首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

2.
Two feeding experiments were conducted to evaluate dietary distillers dried grain (DDG) as a feed ingredient that partially replaces soybean meal and wheat flour for the growth of juvenile freshwater snail (Semisulcospira coreana) and abalone (Haliotis discus hannai). Three experimental diets were formulated to contain 0 g kg?1 DDG (DDG0), 200 g kg?1 DDG from rice (diet DDG‐R) and 200 g kg?1 DDG from rice and wheat flour (diet DDG‐RW). In the first experiment, three replicate groups of the freshwater snails averaging 133.0 ± 2.48 mg were fed one of the experimental diets for 12 weeks. Weight gain of the juvenile freshwater snails was not affected by dietary DDG (P > 0.05). In the second experiment, three replicate groups of the juvenile abalones averaging 296.3 ± 1.73 mg were fed one of the three experimental diets for 22 weeks. Weight gain of the abalones was not affected by dietary DDG (P > 0.05). Proximate and amino acid compositions of the whole body in the freshwater snails and soft body in the abalones were not affected by dietary DDG (P > 0.05). The results of the two experiments indicated that DDG can be used as a suitable feed ingredient for partial replacement of soybean meal and wheat flour at a level of 200 g kg?1 in diets without any adverse effects on the growth performance of freshwater snail and juvenile abalone.  相似文献   

3.
The experiment was conducted to determine the leucine requirement of juvenile Pacific white shrimp Litopenaeus vannamei (Boone) in low‐salinity water (0.50–1.20 g L?1). Six diets were formulated to contain 410 g kg?1 crude protein with fish meal, peanut meal and precoated crystalline amino acids with different concentration of l ‐leucine (16.72, 19.60, 22.06, 24.79, 27.28 and 30.16 g kg?1 dry diet). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.38 ± 0.002 g), and the feed trial lasted for 8 weeks. The results indicated that the maximum weight gain was observed at 24.95 g kg?1 dietary leucine group, whereas the diets containing higher leucine concentration conversely reduced the growth performance (P < 0.05). Moreover, the highest body protein content and body protein deposition and the lowest haemolymph AST and ALT activities were also found at 24.95 g kg?1 dietary leucine group. With the increase in leucine in diets, a dose‐dependent increase was found in body lipid content and haemolymph urea concentration. The polynomial regression calculated using weight gain, feed efficiency and body protein deposition indicated that the optimal dietary leucine requirement for L. vannamei reared in low‐salinity water was 23.73 g kg?1 leucine of dry diet, correspondingly 57.88 g kg?1 of dietary protein.  相似文献   

4.
A feeding trial was conducted to determine the suitable dietary protein and lipid levels for juvenile golden pompano Trachinotus ovatus reared in net pens. Ten test diets were formulated at five levels of crude protein (330, 370, 410, 450 or 490 g kg?1) and two levels of crude lipid (65 or 125 g kg?1). Golden pompano fingerlings (initial body weight 4.7 g ind?1) were fed the test diets for 8 weeks. Weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), condition factor (CF), hepatosomatic index (HSI), body protein content and total nitrogen waste (TNW) were dependent on both dietary protein and lipid levels. Feed intake (FI) and viscersomatic index (VSI) were dependent on dietary protein level, while body lipid content was dependent on dietary lipid level. Weight gain increased with increasing the dietary protein level (at the same lipid level) but was lower at the dietary lipid level of 65 g kg?1 than at 125 g kg?1 (at the same protein level). Fish fed at the dietary protein levels of 460–490 g kg?1 had higher WG and lower FCR than at 330–410 g kg?1. Energy retention efficiency tended to increase with increasing the dietary protein level from 330 to 410 g kg?1, while no significant difference was found in nitrogen retention efficiency between the dietary protein levels (at the same lipid level). Results of this study suggest increasing the dietary lipid level from 65 to 125 g kg?1 could not induce protein‐sparing action in golden pompano, and the suitable dietary protein and lipid levels for juvenile golden pompano reared in net pens should be 450–490 and 65 g kg?1.  相似文献   

5.
A feeding trial was conducted to determine the optimum dietary protein level of sea cucumber Apostichopus japonicus juvenile focusing on growth performance and non‐specific immune response. Diets with seven crude protein levels (42.0, 108.9, 155.2, 216.7, 258.0, 313.3 and 357.5 g kg?1) were fed to sea cucumber juveniles (1.05 ±0.01 g) once a day for 100 days. More than 70% survival was observed, and there was no significant difference among all treatments. The sea cucumbers fed diets containing 108.9 g kg?1 crude protein showed significantly (< 0.05) higher body weight gain than those of the sea cucumbers fed diets containing 42.0, 216.7, 258.0, 313.3 and 357.5 g kg?1 crude protein. No significantly differences (> 0.05) were observed in moisture, crude protein, crude lipid, ash and carbohydrate content of the body wall among all treatments. The coelomic fluid catalase activity of the sea cucumbers generally increased with increasing dietary protein levels. Therefore, the acid phosphatase, superoxide dismutase and lysozyme activity increased with increasing dietary protein levels at first and decreased subsequently. The relationship between dietary protein levels and body weight gain was analysed by a second‐order polynomial regression analysis model. The result indicates that the optimum dietary protein level for sea cucumber juveniles is 135.4 g kg?1.  相似文献   

6.
A feeding trial aimed to determine the effects of dietary lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea cucumber, Apostichopus japonicus. Diets with six crude lipid levels (1.9, 13.8, 29.1, 43.6, 59.6 and 71.6 g kg?1) were fed to sea cucumbers (initial weights 0.65 ± 0.01 g) at a density of 30 juveniles, once a day. After 60 days, body weight gain (BWG), specific growth rate (SGR), feed intake (FI) and protein efficiency ratio (PER) decreased with increasing dietary lipid levels. The sea cucumbers fed 1.9 g kg?1 crude lipid showed significantly higher (P < 0.05) BWG than those of the sea cucumbers fed 59.6 and 71.6 g kg?1 crude lipid. Intestinal protease and lipase activities generally increased with increasing dietary lipid levels. Eicosapentaenoic acid (EPA) content of body walls generally increased with increasing dietary lipid levels. Docosahexaenoic acid (DHA) content of body walls reached the maximum value at a dietary lipid level of 13.8 g kg?1. N‐3 highly unsaturated fatty acid content followed the same pattern of DHA. According to the growth performance and body composition of sea cucumbers, it can be indicated that the optimum dietary lipid level for juvenile sea cucumbers is between 1.9 and 13.8 g kg?1.  相似文献   

7.
An 8‐week feeding trial was conducted to investigate the effects of dietary cholesterol levels on growth, feed utilization, body composition and immune parameters in juvenile oriental river prawn, Macrobrachium nipponense. Six isolipid (80 g kg?1 crude lipid) and isoproteic (400 g kg?1 crude protein) diets, supplemented with 0, 3.0, 6.0, 9.0, 12.0 and 15.0 g kg?1 cholesterol, were evaluated. Growth performance and feed utilization of M. nipponense were improved as dietary cholesterol levels increased. Weight gain and specific growth rate were highest, and feed conversation ratio was lowest, when prawns were fed a diet supplemented with 9.0 g kg?1 cholesterol. However, final body weights and survival rates of juvenile M. nipponense were not affected significantly by dietary cholesterol. Body composition of prawns, including moisture, crude protein and crude lipid, was not significantly affected by changes in dietary cholesterol. The immune parameters measured in hepatopancreas, including total antioxidant capacity, and glutathione, catalase, alkaline phosphatase and acid phosphatase activities, were at optimum levels in prawns fed with 9.0 g kg?1 dietary cholesterol. In summary, the best growth performance, lowest feed conversation ratio, and the most enhanced antioxidant capacity and immunity parameters were attained in juvenile M. nipponense when fed a diet supplemented with 9.0 g kg?1 cholesterol.  相似文献   

8.
This experiment was conducted to investigate total aromatic amino acid requirement of juvenile grass carp Ctenopharyngodon idella. Six isonitrogenous and isoenergetic semipurified diets containing casein and gelatin with graded level of phenylalanine (7.8, 11.1, 14.4, 17.6, 21.7, 24.9 g kg?1 DM) were formulated. Each diet was randomly assigned to triplicate group of 30 fish (3.58 ± 0.002 g, mean ± SEM) each tank for 8 weeks. The highest weight gain (WG, %), final body weight (g) and specific growth rate were recorded when phenylalanine level was 17.6 g kg?1 of the diet. Fish muscle protein content, protein efficiency ratio (PER), feed conversion ratio and alanine aminotransferase were significantly affected by dietary phenylalanine level. The polynomial regression calculated using WG and PER indicated that the optimal dietary total aromatic amino acid (phenylalanine + tyrosine) requirement for juvenile grass carp was 24.4 g kg?1 of the diet, corresponding to 65.9 g kg?1 of dietary protein.  相似文献   

9.
W. Li  X. Wen  Y. Huang  J. Zhao  S. Li  D. Zhu 《Aquaculture Nutrition》2017,23(5):1035-1047
A two‐factor experiment was designed to determine the suitable dietary protein and lipid levels for juvenile Nibea diacanthus. Nine extruded pellet diets were formulated to contain three levels of protein (420, 470 and 520 g kg?1) and three levels of lipid (70, 110 and 150 g kg?1). Each diet was randomly fed to triplicate groups of 25 juvenile N. diacanthus (initial weight 12.12 ± 0.23 g) for 8 weeks in net cages. The results showed that weight gain rate (WGR), specific growth rate, final body weight and energy retention were significantly influenced by the dietary protein and lipid levels‐. The highest WGR (982.5g kg?1.) of N. diacanthus was found in the group with dietary protein and lipid of 520 and 150 g kg?1. Feed intake and feed efficiency were significantly impacted by the dietary protein levels. An interactive effect between dietary protein and lipid on the protein retention and protein efficiency ratio was observed. There were no significant differences in condition factor and survival among all treatments. Hepatosomatic index and viscerasomatic index of N. diacanthus were positively related with dietary lipid levels, but negatively with dietary protein levels. Crude protein, crude lipid, ash, moisture and energy contents of the whole body, muscle and liver were influenced by dietary protein and lipid levels. Moreover, total essential amino acid pattern of the muscle was correlated to those of dietary protein. Total protein concentration in the serum was affected by dietary protein and lipid levels. Meanwhile, both serum cholesterol and triglyceride concentrations increased with increasing dietary lipid levels. These results demonstrate that the diet containing 470 g kg?1 protein and 110 g kg?1 lipid is optimal for juvenile N. diacanthus and analysis of WGR by quadratic regression indicated that the estimated optimal protein‐to‐energy ratio for juvenile N. diacanthus was 24.53 mg protein kJ?1.  相似文献   

10.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

11.
An 8‐week feeding trial was conducted to assess dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile red‐spotted grouper (7.85 ± 0.03 g fish?1). Nine semi‐purified diets were formulated containing varying protein levels (440–520 g kg?1, dry matter) and lipid levels (60–120 g kg?1, dry matter). The weight gain of juvenile Epinephelus akaara was affected by dietary protein (= .005) and its interaction with dietary lipid (= .020). Viscerosomatic index, intraperitoneal fat ratio and whole‐body lipid level increased with increasing dietary lipid level (p < .001). Nitrogen retention was not affected by dietary protein and lipid, while lipid retention decreased with increasing dietary lipid level (p < .001). The plasma blood urea nitrogen increased with increasing dietary protein level (= .003). This study showed that diet with 520 g kg?1 protein and 60 g kg?1 lipid with 30.58 mg kJ?1 P:E provided a maximal growth for this species. Moreover, an increase in dietary lipid levels (from 60 to 90 g kg?1) could reduce the protein requirement (from 520 to 480 g kg?1) without affecting the growth performance, while higher fat deposition was observed in fish fed high‐lipid diets.  相似文献   

12.
A 9‐week feeding trial was conducted to investigate the dietary methionine requirement of juvenile Megalobrama amblycephala at a constant dietary cystine level. Six semipurified diets were formulated to contain graded dietary methionine levels from 3.9 to 15.4 g kg?1 in about 2.5 g kg?1 increments in the presence of 2.2 g kg?1 cystine. Results showed that specific growth rate (SGR) and protein efficiency ratio (PER) significantly increased with increasing dietary methionine levels from 3.9 to 12.4 g kg?1 and thereafter kept stable. Maximum protein productive value (PPV), nitrogen retention efficiency (NRE) and liver weight were observed in 8.5 g methionine kg?1 diet. Protein contents in whole fish body were positively correlated with dietary methionine level, while lipid contents were negatively correlated with it. Morphological index and hepatic glutamate‐pyruvate transaminase (GPT) activities were independent of dietary methionine levels. However, dietary methionine supplementation significantly improved haematological parameters, plasma methionine and total essential amino acid contents and hepatic glutamate‐oxaloacetate transaminase (GOT) activities. Analysis of dose response using broken‐line regression on the basis of SGR and PPV versus dietary methionine level estimated the optimum dietary methionine requirements of juvenile M. amblycephala to be between 8.5 and 8.4 g kg?1 of diet (25.0 and 24.7 g kg?1 of protein) in the presence of 2.2 g kg?1 cystine, respectively. Hence, the corresponding total sulphur amino acids requirements of this species were calculated to be 10.7 and 10.6 g kg?1 of diet (31.5 and 31.2 g kg?1 of dietary protein).  相似文献   

13.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

14.
An 8‐week feeding trial was conducted to determine the optimal dietary arginine requirement for juvenile swimming crab Portunus trituberculatus. Six isonitrogenous and isolipidic experimental diets were formulated to contain graded arginine levels which ranged from 15.9 to 33.0 g kg?1. Each diet was randomly assigned to triplicate groups of 60 juvenile swimming crabs (4.72 ± 0.12 g). The results indicated that dietary arginine had significant effects on weight gain (WG), specific growth rate (SGR), protein productive value, feed efficiency and protein efficiency ratio. Weight gain and SGR significantly increased with the dietary arginine increasing from 15.9 to 27.4 g kg?1, while with the further increasing from 27.4 to 33.0 g kg?1, WG and SGR did not increase significantly. Maximum arginine, proline and total essential amino acid contents in muscle were observed in 27.4 g kg?1 group diet. The swimming crab fed the diet with lower dietary arginine level showed higher AST and lower ALT in the serum. Crab fed with the lower dietary arginine level had significantly lower ALT in the serum than the other groups. Haemolymph indexes were significantly affected by the dietary arginine level except for the cholesterol concentration, and the highest values were all found in 27.4 g kg?1 group diet. The two slope broken‐line model using SGR showed that the optimal dietary arginine requirement was 27.7 g kg?1 of the dry matter (56.0 g kg?1 dietary protein) for juvenile swimming crab.  相似文献   

15.
The study was to evaluate the effects of dietary fish meal (FM) partially replaced by housefly maggot meal (HMM) on growth, fillet composition and physiological responses of juvenile barramundi, Lates calcarifera. HMM at 100, 150, 200 and 300 g kg?1 was supplemented in the basal diet to replace dietary FM protein. Basal diet without HMM supplementation was used as control. Total of five experimental diets were fed to triplicate groups of juvenile barramundi (initial weight: 9.66 ± 0.22 g) in a flow‐through rearing system for 8 weeks. Fish fed all experimental diets showed no effects (> 0.05) on weight gain and whole body protein, lipid and moisture content. Fish fed control diet and 100 g kg?1 HMM diet had the highest (< 0.05) hepatic superoxide dismutase (SOD) activity, followed by 150 g kg?1 HMM group, the lowest in 200 and 200 g kg?1 HMM groups. Hepatic thiobarbituric acid reactive substance (TBARS) value was the highest in fish fed 150–300 g kg?1 HMM diets, followed by 100 g kg?1 HMM group and the lowest in fish fed the control diet. Fish fed the 300 g kg?1 HMM diet had lower plasma lysozyme activity than fish fed other diets. The results indicated that up to 300 g kg?1 HMM can be used to substitute dietary FM protein without negative effect on growth. Although physiological responses were also considered, up to 100 g kg?1 HMM in barramundi diet was recommended.  相似文献   

16.
This study evaluated the effects of soy protein ratio, lipid content and the minimum dietary level of krill meal in plant‐based diets over the growth performance and digestibility of Litopenaeus vannamei. Nine plant‐based diets varied the soybean meal (SBM) and soy protein concentrate (SPC) inclusion ratio at 1 : 2.3, 1 : 1 and 2.5 : 1, and their dietary lipid content at 121.4 ± 9.4, 102.3 ± 1.2, and 79.9 ± 1.2 g kg?1 (in a dry matter basis). An additional diet containing 120 g kg?1 of fish meal (salmon by‐product) was used as a control. Krill meal was included at 0, 5, 10, 20 and 30 g kg?1 in a new set of plant‐based diets. After 10 weeks in clear‐water tanks of 0.5 m3, no effect of SBM:SPC ratio and dietary lipid content was detected on shrimp survival. However, dietary lipid levels of 80 and 121 g kg?1 combined with a high SPC to SBM resulted in the lowest final body weight and the poorest apparent crude protein digestibility, respectively. Krill meal increased feed intake at only 10 g kg?1, while at 20 g kg?1, it accelerated shrimp growth, increased yield and reduced food conversion ratio.  相似文献   

17.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

18.
An 8‐week feeding trial was conducted to evaluate the effects of dietary leucine on growth performance, feed utilization, body composition and non‐specific immune responses of juvenile Nile tilapia. Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of L‐leucine (5.3, 8.1, 10.9, 13.2, 15.6 and 18.1 g kg?1 diet, respectively) from dietary ingredients and crystalline L‐leucine. Each diet was randomly assigned to triplicate groups of 20 juvenile fish (1.94 ± 0.01 g) three times daily to apparent satiation. Results showed that the weight gain (WG) and specific growth rate (SGR) increased as dietary leucine concentrations increased from 5.3 to 13.2 g kg?1 and then decreased slightly with further increase in dietary leucine concentrations. Quadratic regression analysis (y = ?522.6x2 + 1304.x + 132.6, R² = 0.684) on weight gain against dietary leucine levels indicated that the optimal dietary leucine requirement was estimated to be 12.5 g kg?1 diet (corresponding to 43.1 g kg?1 of dietary protein). Leucine supplementation had no impact on the survival and body composition of tilapia. Serum lysozyme activity of fish fed diet containing 13.2 g kg?1 leucine significantly increased compared to fish fed diet containing 5.3 g kg?1. Serum superoxide dismutase activity and immunoglobulin M (IgM) concentration were not significantly affected by dietary leucine supplementation.  相似文献   

19.
An 8‐week feeding trial was conducted to investigate the effects of different taurine levels on the growth performance of juvenile white shrimp fed with low‐fishmeal diets. Six level diets of dietary taurine were prepared by the supplementation of taurine (0, 0.4 g kg?1, 0.8 g kg?1, 1.2 g kg?1, 2.0 g kg?1 and 4.0 g kg?1) to a control diet (100 g kg?1 fish meal). Each diet was randomly assigned to triplicate groups of 30 shrimps (0.48 ± 0.0 g), each three times daily. Shrimp fed the 0.4 g kg?1 and 0.8 g kg?1 taurine‐supplemented diets, showed significantly higher weight gain, protein efficiency ratio and protein retention efficiency than those of shrimp fed the other diets. The quadratic regression analysis (y = ?55.59x2 + 187.1x + 750.2 R² = 0.587) indicated that a maximum weight gain occurring at 1.68 g kg?1 of taurine level. The whole body and hepatopancreas taurine contents of the taurine‐supplemented diets were on the same level and higher than those of the control group. Total free amino acid content in the hepatopancreas was significantly affected by taurine supplementation. The results of the present study demonstrate that the white shrimps require taurine as an essential nutrient for growth performance.  相似文献   

20.
This study was conducted to evaluate the effects of supplemental taurine on reproductive performance of Nile tilapia (Oreochromis niloticus) broodstock fed soybean meal‐based diets. Four isonitrogenous (350 g kg?1 protein), isocaloric (18 MJ kg?1) diets were formulated to contain 0, 5, 10 and 15 g kg?1 taurine. The diets were fed to triplicate groups of juvenile Nile tilapia (10–15 g average body weight) at a female: male ratio of 3 : 1, to apparent satiation, three times per day for 130 days. The size at first maturation decreased with increasing dietary taurine to 10 g kg?1 and levelled off with further taurine supplementation. The time to first spawning was also significantly shorter at 10 g kg?1 taurine level. Spawning performances, including spawning frequencies, total number of spawnings per tank, number of spawnings per female and absolute fecundity, were all significantly improved with increasing dietary taurine up to 10 g kg?1. However, the quadratic regression analyses indicated that the maximum spawning performance occurred at 8 g kg?1 of supplemental taurine. Eggs produced from broodstock fed 10 g kg?1 taurine exhibited significantly higher hatchability and required shorter time for hatching and yolk‐sac absorption and also resulted in higher larval weight than at other dietary taurine levels. The highest egg protein, total amino acids and taurine were also obtained at 10 g kg?1 taurine. These results suggest that 8 g kg?1 dietary taurine is required for optimum reproductive outputs of Nile tilapia broodstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号