The seeds had a higher, and the vegetative parts smaller, proportion of fixed nitrogen compared to the whole plant. During the seed filling period, the translocation efficiency for fixed nitrogen was greater (93 % in 1991 and 85 % in 1992) compared to the N derived from soil (75 and 56 %, respectively). It was estimated that, after the harvest of pods, the soil was depleted by a net amount of 121 kg N ha−1 in 1991 and 90 kg N ha−1 in 1992.  相似文献   

19.
Field experiments were conducted at Tamil Nadu Rice Research Institute, Aduthurai, India, during the wet seasons of 1992 and 1993 to study the effect of full and partial substitution of fertiliser N with green manure N (Sesbania rostrata) on nitrogen uptake, yield attributes and yield of rice. The experiment consisted of eight treatments with two levels of N (100 and 200 kg ha−1) and three sources of N application viz., fertilizer, integrated (1:1 fertilizer and green manure N) and green manure N compared to the recommended practice (150 kg fertilizer plus 6.25 t ha−1 (72 kg N) green manure) and a no N control. Nitrogen application markedly increased the N uptake. Combined use of the two N sources at 200 and 222 kg N ha−1 and of single fertilizer N at 200 kg N ha−1 recorded the maximum N uptake, increased the yield attributes such as number of panicles per unit area, weight per panicle, number of total and filled grains per panicle and test weight. At 200 kg N ha−1 full substitution of N by green manure reduced the grain yield but only partial substitution of N by green manure resulted in almost similar yield as single fertilizer N. Thus 200 kg N ha−1 applied in equal proportions of fertilizer and green manure N can be recommended for medium duration rice cultivars.  相似文献   

20.
Nitrogen fixation was estimated by the difference method for two cultivars of berseem clover ( Trifohum alexandrinum L.), using annual ryegrass ( Lolium multiflorum Lam.) as the control in field trials from 1983 to 1988. Five or six cuttings were obtained each year under supplemental irrigation, and dry matter production and uptake of nitrogen into harvested forage were measured.
Estimates of nitrogen fixation by berseem clover ranged from 272 to 400 kg N/ha depending on year and cultivar, while plant N derived from soil (based on N uptake by the ryegrass) ranged from 50 to 235 kg N/ha. Graphs of nitrogen fixed versus available soil nitrogen had a reverse linear-plateau shape with a plateau at lower soil nitrogen levels that broke sharply in a linear decline as available soil N surpassed a minimum threshold. Such a two-phase response suggests that nitrogen fixation by the clover was limited by soil N supply above this threshold and by other limiting factors at low soil N levels, perhaps genetic traits controlling carbon assimilation or environmental limitations other than nitrogen. Seasonal nitrogen process patterns showed abundant nitrogen fixation by the clover after it had depleted most of the soil nitrogen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号