首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yield profile characteristics of tall fescue (Festuca arundinacea Schreb.), cv. Retu, were compared with those of meadow fescue (Festuca pratensis Huds.). The study was conducted in Finland and was based on official variety trial data recorded between 1980 and 1998 at 17 trial sites between latitudes 60° and 66°N. The crops were managed according to silage‐cutting regimes. The pattern of yield formation of the tall fescue cv. Retu differed significantly from that of meadow fescue cultivars, both within a growing season as well as in sward age. Tall fescue cv. Retu established slowly, and the dry‐matter (DM) yield from the first cut, made in the first year of harvest, was significantly lower than that for meadow fescue. In the second and third years, the DM yield from the first cut did not differ between tall fescue and meadow fescue. Tall fescue produced significantly higher DM yield as regrowth (second and third cuts) than meadow fescue. The sward age significantly affected total DM production. In first‐year swards, there were no significant differences in total DM yield between tall fescue and meadow fescue but, in the second‐ and third‐year swards, tall fescue produced significantly higher DM yields than meadow fescue. The difference in yield profile between tall fescue and meadow fescue was similar in all the environments included in the study. DM yield for the first cut (kg DM ha–1) for tall fescue cv. Retu, in comparison with meadow fescue cultivars, was 2495 vs. 3099 (P < 0·001), 3735 vs. 3741 (NS, P=0·94) and 3553 vs. 3468 (NS, P=0·30) in the first‐, second‐ and third‐year swards respectively. The respective DM regrowth yields (second plus third cut) were: 6059 vs. 5416 (P < 0·001); 5445 vs. 4221 (P < 0·001); and 5580 vs. 4113 (P < 0·001) in first‐, second‐ and third‐year swards. Total DM yields per season for tall fescue vs. meadow fescue were (kg DM ha–1) 8554 vs. 8515 (NS, P=0·69), 9180 vs. 7962 (P < 0·001) and 9133 vs. 7581 (P < 0·001) in first‐, second‐ and third‐year swards respectively. Over the three‐year sward rotation period, which is common in Finland, tall fescue produced on average 12% higher DM yield than meadow fescue. Both tall fescue and meadow fescue suffered little winter damage in Finnish conditions; the differences between cultivars of the two species were small. The results indicated that tall fescue cv. Retu is a productive and persistent forage species suited to Finnish growing conditions.  相似文献   

2.
Tetraploid red clover (cv. Hungaropoly) was sown at seed rates of 6,12 or 18 kg ha?1 alone and in mixture with timothy (cv. Scots) at 2, 4 or 6 kg ha?1 or with tall fescue (cv. S170) at 6,12 or 18 kg ha?1. Two ‘silage’ crops and an ‘aftermath grazing’ crop were harvested in 2 successive years. In harvest years 1 and 2, total herbage production levels of 11.12 and 7.47 t dry matter (DM) ha?1 respectively were obtained from pure-sown red clover compared with 11.84 and 8.78 t DM ha?1 for red clover-timothy and 12.23 and 9.64 t DM ha?1 for red clover-tall fescue. Corresponding red clover production levels were 10.93 and 5.30 t DM ha?1 (red clover swards), 8.04 and 3.131 ha?1 (red clover-timothy), and 6.42 and 109 t ha?1 (red clover-tall fescue). Total herbage organic matter digestibility was improved by the timothy companion grass but not consistently by the tall fescue, whereas crude protein (CP) concentration was decreased by the addition of either grass. Increased seed rate intensified these effects, as well as the general effect of the companion grass in depressing red clover DM, digestible organic matter (DOM) and CP production. Total herbage DM, DOM and CP were not markedly affected by increasing red clover seed rate but red clover DM, DOM and CP were increased as red clover seed rate was raised, due to increases in the red clover component. The potential for silage cropping of red clover swards was confirmed but there was advantage in sowing a companion grass. Taking yield and quality parameters into consideration, timothy proved a better companion than tall fescue. A seed rate of 2 or 4 kg ha?1 timothy and 12 kg ha?1 red clover proved the most satisfactory.  相似文献   

3.
The effects of sowing date and nitrogen (N) fertilizer on the inter‐specific competition between dallisgrass (Paspalum dilatatum Poir.) and tall fescue (Festuca arundinacea Schreb.) in the humid Pampas of Argentina were investigated in two pot experiments where a constant soil moisture content was maintained. Tall fescue and dallisgrass seeds were sown either in the spring (October 2000) or in the autumn (March 2001) in mixed and mono‐specific stands with 0 or 100 kg N ha?1. In the spring, competition from tall fescue depressed dry‐matter (DM) yield of dallisgrass from 1·53 to 0·36 g DM per plant and tiller number from 9·4 to 3·7 tillers per plant in mixed and in mono‐specific stands, respectively, while tall fescue had 3–4 times higher DM yields in mixed stands. Leaf extension rate (LER) of tall fescue was higher (1·3 mm d?1) than that of dallisgrass (0·53 mm d?1). In the autumn, inter‐specific competition did not affect DM yield of dallisgrass and N fertilizer increased DM yield from 0·53 to 2·07 g DM per plant, tiller number from 6·8 to 14·2 tillers per plant and LER at the beginning of autumn from 1·2 to 2·12 mm d?1 in both species. As temperature decreased, LER was reduced in both species to 0·31 mm d?1 by late autumn. The number of leaves per tiller was not affected by treatment. Nitrogen fertilizer increased N concentration of above‐ground tissues of both species (18 g kg?1 DM in autumn and 20 g kg?1 DM in spring). It was concluded that a productive mixed pasture of dallisgrass and tall fescue can be obtained by sowing early in the autumn. The application of N fertilizer in this season is essential to ensure a high herbage yield and quality.  相似文献   

4.
Poultry litter is commonly applied to pastures as an organic fertilizer. However, poultry litter also typically contains numerous heavy metals that may accumulate in soil and can pose an environmental threat when it is applied to pastures. The objective was to ascertain uptake characteristics of heavy metals by tall fescue (Festuca arundinacea Schreb.) from soil with a history of poultry litter additions as affected by subsequent applications of poultry litter. Poultry litter was applied to small plots at rates of 0, 2·2 and 4·5 t dry litter ha?1. In the 7·5 months following application of litter, cumulative dry‐matter (DM) production of herbage was higher (P < 0·05) in the plots that received poultry litter compared with the control plots where no litter was applied. However, concentrations of Al, Cu, Fe, Mg, Mn, Se and Zn in herbage were unaffected by the rate of application of poultry litter. All metal tissue concentrations, except for Fe, were affected by sampling date. While tall fescue responds to poultry litter with increased DM production, it does not appear to accumulate excessive quantities of micronutrients associated with the application of poultry litter.  相似文献   

5.
We investigated differences between forage species with regard to micronutrients that are essential to sustain livestock health. Five grasses (timothy, perennial ryegrass, meadow fescue, tall fescue and cocksfoot), three legumes (red clover, white clover and birdsfoot trefoil) and four forbs (ribwort plantain, salad burnet, caraway and chicory) were grown on one micronutrient‐poor/low pH soil and one micronutrient‐rich/high pH soil (outdoor pot experiment). In addition, six grasses (timothy, perennial ryegrass, meadow fescue, tall fescue, Festulolium hybrid and cocksfoot) and one legume (red clover) were field‐grown on the micronutrient‐poor soil. Of the twelve pot‐grown species, herbage of chicory, red clover and white clover generally had the highest micronutrient concentrations (maximum Co, Cu, Fe and Zn concentrations were 0·23, 9·8, 233 and 109 mg kg?1 DM, respectively), except for Mo, which was highest in the clovers (10·6 mg kg?1 DM), and Mn, which was highest in cocksfoot (375 mg kg?1 DM). Soil type had the strongest effect on plant Mo and Mn concentrations. We also investigated differences in micronutrients between varieties, but they were generally few and negligible. The results indicate that choice of forage species is of major importance for micronutrient concentrations in herbage and that soil type exerts a major effect through pH. Forage of chicory, red clover and white clover generally met the requirements of high‐yielding dairy cows with regard to most micronutrients; therefore, diversification of seed mixtures so as to include these species could increase micronutrient concentrations in forage.  相似文献   

6.
Under Irish conditions, the digestibility in May of grass managed for silage production is sometimes lower than expected. In each of two successive years, replicate field plots were established to examine the effects of three defoliation heights (uncut or cut to a stubble height of 10 or 5 cm) applied in winter and/or spring on herbage yields harvested in May and again in July, and on chemical composition and conservation characteristics associated with first‐cut silage. Swards that were not defoliated in December or March had a dry‐matter (DM) yield and in vitro DM digestibility (DMD) in mid‐May of 6597 kg ha?1 and 736 g kg?1, respectively, in Year 1, and corresponding values of 7338 kg ha?1 and 771 g kg?1 in Year 2. Defoliating swards to 5 cm in December reduced (P < 0·001) May DM yields compared to swards that were not defoliated in both December and March, while herbage DMD in May increased (P < 0·001) when defoliated in December or March. There were no clear effects of defoliation height or its timing on herbage ensilability or resultant conservation efficiency characteristics. The effects of defoliation on July yield were the reverse of those observed for May, while the total yield of the December and March defoliations plus the two silage harvests increased as defoliation height was lowered in Year 2 only. It is concluded that defoliation in winter and/or spring can increase herbage digestibility but will likely reduce DM yields in May.  相似文献   

7.
Limited availability of herbage during the cool season creates a problem of a supply of nutrients for livestock producers throughout the southern Great Plains of the USA and, particularly, on small farms where resource constraints limit possible mitigating strategies. Six cool‐season grasses were individually sown into clean‐tilled ground, no‐till drilled into stubble of Korean lespedeza [Kummerowia stipulacea (Maxim) Makino] or no‐till over‐sown into dormant unimproved warm‐season pastures. The dry matter (DM) yields of mixtures of cool and warm‐season herbage species were measured to test their potential for increasing cool‐season herbage production in a low‐input pasture environment. Only mixtures containing Italian ryegrass (Lolium multiflorum Lam) produced greater year‐round DM yields than undisturbed warm‐season pasture with all establishment methods. When cool‐season grass was no‐till seeded into existing warm‐season pasture, there was on average a 0·61 kg DM increase in year‐round herbage production for each 1·0 kg DM of cool‐season grass herbage produced. Sowing into stubble of Korean lespedeza, or into clean‐tilled ground, required 700 or 1400 kg DM ha?1, respectively, of cool‐season production before the year‐round DM yield of each species equalled that of undisturbed warm‐season pasture. Productive pastures of perennial cool‐season grasses were not sustained beyond two growing seasons with tall wheatgrass [Elytrigia elongata (Host) Nevski], intermediate wheatgrass [Elytrigia intermedia (Host) Nevski] and a creeping wheatgrass (Elytrigia repens L.) × bluebunch wheatgrass [Pseudoroegneria spicata (Pursh)] hybrid. Lack of persistence and low productivity limit the usefulness of cool‐season perennial grasses for over‐seeding unimproved warm‐season pasture in the southern Great Plains.  相似文献   

8.
The aim of this work was to investigate whether neutral detergent fibre (NDF) and dry‐matter digestibility (DMD) are related to tall fescue accumulated forage mass (AFM) and to assess the relevance of environmental variables to predict the nutritive value of tall fescue swards. Three experiments were carried out in Pergamino, Argentina. To obtain swards with different amounts of AFM, two N levels and two irrigation regimes were applied in the spring after sowing and the autumn of the next year. In spring and autumn, AFM, NDF and DMD were measured every 10–12 days. In spring, NDF increased from 503 to 604 g kg?1, DMD decreased from 684 to 558 g kg?1 and AFM increased from 0·64 to 2·82 t DM ha?1. In autumn, NDF decreased from 543 to 442 g kg?1, DMD increased from 591 to 681 g kg?1 and AFM increased from 0·35 to 1·10 t DM ha?1. The results show that the nutritive value of tall fescue through the year is not related to the accumulation of dry matter of the sward. Nutritive value is determined by the reproductive stage in late spring and early summer, the fate of photosynthates at different times of the year and the synthesis of non‐digestible compounds.  相似文献   

9.
Warm‐season pasture residue may create problems for no‐till overseeding with cool‐season grasses in the USA Southern Plains. Removal of residue to facilitate overseeding, however, represents additional cost and labour that may not be available on small livestock farms. Field experiments were undertaken to assess the effects of above‐surface residues of warm‐season pasture averaging 1·62, 2·48 or 3·36 t DM ha?1 on establishment and herbage production of Italian ryegrass (Lolium multiflorum) or tall fescue (Festuca arundinacea) overseeded by broadcasting or by no‐till drilling into dormant warm‐season pasture. On average, no‐till drilling was more effective than broadcasting in establishing both grass species, but it was no more effective than broadcasting when used with the greatest amount of residue. Cool‐season grass production was increased by 0·16 when no‐till drilled, but combined yearly total herbage production of cool‐ and warm‐season grasses was increased by 0·07 when cool‐season grasses were established by broadcasting. Amount of residue at sowing did not significantly affect herbage yield of cool‐season grass, but increased residue in autumn resulted in a 0·16 increase in total herbage production in the year following sowing. Residue amount did not affect over‐winter survival of grass seedlings, and productivity benefits of increased residue are small compared with reduced harvest arising from underutilization of warm‐season pasture residue in autumn.  相似文献   

10.
The selection and feeding of perennial ryegrass (Lolium perenne L.) varieties (PRV) or perennial grass species (PGS) may affect enteric methane (CH4) output because of changes in the fermentation dynamics in the rumen as a result of differences in herbage chemical composition. The objective of this study was to determine the effects of PRV and PGS harvested throughout the growing season on herbage chemical composition, and in vitro rumen fermentation variables and CH4 output per unit of feed using a batch culture technique. Seven PRV (Experiment 1: Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella) and six perennial grasses [Experiment 2: perennial ryegrass (Navan), perennial ryegrass (Portstewart), cocksfoot, meadow fescue, tall fescue, timothy; defined as PGS], managed under a simulated grazing regime, were incubated for 24 h with buffered rumen fluid in two separate experiments. The CH4 output per unit of feed dry‐matter (DM) incubated was not affected (P > 0·05) by PRV (range of mean values across PRV of 23·9–25·3 (SEM 0·41) mL g?1 DM) or by PGS (25·6–26·6 (SEM 0·37) mL g?1 DM). The CH4 output per unit feed DM disappearing during the in vitro rumen incubation was not affected by PRV (33·9–35·1 (SEM 0·70) mL g?1 DM), and although there was an overall PGS effect (P < 0·05; 37·2–40·3 (SEM 0·71) mL g?1 DM), none of the paired contrasts between PGS were significant when analysed using Tukey adjusted comparisons. This outcome reflected either small‐scale or a lack of treatment effects on individual herbage chemical composition (e.g. 454–483 g NDF kg?1 DM, 215–224 g CP kg?1 DM and 94–122 g water‐soluble carbohydrate (WSC) kg?1 DM across PRV; 452–506 g NDF kg?1 DM, 208–243 g CP kg?1 DM and 73–131 g WSC kg?1 DM across PGS) and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the grasses examined, produced within the management regimes operated, would reduce enteric CH4 output per unit of feed in vivo. However, the technique utilized did not take account of animal × PRV or PGS interactions, such as potential differences in intake between animals, that may occur under farm conditions.  相似文献   

11.
Herbage allowance is one of the important pasture factors in the determination of intake by grazing livestock. Ingestive behaviour of 12 adult Angus cows (Bos taurus) was measured over a range of allowances (0·25 to 0·72 kg dry matter (DM) per 100 kg live weight (LW) for a 1-h period) of vegetative tall fescue (Festuca arundinacea Schreb.). A balanced change-over design was used to estimate direct, residual and permanent effects of herbage allowance on rate of DM intake, rate of biting and herbage DM intake per bite. In Experiment 1, herbage DM intake per meal increased linearly from 0·68 to 1·72 kg (100 kg LW)?1 as DM allowance increased from 0·25 to 0·72 kg (100 kg LW)?1 h?1. Cows grazed at ·30 kg (100 kg LW)?1 h?1 and stopped grazing when the sward was reduced to a height about 10 to 12 cm above the soil surface, approximately defined by the tops of pseudostems. In Experiment 2, herbage DM intake rates of 0·29, 0·47 and 0·42 kg (100 kg LW)?1 h?1 were recorded as cows grazed allowances of 0·43, 0·70 and 0·90 kg (100 kg LW)?1 h?1 for most of the 1-h grazing period. Limiting herbage DM allowances in Experiment 2 were associated with small reductions in rate of biting and herbage DM intake per bite as allowance declined. Sward DM density (>5 cm) was an important variable in the determination of herbage DM intake rates at lower herbage allowances.  相似文献   

12.
Responses of grasses to N fertilization are affected by cutting intensity although little is known regarding the interactions of these factors in warm‐season grasses. Pre‐cutting canopy height, herbage accumulation and changes in the nutritive value of warm‐season grasses in response to four different management strategies were assessed from October 2011 to September 2014. Treatments included two cutting intensities (70 vs. 50% depletion of canopy height set by 95% light interception), two N fertilization levels (zero vs. 300 kg N ha?1 year?1) and six perennial C4 grass species (Axonopus catharinensis; Cynodon spp. hybrid Tifton 85; Hemarthria altissima cv. Flórida; Megathyrsus maximus cv. Aruana; Paspalum notatum cv. Pensacola; and Urochloa brizantha cv. Marandu) grown in monoculture in a factorial experimental design. Canopy height varied among grass species, cutting intensity and N treatments, mainly among seasons, indicating that more than one management target (i.e. canopy height) existed throughout the plant growth cycle for each species. The largest herbage accumulation occurred in the N fertilization treatments for most species, regardless of cutting intensity. Nitrogen fertilization and 50% depletion of canopy height increased the leaf proportion and decreased the neutral detergent fibre content. Overall, N fertilization had a stronger positive impact than cutting intensity on the acid detergent fibre content, dry‐matter digestibility and crude protein content, but the magnitudes of the responses were species‐specific.  相似文献   

13.
Two experiments were carried out on a tall fescue sward in two periods of spring 1994 and on a tall wheatgrass sward in autumn 2001 and spring 2003 to analyse the effect of sward surface height on herbage mass, leaf area index and leaf tissue flows under continuous grazing. The experiment on tall fescue was conducted without the application of fertilizer and the experiment with tall wheatgrass received 20 kg P ha?1 and a total of 100 kg N ha?1 in two equal dressings applied in March (autumn) and end of July (mid‐winter). Growth and senescence rates per unit area increased with increasing sward surface height of swards of both species. Maximum estimated lamina growth rates were 28 and 23 kg DM ha?1 d?1 for the tall fescue in early and late spring, respectively, and 25 and 36 kg DM ha?1 d?1 for tall wheatgrass in autumn and spring respectively. In the tall fescue sward, predicted average proportions of the current growth that were lost to senescence in early and late spring were around 0·40 for the sward surface heights of 30–80 mm, and increased to around 0·60 for sward surface heights over 130 mm. In the tall wheatgrass sward the corresponding values during spring increased from around 0·40 to 0·70 for sward surface heights between 80 and 130 mm. During autumn, senescence losses exceeded growth at sward surface heights above 90 mm. These results show the low efficiency of extensively managed grazing systems when compared with the high‐input systems based on perennial ryegrass.  相似文献   

14.
Three grazing experiments were carried out in late spring (early lactation), summer (mid‐lactation) and autumn (late lactation) to compare the effects of perennial ryegrass cultivar or grass species, sown in binary or multispecies mixtures, on milk yield and nitrogen excretion of dairy cows. Replicated groups of multiparous Holstein Friesian × Jersey cows were offered either a control or high‐sugar perennial ryegrass (Lolium perenne) or tall fescue (Festuca arundinacea) base grass in a binary mixture with white clover (Trifolium repens) or in a multispecies mixture with additional legumes, bromegrass (Bromus willdenowii) and forbs. During each 9‐day experiment, botanical composition, milk production and faecal and urine composition were measured. Milk solid (MS) yield for the control ryegrass, high‐sugar ryegrass and tall fescue grass types averaged, respectively, 1.53, 1.64 and 1.70 kg MS cow?1 day?1 for a binary mixture sward, compared with 1.65, 1.54 and 1.53 kg MS cow?1 day?1 for a multispecies sward. Legume content influenced milk production more than the number of species present in a mixture. There was lower urine N concentration from a multispecies sward compared with a binary mixture. Urine N concentration of cows grazing the control ryegrass, high‐sugar ryegrass and tall fescue grass types averaged, respectively, 4.6, 5.3 and 6.8 g N L?1 for a binary mixture, compared with 4.1, 3.9 and 3.9 g N L?1 for a multispecies mixture. Feeding dairy cows on multispecies swards containing forbs presents an opportunity to reduce N losses without compromising milk yield.  相似文献   

15.
Potassium fertilization in intensive grassland systems is particularly important on sandy soils with limited K storage capacity. A 3‐year plot experiment was conducted in south‐western Australia to determine the critical K concentration in herbage dry matter (DM) of annual and Italian ryegrass required to achieve 0.95 of the maximum yield, under best‐practice grassland management. A factorial design was employed with eight fertilizer K rates (range 0–360 kg ha?1 year?1) and two ryegrass species replicated four times, on a sandy soil site managed over 7 years to deplete mean soil Colwell K concentration to 42 mg/kg. Herbage was defoliated six times per year at the 3‐leaf stage of regrowth. Herbage DM yield, macronutrient and micronutrient concentrations were measured at each defoliation. Dry‐matter yield increased significantly (< .001) with increasing levels of K fertilizer in all 3 years and the effect was curvilinear, while 0.95 of the maximum herbage DM yield was achieved at an annual K fertilizer application rate of 96, 96 and 79 kg/ha respectively. At these K fertilizer application levels, the mean K concentration of herbage DM over the 3 years was derived to be 11.4, 12.7 and 11.2 g/kg respectively. Sodium, magnesium and calcium concentrations of herbage DM all declined significantly (< .001) as the K concentration increased. Grassland producers on sandy soils should target a K concentration in herbage DM of 16 g/kg for annual ryegrass and Italian ryegrass‐dominant swards to ensure K availability is not limiting herbage production.  相似文献   

16.
Tall fescue (Festuca arundinacea) is a Eurasian forage grass extensively planted in the United States. However, an endophytic fungus in tall fescue, Epichloë coenophiala, causes health problems in cattle. We predicted that cattle prefer to graze alternative forages when available. We also predicted that cattle use tall fescue more intensively in recently burned areas, as fire can increase forage quality. We tested these predictions in four diverse‐forage pastures in Iowa, comparing use by cattle of tall fescue and four alternative forages (non‐fescue cool‐season grasses, native warm‐season grasses, non‐leguminous forbs and legumes) to their availabilities at the pasture scale. We also examined how tall fescue influences the distribution of grazing at a fine scale (0.1‐m2 quadrats). Tall fescue was the most abundant forage (46% of plants), but composed only 26% of grazed vegetation. In contrast, legumes composed 12% of available forage but 25% of grazed vegetation. Other forages were used in proportion to availability. At a fine scale, total grazing frequency (proportion of plants grazed) was lower in quadrats containing abundant tall fescue, and higher in quadrats with abundant warm‐season grasses. Grazing frequency of tall fescue and other cool‐season grasses was greatest in recently burned quadrats, but total grazing frequency did not increase after burning. Our results show that although cattle graze tall fescue, particularly following burns, they limit their use of this grass. Given that tall fescue is underused, creates health risks for cattle, and degrades wildlife habitat quality, it may be advisable to reduce tall fescue in pastures.  相似文献   

17.
The benefits of white clover (Trifolium repens L.) in pastures are widely recognized. However, white clover is perceived as being unreliable due to its typically low content and spatial and temporal variability in mixed (grass‐legume) pastures. One solution to increase the clover proportion and quality of herbage available to grazing animals may be to spatially separate clover from grass within the same field. In a field experiment, perennial ryegrass (Lolium perenne L.) and white clover were sown as a mixture and compared with alternating strips of ryegrass and clover (at 1·5 and 3 m widths), or in adjacent monocultures (strips of 18 m width within a 36‐m‐wide field). Pastures were stocked by ewes and lambs for three 10‐month grazing periods. Over the 3 years of the experiment, spatial separation of grass and clover, compared with a grass–clover mixture, increased clover herbage production, although its proportion in the sward declined through time (0·49–0·54 vs 0·34 in the mixture in the first year, 0·28–0·33 vs 0·15 in the second year and 0·03–0·18 vs 0·01 in the third year). Total herbage production in the growing season in the spatially separated treatments decreased from 11384 kg DM ha?1 in the first year to 8150 kg DM ha?1 in the third year. Crude protein concentration of clover and grass components in the 18‐m adjacent monoculture treatment was greater than the mixture treatment for both clover (310 vs 280 g kg?1 DM) and grass (200 vs 180 g kg?1 DM). There was no clear benefit in liveweight gain beyond the first year in response to spatially separating grass and clover into monocultures within the same field.  相似文献   

18.
A small-plot experiment was carried out with grass-lotus (Lotus spp.) swards on a lowland (185 m) clay-soil site in S-W England. Two species of lotus (Lotus corniculatus cv. Leo and L. pedunculatus, syn, L. uliginosus, cv. Maku) were each sown at 10 kg seed ha?1 with lour grass species each at two grass-seed rates: Festuca pratensis at 6 or 3 kg ha?1 and Phleum pratense, Agrostis capillaris and Poa pratensis at 4 or 2 kg ha?1. Assessments were made over three harvest years (1992–94). during which no fertilizers were applied. Mean total herbage dry matter (DM) harvested from cv. Leo swards was 90 t ha?1 in year 1, 8–9 t ha?1 in year 2 and 4 0 t ha?1 in year 3. and from cv. Maku swards 6–6 t ha?1 in year 1. 8–9 t ha?1 in year 2 and 3–9 t ha?1 in year 3. Highest three-year mean total yields were with F. pratensis as the companion grass (7–4 t ha?1 year?1), followed by Phleum pratense (7–0 t ha?1), A. capillaris (6–9 t ha?1) and Poa pratensis (6–2 t ha?1). The lower grass-seed rate resulted in a greater proportion of lotus in the total harvested DM in year I. The higher grass-seed rate resulted in higher yields from F. pratensis swards in year 1, but there were no significant effects for other species or in subsequent years. Lotus as a proportion of harvested DM declined from about 70% in year 1 to about 20% in year 3. The mean DM yield of lotus herbage in years 1, 2 and 3, respectively, was 5–5, 2–8 and 0–8 t ha?1 from cv. Leo swards, and 4–0, 3–3 and 0–8 t ha?1 from cv. Maku swards. Lotus herbage was of higher digestibility from cv. Leo [digestible organic matter (DOM) of 661 g kg?1 of lotus DM] compared with cv. Maku (551 g kg?1 DM). Mean N content of lotus herbage was 35 g N kg?1 DM. Digestibility of companion grass herbage was highest for Phleum pratense (557 g kg?1 DM) and lowest for A. capillaris (493 g kg?1 DM). It is concluded that lotus may be an alternative legume to white clover for low-input, low-fertility situations. However, further research is needed to evaluate its performance on different sites and under different management regimes, particularly grazing, and to overcome the apparent problems of its persistence.  相似文献   

19.
Overseeded winter annuals in bermudagrass [Cynodon dactylon (L.) Pers.] improve annual dry‐matter (DM) yield and capture nutrients in fields receiving manure application. This study determined the DM and nutrient uptake responses of annual ryegrass (Lolium multiflorum L.), cereal rye (Secale cereale), berseem clover (Trifolium alexandrinum L.) and bermudagrass‐winter fallow to 0, 50, 100 and 150 kg N ha?1 applied approximately 2 months before a single spring harvest, and in addition to swine‐effluent N (258 and 533 kg ha?1 in summer 2000 and 2001, respectively). Under drought conditions in 2000, DM yield at the spring harvest was highest in ryegrass, and summer DM yield of bermudagrass was greater at 100 and 150 kg N ha?1 than 50 kg N ha?1(P < 0·05). The concentration and uptake of N at the spring harvest increased linearly across N rates in both years (P < 0.05). Cover crops differed in N uptake in 2000 (P < 0.01) and values ranged from approximately 141 kg N ha?1 in berseem clover to 86 kg N ha?1 in rye. Per unit of N applied, uptake of N increased by approximately 0·409 kg ha?1 in 2000 and 0·267 kg ha?1 in 2001; uptake of P increased by 0·029 and 0·014 kg ha?1 respectively. In 2000, uptake of P was responsive to N rate and this relationship was significant (P < 0·01) in winter fallow (slope = 0·032) and ryegrass (slope = 0·057). Increased uptake of N and P at the single spring harvest was due mainly to higher concentrations in herbage and not higher DM yield.  相似文献   

20.
Agronomic data on most broad‐leaved species of grasslands are scarce. The aim of this study was to obtain novel information on herbage DM yield and forage quality for several forb species, and on species differences and seasonal patterns across harvests and in successive years. Four non‐leguminous forbs [salad burnet (Sanguisorba minor), caraway (Carum carvi), chicory (Cichorium intybus) and ribwort plantain (Plantago lanceolata)] and three leguminous forbs [yellow sweet clover (Melilotus officinalis), lucerne (Medicago sativa) and birdsfoot trefoil (Lotus corniculatus)] and a perennial ryegrass–white clover mixture were investigated in a small‐plot cutting trial in Denmark during 2009 and 2010. Plots were harvested four times per year. On average, annual herbage yield was highest for lucerne (15·4 t DM) and grass–white clover (12·5 t DM ha?1), and lowest for salad burnet (4·6 t DM ha?1) and yellow sweet clover (3·9 t DM ha?1). Ribwort plantain and lucerne had the highest concentrations of acid detergent fibre (339 and 321 g kg?1 DM respectively) and lignin (78 and 67 g kg?1 DM respectively); contents in other species were similar to grass–white clover (275 and 49 g kg?1 DM respectively). No common feature was found within the functional groups of non‐leguminous forbs and leguminous forbs, other than higher crude protein contents (198–206 g kg?1 DM) in the legumes. DM yield and fibre content were lowest in October. Digestibility declined with higher temperature and increasing fibre content. Results are discussed in terms of the potential of forbs to contribute to forage resources in farming practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号