首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为了研究高海拔和高空作业环境对齿轮泵工作性能的影响,分析了吸油压力对外啮合齿轮泵空化特性的影响规律。采用数值模拟和可视化试验的方法,针对农业机械液压系统中常用的渐开线外啮合齿轮泵进行分析研究。分别在0. 05、0. 10、0. 15 MPa的吸油压力下,数值模拟该泵内部流场的气体体积分数分布;利用高速摄像设备,试验观测记录该泵内的实际流动状态、气泡大小、气泡数量及空化程度等。结果表明:在3种不同的吸油压力下,泵内的油液均会出现不同程度的空化现象,空化强度由大到小依次表现为漩涡流、雾化流、气泡;随着吸油压力的升高,泵内油液中出现的气泡数目逐渐减少、气泡体积逐渐减小,泵内油液的最大气体体积分数和空化程度逐渐减小,使得泵内油液的流动状态越来越平稳,进而改善了齿轮泵出口流量的连续性和稳定性。  相似文献   

2.
为研究流量脉动系数对外啮合斜齿轮高压泵内部流场的影响,通过理论推导流量脉动系数的计算公式,分析螺旋角对流量脉动系数的影响,并结合计算流体力学(CFD),对外啮合斜齿轮高压泵的流场进行数值模拟,得到高压泵在不同转速、不同径向间隙下的压力脉动和流量特性.结果表明:增大螺旋角会减小流量脉动系数,有利于改善出口流量的品质,降低齿轮泵泄漏;另外,转速和径向间隙在一定范围内增大时,脉动系数逐渐减小,泄漏涡强度也会减小.当转速和径向间隙继续增大时,脉动系数趋于平稳波动;转速增大时,啮合区域的压力变化较大,但是靠近泵腔壁处的齿轮压强变化较小;径向间隙增大时,泄漏流动和泄漏涡强度会降低,在设计中适当增大转速和径向间隙可以改善出口流量品质.研究高压泵内部流场的运动规律和流量脉动特性对于外啮合斜齿高压泵的设计和优化具有一定的参考价值.  相似文献   

3.
为研究高压渐开线内啮合齿轮泵的内泄漏,尤其是轴向泄漏问题,对齿圈与泵体间隙处的轴向泄漏通道进行分析,并建立相应的简化模型,应用Fluent软件计算得到通道内压力沿周向分布的规律,采用所得公式与参数对轴向泄漏进行计算分析,并通过试验进行验证.研究结果表明:高压渐开线内啮合齿轮泵在采用间隙补偿机构时,进出油方式由轴向变为径向,从而导致了轴向泄漏;轴向泄漏与其他途径的泄漏相比更大,是影响该结构泵容积效率的主要因素,轴向泄漏的大小主要取决于齿圈与泵体公差的选择,配合间隙越大,轴向泄漏越大;同时,轴向泄漏也受齿圈偏心率的影响,泄漏量随偏心率的增大而减小.经分析得知,为保证泵在高压下能够保持一定的容积效率,在设计时需要严格控制齿圈与泵体双边间隙的上限值.同时,通过合理的径向力平衡设计控制偏心方向,可以有效利用高压下偏心率的变化缓解一部分轴向泄漏.  相似文献   

4.
为分析径向配油内啮合齿轮泵的内部流场特性,利用CFD软件Fluent对径向配油内啮合齿轮泵流场进行了数值模拟,得到了径向配油内啮合齿轮泵内部流场压力场分布以及速度场分布的变化规律,获得了该齿轮泵流量脉动的变化规律,为径向配油内啮合齿轮泵的研究和优化设计提供了理论依据。  相似文献   

5.
针对力士乐公司的PGH型内啮合齿轮泵在输出高压力的工况下存在温升严重、流量泄漏等问题,为提升齿轮泵性能,对该内啮合齿轮泵内部流体动态性能进行仿真分析,研究发现内啮合齿轮泵的流场内部存在的压力波动、流量波动及油温温升对其泄漏量、噪声等主要性能有重要影响。应用PumpLinx软件对齿轮泵进行内部流体动态性能三维仿真并进行分析计算,分析了不同负载对其内部流体压力的影响。  相似文献   

6.
对涡旋液泵的内流场进行了数值模拟,其中空化模型采用Schnerr-Sauer模型,流体域的变化通过动网格技术来实现,得到涡旋式液泵在0.5 mm啮合间隙下的流场,同时对泵内特殊点的压力和速度进行了监测,并对其进出口流量进行了计算.结果表明:涡旋液泵吸液腔在0°附近产生压力峰值,达到1.50 MPa,在高压差的作用下,外啮合间隙处存在高速射流,使外部流道内产生涡和空化.在啮合间隙低压侧,动盘运动使吸液腔局部面积增大而产生负压和空化.涡和空化造成其附近压力和速度的脉动,从而堵塞流道,并使泵的整体流量产生脉动.动盘的运动和进口的不对称导致涡旋液泵两侧工作腔内压力、速度、涡的分布以及吸液量存在较大的差异,并在吸液后期导致右侧吸液流道内流动趋于静止,流体主要通过顶部流道流入右侧吸液腔.  相似文献   

7.
直线-共轭内啮合齿轮泵的设计方法   总被引:1,自引:0,他引:1  
以直线-共轭内啮合齿轮副为研究对象,对直线-共轭内啮合齿轮副的啮合特性进行了系统研究,得到了直线-共轭内啮合齿轮泵转子的较完整的设计方法.介绍了这种泵的工作原理,并综合齿轮及齿轮泵的设计计算方法,分析了直线-共轭内啮合齿形的基本参数和计算公式,给出了基本参数的选取和计算方法,推导了流量计算方程;利用平面啮合定理(Willis定理)和齿廓设计基本方法,分别得到了内、外齿轮的齿廓曲线方程.通过实例,求得其基本参数及齿廓曲线方程,并绘制出直线-共轭齿轮泵转子的图形,验证了基本参数和计算公式的合理性及齿廓曲线方程的正确性.  相似文献   

8.
为研究外啮合齿轮泵重要参数对流量脉动系数的影响,通过理论推导获得流量脉动系数计算公式,分析齿数、压力角对流量脉动系数的影响;采用边界型函数和动网格技术,并结合k-ε湍流模型对不同参数条件下的齿轮泵进行非定常模拟,分析负载压力、径向间隙对流量脉动系数的影响.结果表明,增大齿数和压力角均会减小齿轮泵流量脉动系数,有利于提高齿轮泵的流量特性.另外,增大齿数与增大压力角对提高齿轮泵的流量特性效果较为接近;齿轮泵的流量脉动系数也会随着负载压力及齿轮径向间隙的增大而减小,在设计中适当增大负载压力及齿轮径向间隙,可以改善出口流量特征的质量;过大的负载压力和齿轮轴向间隙会导致齿轮泵容积效率下降,在设计过程中应当引起足够重视.  相似文献   

9.
李红  冯世峰  王涛  庄海飞  王超 《排灌机械》2011,(3):190-193,213
为研究轴向间隙对纸浆泵水力性能的影响,应用计算流体动力学软件Fluent,采用标准k-ε湍流模型及SIMPLEC算法,分别以清水和悬浮液为介质,对半开式离心纸浆泵在3种轴向间隙下,0.7Q0~1.3Q0流量范围内进行三维湍流数值计算,得到浆泵的性能曲线.计算结果表明:介质为清水时,随着间隙的增大,泵扬程和效率下降;对于不同体积分数的介质,离心泵叶轮、间隙内速度分布与介质为清水时的分布基本一致;当浆料体积分数为2%时,流道内存在大量的低速区,流动混乱,提出了适当增大叶片出口安放角的改进方法;随着间隙的增大,间隙的刚性作用消失,泵整体性能下降.由于轴向间隙的作用,叶片吸力面与压力面间的压力、速度变化较大,对于一定体积分数的浆料,小的间隙值能增加泵的输送能力.通过试验和数值计算进行对比分析,结果表明间隙为1.0 mm时泵整体性能较好,试验结果与模拟结果相一致.  相似文献   

10.
为分析浆体流量对深海采矿矿浆泵空化特性的影响,建立了两级矿浆泵三维流场模型.基于欧拉多相流模型、Schnerr-Sauer空化模型、RNG k-ε湍流模型,利用计算流体力学理论和Fluent软件对矿浆泵进行数值计算.设置矿石颗粒直径d为20 mm,浆体中颗粒体积分数CV为8%,矿浆泵转速n为1 450 r/min,在该工况下研究矿浆泵输送不同浆体流量时泵的空化特性,比较不同空化特性下矿浆泵内压力分布、气相分布及工作性能的不同,并进行试验对比验证,为矿浆泵空化特性提供理论依据.研究结果表明:深海采矿矿浆泵首级叶轮前端呈现明显的低压区,且该低压区域的面积随着流量的增大而减小;气相体积分数分布区域与低压区呈现类似的规律;空化发生区域出现了速度旋涡现象,增大了流场的不稳定性;随着流量的增加,空化余量增大,空化现象不明显,对矿浆泵扬程的影响也越小.  相似文献   

11.
为研究多级离心泵平衡鼓径向间隙尺寸变化对末级叶轮后泵腔压力及轴向力的影响,基于SST k-ω湍流模型,应用Fluent软件分别对节段式多级离心泵进行数值计算,分别模拟平衡鼓径向间隙为0,0.1,0.2,0.3,0.4,0.5 mm的6种设计工况下,平衡鼓径向间隙尺寸对多级泵效率及平衡鼓轴向平衡能力的影响.计算结果表明,随着平衡鼓间隙增大,末级叶轮后泵腔内流体压力沿径向逐渐增大,后盖板外壁面压力分布不均匀;末级叶轮后泵腔中心截面压力呈平衡鼓间隙越大,后泵腔压力取值整体减小趋势,其压力幅值呈先减小后增大的趋势;末级叶轮所受轴向力在间隙为0.3 mm时最小;多级泵的效率随着平衡鼓间隙泄漏量的增大而降低,当泄漏量q>0.887 kg/s,效率降低明显.  相似文献   

12.
为研究不同叶顶间隙值对诱导轮内部流动特性及非定常特性的影响,采用ANSYS CFX软件,基于SST k-ω湍流模型对某高速离心泵在3种不同诱导轮叶顶间隙率(0.01、0.02、0.03)下进行内部流场数值模拟。分析诱导轮内部流动特性、0.6Qd流量工况下轴向截面压力脉动以及诱导轮所受径向力。结果表明:适当增大叶顶间隙对泵的扬程和效率影响较小,但可以减弱壁面射流,改善诱导轮叶片进口压力分布,提高其空化性能。叶顶间隙对诱导轮进口处压力脉动影响较大,对诱导轮中后段处压力脉动影响较小。对本文模型而言,0.6Qd流量工况下叶顶间隙率增加至0.03时,径向力分布情况最好,说明适当增加叶顶间隙有助于减小和平衡小流量工况下诱导轮所受径向力。  相似文献   

13.
为了研究叶轮翼型轴向积叠方式对轴流泵水力性能和内部流场的影响,以轴流泵模型ZM25为基础,设计了5种不同方式的翼型积叠方案.保持轮缘处的翼型断面不变,其他翼型断面中心沿斜向直线积叠,积叠角度分别为-8°,-4°,0°,+4°和+8°.基于CFX对5种方案在不同运行工况下的水力性能与内部流态进行预测模拟,并将计算结果与试...  相似文献   

14.
离心泵泵腔流道液体泄漏量试验与计算方法   总被引:3,自引:0,他引:3  
设计了针对泵腔流道液体泄漏量测量的专用试验装置,采用改变叶轮轴向位置(即改变泵腔轴向间隙)来改变隙径比的方法,在间隙为0.2 mm、0.3 mm,长度为15 mm密封环条件下,对隙径比为0.127、0.101、0.076、0.051、0.025、0.006的泵腔流道的进出口液体压力和液体泄漏量进行了测试及分析,并提出了泵腔流道液体泄漏量计算公式及其速度系数的确定方法。结果表明:不同隙径比的泵腔流道液体泄漏量系数与压力系数的变化很有规律性,其关系曲线几乎是一些斜直线,但隙径比和密封环间隙对其有较大影响;在泵结构不变情况下,只减小泵腔轴向间隙就能有效地减少液体泄漏量,提高泵容积效率,泵腔轴向间隙最佳取值范围为1~5 mm。  相似文献   

15.
为降低泄漏流对双螺杆液力透平效率的影响,以2/3齿双螺杆泵透平为例,根据双螺杆泵内齿间间隙的构成原理,首先建立其简化几何模型,利用透平腔内存在相对运动引起的剪切流动与各级腔室压差导致的压差流动理论,建立起齿间泄漏通道的数学模型.使用SCORG和Pumplinx软件对双螺杆液力透平进行全流场数值模拟,得到了双螺杆透平不同齿间间隙下的流场分布和流量变化规律.研究结果表明:不同间隙下螺杆的压力分布规律保持基本一致,每个密封腔室内的压力分布基本均匀,从进口到出口各相邻腔室的压力呈线性下降趋势;螺杆在齿间间隙附近出现多处泄漏通道,在各腔室压差的作用下,第一级腔内没有出现明显的高流速区域,从第二级腔内开始发生明显的高速泄漏;随着齿间间隙的不断增大,同一级腔内的齿侧间隙泄漏面积、泄漏速度以及流体从进口到出口的泄漏流量和容积损失都随之增大,当齿间间隙为0.04,0.08,0.12,0.16和0.20 mm时,由该间隙所造成的容积损失的值分别为4.03%,4.57%,5.00%,5.43%和5.72%.  相似文献   

16.
为研究双螺杆膨胀机的瞬态特性,以4/6齿双螺杆空气膨胀机模型为研究对象,使用SCORG和Pumplinx软件对膨胀机内部流体域以及进出口处流体域进行静止网格和动网格的划分.采用CFD分析方法对膨胀机进行全流场瞬态数值模拟,得到双螺杆膨胀机内部的压力场和速度场以及不同转角下流量、扭矩和转子的受力情况. 结果表明:膨胀机内部流体域从进口高压端至出口低压端可区分为4个压力等级,且从进口端到出口端压力逐级递减,而阴、阳转子接触线将螺杆流域分为上高压区和下低压区;内泄漏主要包括径向间隙泄露、齿间间隙泄漏和泄漏三角形这3种泄露方式,三者中齿间间隙泄漏的速度最大.整个流场中的最高流速和最低压力均出现在接触线附近;吸气阶段的节流损失和预膨胀带来的压降损失使阳转子对外做功能力下降,并使螺杆膨胀机效率降低;流量、扭矩、径向力和轴向力呈周期性变化,阳转子所受径向力对螺杆膨胀机工作性能影响最大.  相似文献   

17.
井用潜水泵的口环间隙大小对泵性能及流场具有较大影响,基于200QJ80-22井用潜水泵,通过CFD软件对泵全流场进行了数值计算,并与试验结果进行对比分析,研究了不同口环间隙大小对泵外特性和内部流场的影响.数值模拟结果表明,整泵的扬程和效率都随着间隙值的增大而减小,特别是口环间隙值增大到0.70 mm,减小更为明显,但功率变化较小.当间隙值达到1.00 mm时,效率从最高点的77.2%减小为68.7%,同时扬程也随之减小了约3.5 m.口环间隙为0.20 mm时,第一,二级叶轮前盖板腔体内以及叶轮出口与前盖板区域间产生回流,泄漏量较小,对叶轮进口流动和流场影响也较小,当口环间隙值增大至0.50 mm时,第一,二级叶轮前盖板腔体内以及叶轮出口与前盖板区域间回流逐渐消失,但更大的泄漏量冲击叶轮进口处,使叶轮进口过流面积减小,严重影响了泵的水力性能.  相似文献   

18.
为了研究叶片缝隙引流对高速诱导轮性能的影响,以1台带前置诱导轮的高速离心泵为研究对象,就诱导轮叶片设置5种不同缝隙下高速离心泵内部流场进行数值模拟,研究诱导轮叶片缝隙引流对其自身及高速离心泵性能的影响.对比分析了开缝后诱导轮截面内速度分布、诱导轮外特性曲线、高速离心泵空化特性曲线、诱导轮流道内空泡分布以及诱导轮沿轴向位置各截面静压分布规律.结果表明,叶片表面设置缝隙可减弱诱导轮叶顶间隙泄漏流对管道壁面的冲击,削弱叶片进口边吸力面附近的旋涡,改善该区域的流态;缝隙可改变诱导轮流道内压力的分布,从而影响诱导轮流道内的空泡的分布,且合理设计缝隙的大小可使高速离心泵的空化性能得到改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号