首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The nutrient losses of corn containing 0–30% damaged kernels that occurred during alkaline cooking into tortillas were examined. Samples from different stages during processing were tested for chemical composition and protein fractionation. The most prevalent type of kernel damage was mechanical, followed in decreasing order by molds, insects, heat, and rodent damage. Corn with higher content of damaged kernels was susceptible to overcooking, resulting in cracked or fully open nixtamal kernels and sticky masa that were difficult to handle during processing. Nutrient losses increased with increasing levels of kernel damage. Most nutrient losses from sound corn kernels occurred during washing as the pericarp and attached solids were removed. During simmering, damaged corn kernels were fully cooked into physically opened kernels with more nutrients being extracted into the water. About 15% of total solids and 50% of both crude fiber and fat were lost during cooking of corn with 30% kernel damage. The greatest losses were consistently observed for albumins and globulins from both sound and damaged kernels at all stages of cooking. Appropriate control of kernel damage level is required to improve yield of product with consistent quality. The susceptibility to overcooking of excessively damaged corn increases the complexity to consistently meet product quality specifications. Excess dry matter losses in the cooking liquor can significantly increase the risk of environmental contamination and cost of sewage water treatment.  相似文献   

2.
Yellow and white maize kernels, masas, tortillas, and nejayote solids were analyzed in terms of lutein, zeaxanthin, cryptoxanthin, β‐carotene, and lipophilic antioxidant (AOX) capacity. The germplasm analyzed included two normal yellow maize, two high‐carotenoid genotypes, and one white for comparison purposes. In general, the yellow maize required 34% more lime‐cooking time compared with the white counterpart. Lime‐cooking significantly changed the extractability of carotenoids in masa and tortillas. No carotenoids were detected in the steepwater or nejayote. The lipophilic AOX activity increased 280‐fold from kernel to masa, but only 70% was retained in the baked tortillas. When masa was baked into tortillas, less than 10% of the carotenoids were retained because of the high temperatures used during baking. Interestingly, tortillas made with the maize kernels with the highest carotenoid content did not have the highest amount of these phytochemicals. Therefore, maize varieties should be evaluated based on the carotenoid content in finished food products instead of the amounts originally found in raw kernels.  相似文献   

3.
Refined wheat flours commercially produced by five different U.S. and Mexican wheat blends intended for tortilla production were tested for quality and then processed into tortillas through the hot‐press forming procedure. Tortilla‐making qualities of the flour samples were evaluated during dough handling, hot pressing, baking, and the first five days on the shelf at room temperature. The predominant variables that affected the flour tortilla performance were wet gluten content, alveograph W (220–303) and P/L (0.70–0.94) parameters, farinograph water absorption (57%) and stability (10.8–18.7 min), starch damage (5.43–6.71%), and size distribution curves (uniform particle distribution). Flours produced from a blend of Dark Northern Spring (80%) and Mexican Rayon (20%) wheat had the highest water absorption, and tortillas obtained from this blend showed the highest diameter and lowest thickness. The whitest and best textured tortillas were obtained from the flour milled from three hard types of Mexican wheat blend. A Mixolab profile was generated from the best tortilla flours, those produced by mills 3 and 4. The Mixolab profile showed that a good flour for hot‐press tortillas had a relatively lower absorption and short dough mix time compared with a bread flour and should have a significantly higher gluten compared with an all‐purpose flour. Compared with bread flour, the tortilla flour had higher retrogradation and viscosity values. The Mixolab profile proved to be a good preliminary test to evaluate flours for hot‐press tortillas.  相似文献   

4.
《Cereal Chemistry》2017,94(6):917-921
Neural tube defects occur at higher rates in Hispanic populations in the United States. Such populations would benefit from folic acid fortification of corn masa flour (CMF). This study evaluated folate stability in fortified CMFs and tortillas and tortilla chips made therefrom. There was no significant loss of folate during the six‐month shelf life of fortified tortilla CMF and tortilla chip CMF. There was a 13% loss (P < 0.05) of folate during tortilla baking and no loss during tortilla chip frying. Both tortillas and tortilla chips showed significant folate losses over the two‐month shelf life for these products, with a 17% loss in fortified tortillas and a 9% loss in tortilla chips. Folate in fortified CMFs, tortillas, and tortilla chips is relatively stable and comparable to the stability of folate in wheat flour and breads.  相似文献   

5.
《Cereal Chemistry》2017,94(2):277-283
Sorghum bran (SB) is a good source of phenolic compounds with high antioxidant capacity that increases the antioxidant activity (AOX) of tortillas prepared with extruded nixtamalized corn flour. The objective of this research was to study the effects of bran addition (0, 5, or 10%) before (ENBESB) or after (ENAFSB) extrusion, in the features and composition of baked tortillas in terms of total phenolic compounds (TPC), AOX, color (L , a , b, hue, chroma, and E value), and tortilla firmness. It was possible to retain more than 81.8 and 89.9% of TPC and AOX, respectively, in ENBESB‐10% flour. Tortillas prepared with ENAFSB‐10% flour retained more than 92 and 76% of TPC and AOX, respectively, compared with ENBESB. However, tortillas elaborated with ENAFSB flour showed a higher firmness and lower flexibility than counterparts produced from ENBESB. The use of extrusion to produce nixtamalized corn flours and the strategy of adding the SB to the corn meal before extrusion were essential to retain TPC and AOX and, additionally, to enhance texture of tortillas.  相似文献   

6.
Naturally aflatoxin-contaminated corn (Zea mays L.) was made into tortillas, tortilla chips, and corn chips by the traditional and commercial alkaline cooking processes. The traditional nixtamalization (alkaline-cooking) process involved cooking and steeping the corn, whereas the commercial nixtamalization process only steeps the corn in a hot alkaline solution (initially boiling). A pilot plant that includes the cooker, stone grinder, celorio cutter, and oven was used for the experiments. The traditional process eliminated 51.7, 84.5, and 78.8% of the aflatoxins content in tortilla, tortilla chips, and corn chips, respectively. The commercial process was less effective: it removed 29.5, 71.2, and 71.2 of the aflatoxin in the same products. Intermediate and final products did not reach a high enough pH to allow permanent aflatoxin reduction during thermal processing. The cooking or steeping liquor (nejayote) is the only component of the system with a sufficiently high pH (10.2-10.7) to allow modification and detoxification of aflatoxins present in the corn grain. The importance of removal of tip, pericarp, and germ during nixtamalization for aflatoxin reduction in tortilla is evident.  相似文献   

7.
The corn tortilla plays an integral role in the Mexican diet and is an ideal vehicle for micronutrient fortification. Approximately 60% of corn tortillas in Mexico are produced from nixtamal, with the remainder prepared from masa flour. A process for continuous fortification of nixtamal tortillas was evaluated in two commercial mills in Mexico. A commercial powder dosifier was used to add micronutrient premix containing iron, zinc, folic acid, niacin, riboflavin, and thiamin to nixtamal (1 g/kg) as it was milled. After training and preliminary sampling, mills produced fortified tortillas unassisted for four weeks. Masa flow rates over a four‐day period were 10–12 kg/min in both plants. Premix flow from the dosifier showed good stability, with an average coefficient of variation of 1.6%. Initial results indicated consistency in the fortification process, with significantly increased variation during the four‐week production period. Fortified tortillas had significantly higher levels of all nutrients tested. Micronutrient losses were <11% in all cases except folic acid, which showed an 80% loss. Despite processing losses, fortification resulted in a nearly fivefold increase in folic acid compared with control tortillas. The new fortification process is technically viable and was well received by millers.  相似文献   

8.
Nixtamalization is the primary step in the production of products such as corn chips, tortilla chips, tacos, and corn tortillas. The process involves cooking and steeping of corn in lime and excess water to produce nixtamal. Commercial nixtamalization results in 5–14% corn solids loss in the liquid generated during cooking‐steeping and washing. Loss of corn solids not only causes economic loss to corn processors but also creates costly waste and wastewater disposal problems. Empirical results show that, besides corn kernel characteristics, processing parameters are critical variables influencing corn solids loss and effluent pH during nixtamalization. This work was designed to systematically study the impact of processing parameters on corn dry matter loss and effluent pH generated during nixtamalization by using response surface methodology. Corn cooking temperature and lime concentration were more critical factors influencing corn solid loss than were cooking and steeping time. In the ranges studied, total dry matter loss increased only up to ≈8 hr of steeping and then leveled off. By optimizing the nixtamalization protocol, effluent dry matter loss can be minimized.  相似文献   

9.
A high‐amylose, non‐floury corn, a floury corn, and a 1:1 blend were made into masa and then tortillas. The masa flour made with the high‐amylose corn had a greater amount of resistant starch (RS 28.8%) and a greater amount of total dietary fiber (TDF 42.1%) than that with the floury corn (RS 2.9%, TDF 9.6%), producing a high‐fiber tortilla. The masa was evaluated for pasting properties using a Rapid ViscoAnalyser (RVA). The high‐amylose masa slurry gelatinized little at 95°C. The floury masa had the greatest peak viscosity, whereas the 1:1 blend was intermediate in value. Sensory evaluations of the tortillas for the textural attributes showed the floury tortillas to be chewier, more rollable, and grittier than the high‐amylose tortillas, whereas the blend tortillas were intermediate for most attributes. The cutting force of the high‐amylose tortillas, measured on a texture analyzer, was very low; the blend and floury tortillas required more force. Chewiness was correlated to rollability (r = 0.99, P = 0.05). The %RS and %TDF were correlated to rollability (r = –0.99), and cutting force (r = 0.99). The floury and blend tortillas had firm textures expected of desirable tortillas, whereas the high‐amylose tortillas broke under little force, and would not roll. The high‐amylose tortillas had high amounts of RS and TDF but poor texture. The blend tortillas retained most floury tortilla textural properties, making them suitable products for consumer use.  相似文献   

10.
Wheat flours commercially produced at 74, 80, and 100% extraction rates made from hard white winter wheat (WWF) and hard red winter wheat (WRF) were used to produce tortillas at a commercial-scale level. Flour characteristics for moisture, dry gluten, protein, ash, sedimentation volume, falling number, starch damage, and particle-size distribution were obtained. Farinograms and alveograms were also obtained for flour-water dough. A typical northern Mexican formula was used in the laboratory to test the tortilla-making properties of the flours. Then commercial-scale tortilla-baking trials were run on each flour. The baked tortillas were stored at room and refrigeration temperatures for 0, 1, 2, and 3 days. Maximum stress and rollability were measured every day. Tortilla moisture, color, diameter, weight, and thickness were measured for each treatment. Finally, tortilla acceptability was tested by an untrained sensory panel. Analyses of variance (ANOVA) were performed on the data. WWF had higher protein content, dry gluten, sedimentation volume, and water absorption than the WRF. The WWF was the strongest flour based on farinograph development time and alveograph deformation work. It also produced the most extensible dough measured with the alveograph (P/L). Flour protein and ash contents, water absorption, and tenacity increased directly with the flour extraction rate. Both WWF and WRF performed well in commercial-scale baking trials of tortillas. Tortillas made with both types of flours at 74 and 80% extraction rates had the best firmness and rollability. However, tortillas made with WWF 80% had the best color (highest L value). Tortillas prepared with 100% extraction rate flour were also well accepted by the sensory panel, had good textural characteristics, and became only slightly firm and slightly less rollable after three days of storage at room temperature.  相似文献   

11.
Nixtamalization involves cooking and steeping corn in a lime solution, washing the corn (nixtamal), and stone grinding nixtamal to form a corn dough or masa. Masa is used to produce nixtamalized products (corn tortillas, tortilla chips, corn chips, taco shells, etc.) by forming and baking or deepfat frying. The degree of corn kernel cook determines the quality and texture of masa. Response surface methodology (RSM) was used as an experimental design to study the impact of process variables (cook temperature, cook time, initial steep temperature, and steep time) on the degree of cook measured using a Rapid Visco Analyser (RVA) and differential scanning calorimetry (DSC). RSM data exhibited significant (P < 0.005), although not predictive, linear models for RVA peak viscosity (r2 = 0.63), setback (r2 = 0.61), final viscosity (r2 = 0.61), and peak time (r2 = 0.57), indicating a dependence of these parameters on nixtamalization conditions. Peak viscosity, setback, and final viscosity increased linearly with steep time. DSC enthalpy (r2 = 0.83) and peak temperature (r2 = 0.89) of freezedried masa also exhibited significant (P < 0.0001) linear regression models with processing variables. DSC enthalpy increased with an increase in steep time, suggesting that starch is annealed during steeping. This study demonstrated that fundamental starch properties were altered on extended steeping during nixtamalization.  相似文献   

12.
Nixtamalization is the process of steeping dried corn in hot water with calcium hydroxide (lime) with subsequent removal of all or most of the pericarp through washing. The resulting product is called nixtamal. Approximately 60% of corn tortillas in Mexico are produced from nixtamal, with the remainder prepared from nixtamalized corn flour. Nixtamal was fortified with micronutrient premix containing iron, zinc, folic acid, niacin, riboflavin, and thiamin. Premix composition followed a proposed Mexican regulation for corn flour fortification, adjusted for moisture. Effects of premix on masa adhesiveness, hardness, and pH, as well as tortilla sensory properties, stretchability, rollability, and color were measured. Micronutrient levels were tested in the dry corn, nixtamal, masa, and tortillas. There were no significant differences in masa texture or pH, tortilla rollability, or consumer acceptance of tortillas when comparing unfortified control and fortified treatments. Added thiamin was almost entirely degraded during processing. Folic acid and riboflavin decreased 26 and 45%, respectively, through the masa‐tortilla manufacturing process. Niacin showed no significant loss. Despite processing losses, fortification resulted in significant nutrient increases compared with control tortillas. Folic acid increased 974%, riboflavin increased 300%, niacin increased 141%, iron increased 156%, and zinc increased 153% in fortified tortillas.  相似文献   

13.
Resistant starch (RS) ingredients are an attractive option to increase dietary fiber in baked products. This study determined the effect of two forms of cross‐linked and pregelatinized cross‐linked RS, Fibersym‐RW (Fsym) or FiberRite‐RW (FRite), respectively, from wheat on dough and tortilla quality and acceptability. Refined wheat tortillas with 0% (control) to 15% RS (flour basis) were made using a standard baking process. Tortillas with 100% whole white wheat were also made. Physical and rheological properties of dough and tortillas, and sensory profile of tortillas were evaluated. Dough with whole wheat and 15% FRite were significantly harder and less extensible than the control dough; this was related to high water absorption of these doughs. Tortillas with whole wheat and 10–15% FRite were less puffed and denser than the control; however these levels of FRite significantly increased tortilla weight (by up to 6.2%). Dough and tortillas with Fsym were comparable to the control. Dietary fiber (g/100 g, db) increased from 2.8 ± 0.3 in control to 14.3 ± 0.5 and 13.6 ± 0.5 in 15% Fsym and 15% FRite tortillas, respectively. Tortillas with whole wheat were less acceptable than the control in appearance, flavor, and texture, while tortillas with 15% Fsym had higher overall acceptability than the control. Incorporation of 15% cross‐linked wheat RS to increase tortilla dietary fiber is feasible without negatively affecting dough handling and tortilla quality.  相似文献   

14.
Many Mexican women are deficient in folic acid. Fortification of the corn tortilla could be an effective way to help increase the folic acid levels among the Mexican population. Previous studies have shown significant folic acid losses in the masa dough as it is held before baking. This loss in folic acid could be owing to utilization by lactic acid bacteria naturally present in the masa. The objective of this study was to determine the effect of bacteria native to corn masa on the folic acid content in masa. Bacteria in dough samples from six mills in Guadalajara, Mexico, were isolated and identified. Bacterial isolates were inoculated into sterile fortified corn masa flour, which was converted to masa and held at 56°C for 0, 3, and 6 h, replicating the conditions of freshly milled masa as held before baking. All samples, including the control, showed losses of folic acid between 66 and 79% w/w in the first 3 h of incubation. Because folic acid degradation in the sterile control sample was not different than the inoculated sample results, the decline in folic acid was not owing to bacteria (mainly Streptococcus spp.) present in the masa flour but appeared to be a chemical degradation related to time and temperature.  相似文献   

15.
Five different soybean protein sources were added to wheat flour to increase the protein content by 15–25%, and the resulting composite flours were optimally processed into hot‐press tortillas in a pilot plant. The rheological properties of composite flours were evaluated with the farinograph, alveograph, and other wheat quality tests. Tortilla‐making qualities of the control and soybean‐fortified flours were evaluated during dough handling, hot pressing, and baking. The resulting tortillas were tested in terms of yield, physical and chemical parameters, sensory properties, color, and objective and subjective texture. The soybean‐fortified tortillas had increased yields because of the higher dough water absorption and enhanced essential amino acid scores. Among the five different soybean proteins, the defatted soybean flour (SBM1) with the lowest fat absorption index and protein dispersibility index (PDI) and the soybean concentrate produced the best fortified tortillas. The protein meals with high PDI and relatively lower water absorption index (SBM3 and SBM4) produced sticky doughs, lower alveograph P/L values, and defective tortillas. All soybean proteins produced higher yields of tortillas with an enhanced protein quality and amount of dietary fiber.  相似文献   

16.
Antistaling properties of a bacterial maltogenic amylase, sodium carboxymethylcellulose (CMC), and vital wheat gluten on quality of corn tortillas were evaluated during 14 days of storage. Amylopectin recrystallization was the driving force behind the staling of corn tortillas. Increasing levels of recrystallized amylopectin measured by differential scanning calorimetry (DSC) correlated significantly with increased tortilla stiffness (r = 0.43) and reduction in tortilla pliability (r = ‐0.42) during storage. Maltogenic amylase (275–1,650 activity units) made tortillas less stiff but did not preserve pliability and extensibility as effectively as CMC (0.25–0.5%). The combination of 825 MANU of maltogenic amylase (to interfere with intragranular amylopectin recrystallization) and 0.25% CMC (to create a more flexible intergranular matrix than retrograded amylose and amylopectin) produced less stiff, equally flexible, and less chewy tortillas than did 0.5% CMC. Vital wheat gluten was not as effective as CMC in preserving tortilla flexibility or as good as the maltogenic amylase in reducing stiffness. Further research is required to optimize the addition of maltogenic amylases in continuous processing lines that use fresh masa instead of nixtamalized corn flour (NCF) and to determine how these amylases interfere with amylopectin recrystallization.  相似文献   

17.
The phytochemical profiles (total phenolics, anthocyanins, ferulic acid, carotenoids) and antioxidant activities of five types of corn (white, yellow, high carotenoid, blue, and red) processed into masa, tortillas, and tortilla chips were studied. The nixtamalization process significantly (p < 0.05) reduced total phenolics and antioxidant activities when compared to raw grains. Nixtamalized grains exhibited higher concentration of free phenolics and soluble conjugated ferulic acid and had lower concentrations of bound phenolics and ferulic acid than unprocessed grains. Among processed products, there was little difference in the phytochemical contents and antioxidant activities. Among types of corn, the highest concentrations of total phenolics, ferulic acid, and antioxidant activity were observed in the high-carotenoid genotype followed by the regular yellow counterpart. The white corn contained the lowest amount of total phenolics and antioxidant activity. The pigmented blue corn had the highest anthocyanin concentration followed by the red counterpart. These findings suggest that lime-cooking significantly reduced the phytochemical content of nixtamalized products but released phenolics and ferulic acid.  相似文献   

18.
Our report shows the calcium ion diffusion process through the different parts of maize kernels (pericarp, endosperm, and germ) during the traditional nixtamalization process as a function of steeping time (t) 0–24 hr. The cooking step of the nixtamalization process used 3 kg of maize kernels in 6L of water and 2% calcium hydroxide (w/w). The cooking temperature was 92°C for 40 min. The calcium content of the samples was measured using atomic absorption spectroscopy. We found that the whole instant corn flour, pericarp, endosperm, and germ, had a nonlinear relationship to steeping time, showing a local maximum at 9 hr. Analysis of the different parts of the nixtamalized kernels showed that in short steeping times (0–5 hr) calcium diffusion took place mainly in the pericarp. Calcium diffusion in the endosperm and germ occurred gradually over longer steeping times. However, the physical state of the kernels (broken kernels) accelerated the diffusion process. Calcium diffusion occurred first in the pericarp, followed by the endosperm and germ. Immediately after cooking (t = 0 hr), we found a 1.148% calcium content in the pericarp, 0.007% in the germ, and 0.028% in the endosperm. After 24 hr of steeping, the calcium contents were 2.714% in the pericarp, 0.776% in the germ, and 0.181% in the endosperm. In another study, the calcium content in the endosperm was measured by first separating the 10% from the outermost, followed by another 10% from the next endosperm tissue, and concluding with the remaining 80%. Calcium ions were present mainly in the outermost layers of the endosperm. The damaged kernels steeped for more than 5 hr showed greater calcium concentrations than the undamaged counterparts.  相似文献   

19.
Wheat cultivars possessing quality attributes needed to produce optimum quality tortillas have not been identified. This study investigated the effect of variations in high‐molecular‐weight glutenin subunits encoded at the Glu‐1 loci (Glu‐A1, Glu‐B1, and Glu‐D1) on dough properties and tortilla quality. Flour protein profiles, dough texture, and tortilla physical quality attributes were evaluated. Deletion at Glu‐D1 resulted in reduced insoluble polymeric protein content of flour, reduced dough compression force, and large dough extensibility. These properties produced very large tortillas (181 mm diameter) compared with a control made with commercial tortilla wheat flour (161 mm). Presence of a 7 + 9 allelic pair at Glu‐B1 increased dough strength (largest compression force, reduced extensibility, and small‐diameter tortillas). Deletion at Glu‐A1 produced large tortillas (173 mm) but with unacceptable flexibility during storage (score <3.0 at day 16). In general, presence of 2* at Glu‐A1, in combination with 5 + 10 at Glu‐D1, produced small‐diameter tortillas that required large force to rupture (tough texture). Presence of 2 + 12 alleles instead of 5 + 10 at Glu‐D1 produced tortillas with a good compromise between diameter (>165 mm) and flexibility during storage (>3.0 at day 16). These allele combinations, along with deletion at Glu‐D1, show promise for tortilla wheat development.  相似文献   

20.
Iron deficiency anemia is a widespread occurrence. Consequently, iron is commonly added in cereal fortification programs. However, many iron sources cause undesirable sensory changes, especially color changes, in the food being fortified. This study evaluated the effect of different iron sources on CIE L*a*b* color values and sensory color perception in fortified corn tortillas. Corn masa flour was fortified with micronutrient premix containing vitamins, zinc, and one of eight iron compounds. Iron sources included ferrous fumarate (F), ferrous sulfate (S), ferric orthophosphate (OP), ferrous lactate (L), ferrous gluconate (G), ferric pyrophosphate (PP), sodium iron (III)‐EDTA, and A‐131 electrolytic iron (E), with addition levels adjusted based on bioavailability. Control (Ct) samples were prepared with all micronutrients except iron. All iron‐fortified tortillas had lower L* values and were significantly darker than control tortillas. Based on instrumental color values and Mexican regulatory recommendations, five treatments were selected for further testing. A difference‐from‐control sensory test was conducted comparing PP, E, OP, F, and S with Ct tortillas. Sensory rankings were C t > E = PP > OP > F > S. A‐131 electrolytic iron is recommended for fortification of corn tortillas due to minimal effect on color and significantly lower cost than other iron sources evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号