首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
对DN32×20T型三通管(多孔出流支管局部水头损失主要发生位置)进行了局部水头损失试验研究,结果表明光滑紊流区内主管至侧管流向局部水头损失系数1随雷诺数的增大而变化很小,随分流比的增大而增大;而主管至直管流向局部水头损失系数2随雷诺数的增大而减小,随分流比的增大先减小而后增大;并给出了局部水头损失系数1与2的经验公式。与实测值对比得出:提出的沿支管方向毛管进口压强水头经验计算公式具有较高的计算精度;最后,利用本文提出的局部水头损失系数经验公式分析了等距、等流量多孔出流支管局部水头损失与沿程水头损失的比值hj/hf的变化规律,并给出了扩大系数K的经验公式。  相似文献   

2.
在喷、滴灌设计中,常需计算多孔管的沿程水头损失,原始的计算方法,是将相邻孔口之间的管段作为一个计算段,逐段计算沿程损失,然后相加。四十年代克里斯琴森提出:以与多孔管长度、直径、进口流量、流态相同而只有末端出流的无旁孔管(称相关管)的沿程损失,乘以多孔系数的方法,简化了计算,为人们所乐用。  相似文献   

3.
通过室内试验研究分析了入口压力、支管长度、毛管间距3个因素对滴灌系统中支管水头损失及沿程压力分布的影响。结果表明:支管上的水头损失随着支管长度和入口压力的增大而增大,随毛管间距的增大而减小,但入口压力增大也同时使得支管沿线压力分布更为均匀。毛管间距0.6、0.9和1.2m条件下,满足水力偏差要求的支管最大铺设长度分别为20、40和60m。支管沿程压力分布曲线服从三次多项式关系,R2均在0.99以上。对支管上水头损失的构成进行了分析,表明局部与沿程水头损失之比fc随支管长度的增加、毛管间距的减小而增加,部分工况下fc会超过1;fc随首部压力的变化较为复杂,与具体的管网铺设s条件相关。多孔系数与来流条件有关,利用克里斯钦森公式计算出的多孔系数比实际值略微偏大,入口雷诺数从22 707增加至50 846时,克里斯钦森公式计算值与实测值之比从1.107降至1.068,表明入口雷诺数越大,克里斯钦森公式的计算精度越高。  相似文献   

4.
喷灌塑料管道水力阻力系数λ的实验研究   总被引:1,自引:1,他引:0  
实验是在水头59m,管长234m,以及水头24m,管长扣一99m的两处坡度均一的测试场进行的。通过对硬聚氯乙烯管、改性聚丙烯管和无缝钢管等八种不同口径的管道的测试(场地布置见图1),初步研究了常用喷灌管道沿程阻力系数人的变化、水头损失与流速的关系、管流在不同水头下的变化,进而求出塑料管道水力计算经验公式。图1第一测试场布置示意囹1塑料管道水力阻力系数人的实验1.l输水管阻力系数人的变化山区自压喷灌管道多属长管型,水头损失主要是沿程损失,局部损失较小,可忽略不计。此次测试只考虑由沿程阻力引起的沿程水头损失。试验时,…  相似文献   

5.
作者认为现有多口系数的公式只能用于计算管道全长上的沿程水头损失或管道最后一段上的沿程水头损失,而不能用来计算其他任何一段的水头损失.因此提出了列表法公式  相似文献   

6.
管道沿程水头损失的试验研究   总被引:1,自引:0,他引:1  
在对几种常用的喷灌管道进行了沿程水头损失试验的基础上,提出了一系列管道沿程水头损失的计算公式,分析了这些公式理论上的完备性和实用上的可行性。本文提出的沿程水头损失公式与目前常用的三个国外经验公式相比,其精确程度可以提高20~60%;与我国国家标准《喷灌工程技术规范》(GBJ85-85)相比,部分数据更趋合理;与我国各喷灌测试基地以往多次试验结果基本一致。  相似文献   

7.
本文采用试验方法对微喷带水力特性进行了分析,确定了微喷带沿程水头损失公式参数,通过多元线性回归得到沿程水头损失公式,探究了水头损失与首端流量和微喷带的铺设长度的关系、压强和流量的关系,从而得到微喷带相关的水力特性,为微喷带的实际应用提供理论依据,仅供参考。  相似文献   

8.
一近年来,国内出版的喷灌技术书籍,关于喷灌系统管道沿程水头损失的计算曾介绍过一些经验公式。如谢才公式、哈森一威廉斯(Hazen-Williams)公式、斯柯贝(Scobey)公式以及给排水工程设计中常用的一些公式。鉴于喷灌系统的管道投资,占系统总投资的比重大,管道沿程水头损失计算的正确与否,对喷灌系统及运行费用有很大的影响,因此在编制《喷灌系统技术规范》过程中,广泛查阅了国内外有关文献,并结合一些单位的实验研究,对喷灌系统管道沿程水头损失公式的选用问题,进行了专题论证。  相似文献   

9.
本文提出了在滴灌毛管设计中在计算毛管沿程水头损失时应考虑流态的影响,根据作者的计算,在利用哈—威公式计算滴灌中毛管水头损失时有一定出入,误差可达25%以上。作者还认为,毛管局部水头损失仅为沿程水头损失的3%,故计算时局部水头损失可忽略不计。  相似文献   

10.
多孔流体分布管广泛应用于滴喷灌、石油化工、给排水、电力、通风等领域中,不同领域多孔流体分布管的长度不尽相同,流体的流态不同,其内在的水头变化和出流情况也各不相同。结合前人理论分析结果,通过三组实验数据得出多孔流体分布管不同流态(全紊流区,完全紊流区,非完全紊流区,过渡区,层流区)下相应管长的不同,并根据不同流态(全紊流区,完全紊流区,非完全紊流区,过渡区,层流区)分区完整程度的不同得出不同类型多孔流体分布管内在水头变化趋势:对于分区完整的多孔流体分布管长管压力沿程降低,降低幅度沿程变小,到多孔流体分布管末端时压力变化趋于平缓;对于分区较完整(过渡区很小可忽略不计)的多孔流体分布管中长管压力先降低后升高,整体变化幅度不大;对于分区不完整(过渡区和层流区很短可忽略不计)的多孔短管压力沿程呈上升趋势。结合对多孔流体分布管水头变化的分析,推导出多孔流体分布管内部的水头变化和流速水头的恢复值的计算公式,为多孔流体分布管的设计提供帮助。  相似文献   

11.
Pipes made of plastic materials are generally used in pipelines and the laterals of irrigation systems. Plastic materials such as polyethylene allow significant changes in pipe cross section due to operating pressure, but traditional equations used for determining head loss do not account for this effect. The purpose of this research was to develop an equation for determining friction head loss along elastic pipes. The equation developed is based on the Darcy–Weisbach equation and focuses on pipe cross-sectional variations caused by pressure effects, hence the name pressure-dependent head loss equation (PDHLE). In addition to the parameters required by the Darcy–Weisbach equation, the PDHLE also considers the modulus of elasticity of the pipe material, the pipe wall thickness, and the internal diameter variation due to operating pressure. The PDHLE resulted in high accuracy in determining the friction head loss of elastic pipes.  相似文献   

12.
A new method for calculating total friction head loss in center-pivots with an operational end-gun was developed. The proposed methodology is based on adjusting the previous friction correction factors for center-pivots with end-guns in order to correct their paradoxes and shortcomings. Equations presented in the current work are developed for center-pivots with a finite number of outlets along the lateral and constant outlet spacing and discharge as well as constant discharge and variable spacing. The proposed formulas depend on the number of outlets along the supply pipeline, the exponent of velocity term in the friction formula used and the distance that water is jetted by the end-gun. All equations reduce to the well-established equations for the friction correction factor when the end-gun is turned off. The equations presented here compare well to the stepwise friction calculation method, yet correct slight errors in the way that these friction correction factors were calculated in the past.  相似文献   

13.
通过试验研究了标准管径16 mm的5种内镶贴片式滴灌带的局部水头损失,分析了滴灌带局部水头损失占沿程水头损失的比值hjt/hf和局部水头损失系数α的变化规律.结果表明:相同工作压力下,滴灌带当量直径随壁厚的增大而减小,造成沿程水头损失和局部水头损失的增大,局部水头损失与壁厚、滴头断面面积和雷诺数有关.随着雷诺数的增大,滴灌带局部水头损失占沿程水头损失的比值hjt/hf减小,最小值可达到0. 67,但仍超过中国制定的微灌工程技术规范设计标准(0. 1~0. 2).通过对试验数据进行多元回归分析,提出了滴灌带局部水头损失系数与过水断面收缩比和雷诺数的关系式,相关系数为0. 96.  相似文献   

14.
A new method for simulating lateral hydraulics in laminar or turbulent flow has been developed. The outflow is considered as a discrete variable and the friction head losses are calculated using the Darcy–Weisbach equation with an equivalent friction factor. Local head losses are also computed by applying equivalent coefficients that can be dependent on Reynolds number. Considering these premises, a compact expression that is valid for any type of regime has been deduced for calculating global head losses along any lateral stretch. The proposed method is useful to workout the hydraulic computation of laterals with the inlet segment at full or fractional outlet spacing, and complex laterals when a different pipeline diameter, slope, flow regime or emitter gap have to be considered.  相似文献   

15.
壁流式蜂窝陶瓷微粒过滤器压力损失公式的建立   总被引:1,自引:1,他引:1  
分析了洁净壁流式蜂窝陶瓷过滤器(DPF)压力损失的机理,包括过滤壁上的透过压力损失、进口收缩压力损失、出口扩散压力损失以及进/出口流道内的摩擦阻力损失,建立了各类压力损失的相应公式及总压力损失公式。并通过数值计算确定了压力损失公式中相关待定系数。得到的压力损失公式能较准确地估算DPF在不同流量下的压力损失值。  相似文献   

16.
圆形喷灌机末端出流多口系数的研究   总被引:2,自引:1,他引:2  
对以往圆形喷灌机输水管出流多口系数的计算公式进行了分析。圆形喷灌机输水管上除了第一个出水口与中心支轴中心线的距离外,其余出水口之间的距离均相等,在此条件下,提出了圆形喷灌机末端出流不为零时输水管多口系数的计算公式。该公式计算精度高,适用范围广。  相似文献   

17.
为揭示单叶片离心泵效率偏低的主要原因,采用数值模拟的方法对单叶片泵的能量损失进行了详细分析,建立了单叶片离心泵水力损失模型.基于SIMPLEC算法和标准k-ε湍流模型,利用ANSYS CFX软件求解三维N-S方程,分析单叶片离心泵在不同流量工况下的湍流耗散损失和壁面摩擦损失,并搭建单叶片离心泵的外性能试验台,验证了数值模拟的准确性.结果表明:单叶片离心泵的能量损失形式主要为耗散损失和摩擦损失,并且泵内的耗散损失明显大于叶片摩擦损失;效率偏低的主要原因是耗散损失较大,具体表现为单叶片离心泵叶轮流道内存在明显的低速区及流动分离区,且压力呈圆周非对称分布;单叶片离心泵从其叶片进口处到出口处的耗散损失、摩擦损失均不断增大;耗散功率、摩擦功率占总功率百分比及叶轮水力效率呈抛物线分布.  相似文献   

18.
针对杆式抽油泵效率低的问题,提出一种新型多级双作用滚柱转子式油泵.对多级双作用滚柱转子油泵结构特征及工作原理进行了介绍,该泵将滚柱与定子内壁的滚动摩擦代替传统的滑动摩擦,将单级滚柱泵设计为轴向多级串联形式,大大提高了泵排出压力.该泵同时采用双作用进出口设计,使得该泵转子轴及轴承径向受力平衡.对泵运转时滚柱受力状况进行了分析,建立了滚柱运动受力平衡方程,按滑动摩擦为最小原则,计算机编程实例准确地计算最优槽型夹角.分析了滚柱滚动条件,推导出滚柱端面摩擦合力矩,基于平行平板最佳缝隙原则,推导出滚柱端面与配流盘间隙计算式,并通过实例计算与分析,计算出实例泵滚柱端面与配流盘间隙大小.计算结果表明:间隙大小分别为h1=0.044 399 mm,珔h2=0.055 975 mm,改善滚柱受力,同时可减小泵容积损失,提高泵效率,为泵的间隙设计计算及优化选择提供了一定的理论依据.  相似文献   

19.
The accurate evaluation for the pressure head distribution along a trickle (drip) irrigation lateral, which can be operated under low-pressure head, dictates to precisely determine the total energy (head) losses that incorporate the combined friction losses due to pipe and emitters and, the additional local losses, sometimes called minor losses, due to the protrusion of emitter barbs into the flow. In routine design applications, assessment of total energy losses is usually carried out by assuming the hypothesis that minor losses can be neglected, even if the previous experimental studies indicated that minor losses can become a significant percentage of total energy losses as a consequence of the high number of emitters (with reducing the emitter spacing) installed along the lateral line. In this study, first, simple mathematical expressions for computing three energy loss components—minor friction losses through the path of an integrated in-line emitter, the local pressure losses due to emitter connections, and the major friction losses along the pipe—are deduced based on the backward stepwise procedure, which are quickly implemented in a simple Excel spreadsheet, to rapidly evaluate the relative contribution of each energy loss component to the amount of total energy losses. An approximate combination formulation is finally proposed to evaluate total energy drop at the end of the lateral line. For practical purpose, two design figures were also prepared to demonstrate the variation of total friction losses (due to pipe and emitters) with emitter local losses, and the variation of pipe friction losses with emitter minor friction losses, versus different emitter spacing ranging from 0.2 to 1.5 m, and various total number of emitters, regarding two kinds of the integrated in-line emitters. Comprehensive comparison test covering two design applications for different kinds of integrated in-line and on-line emitters indicated that the present mathematical model is simple, can be easily adaptable, but sufficiently accurate in all design cases examined, in comparison with the alternative procedures available in the literature.  相似文献   

20.
Summary The Lewis-Milne (LM) equation has been widely applied for design of border irrigation systems. This equation is based on the concept of mass conservation while the momentum balance is replaced by the assumption of a constant surface water depth. Although this constant water depth depends on the inflow rate, slope and roughness of the infiltrating surface, no explicit relation has been derived for its estimation. Assuming negligible border slope, the present study theoretically treats the constant depth in the LM equation by utilizing the simple dam-break wave solution along with boundary layer theory. The wave front is analyzed separately from the rest of the advancing water by considering both friction and infiltration effects on the momentum balance. The resulting equations in their general form are too complicated for closed-form solutions. Solutions are therefore given for specialized cases and the mean depth of flow is presented as a function of the initial water depth at the inlet, the surface roughness and the rate of infiltration. The solution is calibrated and tested using experimental data.Abbreviations a (t) advance length - c mean depth in LM equation - c f friction factor - c h Chezy's friction coefficient - g acceleration due to gravity - h(x, t) water depth - h 0 water depth at the upstream end - i() rate of infiltration - f(x, t) discharge - q0 constant inflow discharge - S f energy loss gradient or frictional slope - S0 bed slope - t time - u(x, t) mean velocity along the water depth - x distance - Y() cumulative infiltration - (t) distance separating two flow regions - infiltration opportunity time  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号