共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abir Dey Brahma S. Dwivedi Siba P. Datta Mahesh C. Meena Binay K. Agarwal 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(1):54-62
In Indian agriculture, nitrogen (N) and phosphorus (P) fertilizers are predominantly used by the farmers, often ignoring secondary and micronutrients. Significance of boron (B) in nutrient management studies has been increasingly underlined under intensive cropping systems particularly in acid soils. In order to understand the distribution of soil native B in different fractions and their contribution to plant B uptake as influenced by nutrient management, soil samples collected after wheat (2009–2010) from a long-term experiment (LTE) continuing since 1972–1973 on Typic Paleustalf of Ranchi were subjected to sequential fractionation of soil B. Treatments included N alone, NP, NPK, 150% of recommended NPK, NPK + farmyard manure (FYM), NPK + lime, and an unfertilized-control. Five soil B fractions were determined along with hot CaCl2-extractable (available) B. Averaged across the treatments, the soil had low organic carbon (C), pH and cation exchange capacity (CEC), and high free sesquioxides. Total B content was 21.7 mg kg?1. Among different B fractions, residual B was the major contributor to total B and other fractions collectively shared 7% of total B only. Application of N alone depleted readily soluble, specifically adsorbed and organically bound B bringing the contents even below unfertilized-control. Conjoint use of lime or FYM with NPK increased significantly these fractions, whereas a decrease in oxide bound B was noticed under these treatments. Available B was positively correlated with these fractions indicating their significance in controlling B availability in the soil. The study revealed that use of lime or FYM helped modifying the distribution of soil B in different fractions by way of changing soil pH and organic C content, resulting in enrichment of plant available pool. A drastically low available B content in different treatments receiving fertilizers alone, however, suggested the necessity of B fertilization at prescribed rates for maintaining soil B fertility as also high crop yields. 相似文献
3.
Deficiency of molybdenum (Mo) in acid soils causes poor growth of pulses. An experiment was, therefore, conducted in greenhouse to study the effect of Mo, phosphorus (P), and lime application on the dry matter yield and plant Mo concentration of lentil (Lens esculenta L.) in two Mo‐deficient acid alluvial soils. The experiment was conducted using a factorial design with three levels of lime (no lime, half, and full lime requirement), three levels of P (0, 25, and 50 mg kg‐1), and two levels of Mo (0 and 1.0 mg kg‐1). Plants were grown for 60 days and at harvest their dry matter yield and Mo concentration were recorded. The three treatments significantly increased dry matter yield, Mo concentration and Mo uptake, the increase being most pronounced with Mo application followed by lime and P. Increases due to applied Mo were greater in presence than in absence of added P; while the reverse was true with the liming treatments. Liming and P application at their lower levels also interacted positively for better Mo nutrition of plants. Results thus indicated that the severity of Mo deficiency in the lentil plants may be reduced by lime and P application in Mo‐deficient acid alluvial soils. 相似文献
4.
为探明高粱养分吸收和根系生长对氮、磷、钾胁迫的响应,通过长期定位试验,在高粱/玉米轮作条件下研究了不同养分配比NPK、PK、NK、NP、CK对高粱根系生长及养分吸收的影响。结果表明:与NPK相比,长期不施氮肥(PK)条件下高粱总根长增加18.29%,总根体积降低26.52%,且根系主要分布在0~10 cm土层,直径小于0.5 mm细根所占比例显著增加。不施磷肥(NK)显著抑制了高粱根系生长,总根长、总根表面积和总根体积分别降低24.03%、27.48%和41.29%。不施钾肥(NP)对细根生长有明显抑制作用。不施氮、磷、钾均降低高粱对相应养分的吸收和累积,不施氮促进了营养器官中氮和钾素向籽粒转运,不施磷或钾肥抑制了氮、磷及钾的转运。高粱对养分的吸收、积累和转运与根系形态有关,不同养分积累与运转与根系形态关系表现不尽相同:氮素、钾素积累和转运与根系形态具有较好的相关性,氮素的积累和转运与植株生物量和产量的相关性大于磷素和钾素。综上,高粱根系形态及养分吸收对氮、磷及钾胁迫响应不同,该研究可为不同养分瘠薄地高粱高效栽培提供理论依据。 相似文献
5.
Zhongwei Tian Xiaoxue Liu Jinhong Yu Shilu Gu Lei Zhang Dong Jiang 《Archives of Agronomy and Soil Science》2020,66(10):1384-1398
ABSTRACT A two-year field and micro-plot 15N-labelled experiment was conducted under two levels of N application rate (240 and 180 kg N ha–1) with three basal N application stages [seeding (L0), four-leaf stage (L4), and six-leaf stage (L6)] to investigate the effects of reducing basal N application amount and postponing basal N fertilization period on wheat growth and N use efficiency (NUE). No significant differences were observed in grain yield, root growth and root morphology between the N180L4 and N240L0 treatments, while the root-shoot ratio of N180L4 was significantly improved. Postponing basal N application period increased the residual basal 15N in soil and reduced basal 15N loss, and N180L4 treatment favored the highest 15N recovery efficiency (NRE), mainly due to reduced 15N loss. Grain yield and basal NRE were significantly positively correlated with root dry weight in deeper soil layers (40–60 cm), and the contribution of root growth to improved grain yield and NRE increased with the downward distribution of the roots. Therefore, postponing the basal N fertilization period under N deficiency promotes deeper root growth during the post-jointing period and increases basal N uptake, as well as reducing basal N loss and increasing grain yield and NUE. 相似文献
6.
Arbuscular mycorrhizal fungi (AMF) can benefit growth and yield of agriculturally significant crops by increasing mineral nutrient uptake, disease resistance and drought tolerance of plants. We conducted a meta-analysis of 38 published field trials with 333 observations to determine the effects of inoculation and root colonization by inoculated and non-inoculated (resident) AMF on P, N and Zn uptake, growth and grain yield of wheat. Field AMF inoculation increased aboveground biomass, grain yield, harvest index, aboveground biomass P concentration and content, straw P content, aboveground biomass N concentration and content, grain N content and grain Zn concentration. Grain yield was positively correlated with root AMF colonization rate, whereas straw biomass was negatively correlated. The most important drivers of wheat growth response to AMF were organic matter concentration, pH, total N and available P concentration, and texture of soil, as well as climate and the AMF species inoculated. Analysis showed that AMF inoculation of wheat in field conditions can be an effective agronomic practice, although its economic profitability should still be addressed for large-scale applications in sustainable cropping systems. 相似文献
7.
阐述了植物对矿质养分的吸收;植物相对生长率与奢侈吸收;养分的分配与利用效率;养分的储藏与损失方面的研究进展。 相似文献
8.
Shweta Shambhavi Rakesh Kumar Rajeev Padbhushan Gayatri Verma Surya Prakash Sharma Sanjay K. Sharma Raj Paul Sharma 《Soil Use and Management》2020,36(3):507-523
This present investigation took place on a continuing long-term fertilizer experiment, initiated in 1972 at the experimental farm of the College of Agriculture CSK HPKV, Palampur, aimed at studying nutrient dynamics of micronutrients, especially Zn, after continuous use of chemical fertilizers and amendments over the previous 36 years in an acid Alfisol under a maize–wheat system. Treatments investigated were as follows: T1: Control; 100% N; 100% NP; 100% NPK (optimal application - 120:26:33(maize)/25(wheat)); 100% NPK + FYM (10 t ha−1 to the maize crop); T6: 100% NPK + lime (900 kg ha−1); T7: 100% NPK + Zn (25 kg ha−1 as ZnSO4); T8: 100% NPK + Hand weeding; T9: 100% NPK (-S); T10: 150% NPK (super-optimal application); and T11: 50% NPK (sub-optimal application). Different forms of zinc in soil were determined through a sequential extraction method. Results revealed that previous applications of high-analysis fertilizers and amendments caused a marked depletion in the pools of Zn as compared to buffer plots. All pools of Zn as well as crop productivity and Zn uptake were noticeably greater in farmyard manure (FYM)-amended plots compared with plots not receiving fertilizer. The residual fraction was the dominant form but organically bound and exchangeable forms were found to play major role in nutrient supply, crop productivity and nutrient uptake. Correlation and regression analysis studies showed that organic forms constituted the most important pool contributing towards variation in yield and uptake by maize and wheat crops. Exchangeable and organically bound forms contributed significantly towards the availability of DTPA-extractable Zn in soil. 相似文献
9.
《Communications in Soil Science and Plant Analysis》2012,43(18):2235-2249
The objective of this study was to investigate the root growth and nitrogen (N) accumulation of spring wheat during grain filling under split N management. Two spring wheat genotypes were grown in a field with sandy loam soils at three levels of N fertilization (18, 21, and 24 g N m?2). Variations in N availability across soil depth were performed in additional experiments under controlled conditions in a greenhouse. The accumulations of total and late-applied N at maturity were 13% and 41% greater, respectively, for the genotype that had longer root length (+57%) and root-to-shoot ratio (+43%). The accumulation of 15N in the greenhouse study was 53% greater with 15N applied at a depth of 0.15 m than at a depth of 0.35 m. These results indicate that the genotype that accumulated more N was characterized by greater proliferation and maintenance of roots where N availability was greater. 相似文献
10.
11.
L. J. Munkholm E. M. Hansen I. K. Thomsen E. M. Wahlström H. S. Østergaard 《Soil Use and Management》2017,33(2):233-242
Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder radish on N dynamics and root growth. Field experiments were carried out on a humid temperate sandy loam soil. Aboveground biomass and soil inorganic N were determined in late autumn; N uptake and grain yield of winter wheat were measured at harvest. Nitrate leaching was estimated from soil water samples taken at 1 m depth. Root growth was measured late autumn using the core break and root washing methods. Winter wheat root growth dynamics were followed during the growing season using the minirhizotron method. The 2013–2014 results showed that early seeding of wheat improved autumn growth and N uptake and reduced N leaching during the winter compared with the normal seeding time. Early‐seeded wheat (WWearly) was, however, not as efficient as fodder radish at reducing N leaching. Proper establishment of WWearly was a prerequisite for benefiting from early seeding, as indicated by the 2012–2013 results. Early seeding improved root growth throughout the 2013–2014 growing season compared with normal seeding time, but had no significant effect on crop grain yield. Our results indicate the potential of using early seeding as a tool to limit drought susceptibility and increase nutrient uptake from the subsoil. 相似文献
12.
13.
《Communications in Soil Science and Plant Analysis》2012,43(17-18):2405-2419
Abstract Salinity and moisture stress are main limiting factors of agricultural development on arid and semi‐arid lands. The objective of this study was to evaluate the tolerance of sesame (Sesamun indicum L.) genotypes to salinity. Salinity treatments in rooting media were 0.5, 2.0, 3.5, 5.0, and 7.0 dS m?1 using calcium chloride (CaCl2). Germination of 50 genotypes was evaluated. Twenty seeds of each cultivar were set in paper towels and moistened with the saline solutions for 15 days. Five germination‐selected genotypes were seeded in 10‐kg pots, and soil salinity was adjusted to the same treatments. Highly significant effects were found for dry matter at 45 (DM 45) days after planting (DAP), at 90 DAP (DM 90), and leaf area (LA). Growth differences among genotypes were only observed for DM 90. These data suggest that sesame tolerance to CaCl2 salinity improved through the growing season and may be genetically controlled. 相似文献
14.
Leif J. Youngdahl 《Journal of plant nutrition》2013,36(3):321-331
The uptake of many plant nutrients has been shown to follow Michaelis‐Menten enzyme kinetics, and as a result several methods of collecting and analyzing uptake data have been developed. The method proposed here consists of a continuously flowing hydroponic system and a method of data analysis that estimates a value of Kmand Vmax for each plant. The method is nondestructive; it does not require large amounts of space; and the plants are near steady‐state uptake. In simulated experiments with various assumptions about variability in the data, the nonparametric statistical analysis of the results provided estimates as good as or better than regression analysis estimates of the two parameters of the Michaelis‐Menten equation. 相似文献
15.
《Communications in Soil Science and Plant Analysis》2012,43(20):2478-2490
Agricultural productivity is increasingly becoming dependent upon soil fertility, which is generally thought to be supplemented through the application of nutrients mainly through inorganic fertilizers. The present study aims to characterize the soil physical environment in relation to long-term application of farmyard manure (FYM) and inorganic fertilizers in a maize–wheat cropping system. The treatments in both the maize and wheat systems included a control (without any fertilizer or FYM), FYM (farmyard manure at 20 t ha?1), N100 (nitrogen at 100 kg ha?1), N100P50 (nitrogen and phosphorus at 100 and 50 kg ha?1), and N100P50K50 (nitrogen, phosphorus, and potash at 100, 50, and 50 kg ha?1). The treatments were replicated four times in a randomized complete block design in sandy loam soil. The root mass density in surface layers of both the crops was lower in FYM and higher in inorganic fertilizer plots. The root length density was found to be highest in FYM-treated plots and lowest in control plots. The periodic soil matric suction during wheat following maize remained highest in FYM plots followed by that in N100 plots in all the layers. The soil water storage of wheat at harvest (rice–wheat) was highest (21.1 cm) in control and lowest (17.8 cm) in FYM-treated plots. The soil water status, root growth, and crop performance improved with balanced fertilization. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(20):3020-3029
Effects of Glycine–Glomus–phosphate solubilizing bacteria (PSB) interactions were studied on productivity, nutrient dynamics, and root colonization in soybean in a phosphorus (P)–deficient Himalayan acidic Alfisol in a greenhouse experiment. Treatments consisted of three vesicular arbuscular mycorrhizae (VAM) cultures, VAML [VAM culture, Glomus mosseae, developed by CSK Himachal Pradesh Agricultural University, Palampur, India], VAMT [VAM culture, Glomus intraradices, developed by Centre for Mycorrhizal Research, The Energy and Resources Institute (TERI), New Delhi, India], and VAMI [VAM culture, Glomus mosseae, developed by Indian Agricultural Research Institute (IARI), New Delhi, India], and a local PSB culture (Pseudomonas striata) alone or in combination with or without 75% of recommended phosphorus pentoxide (P2O5) dose based on targeted yield concept following the soil-test crop response (STCR) precision model. Sole application of PSB or either of the above VAM cultures considerably enhanced VA-mycorrhizal root colonization and root weight besides crop productivity and nutrient uptake over control. A similar stimulatory effect with significant enhancement on mycorrhizal root colonization and root weight was observed with coinoculation of PSB and VAM cultures over the control. Dual inoculation of VAM and PSB cultures also resulted in significant improvement in grain and straw yield besides grain protein content, thereby revealing a synergistic interaction between VAM and PSB. Coinoculation with either of VAMT (Glomus intraradices) or VAMI (Glomus mosseae) + PSB + 75% P2O5 dose remained at par with sole application of 100% P2O5 dose with respect to crop productivity, nutrient content, nutrient uptake, and soil fertility status besides the greatest root colonization and root weight at flowering, indicating that Glycine–Glomus–PSB interactions in combination with 75% P2O5 dose based on STCR precision model lead to economization of fertilizer P by about one-fourth without impairing crop productivity and soil fertility in soybean in a Himalayan acidic Alfisol. 相似文献
17.
《Communications in Soil Science and Plant Analysis》2012,43(13):1636-1658
The research aimed to study the effect of presown application of primary biomethanated spentwash (PBSW) on soil properties, nutrient availability, uptake and yield of soybean–wheat sequence on Inceptisol. The field experiment with randomised block design was initiated during 2007–8 and present observation was recorded during 2009–10 and 2010–11.The five treatments were, recommended dose (RD) of NPK (T1), 100% RD of N through PBSW without (T2) and with P chemical fertilizer (T3), 50 and 25% RD of N through PBSW + remaining N and P through chemical fertilizers (T4,T5), respectively. The results revealed that the soil physical properties and microbial populations were improved in T2 and T3. The lowest soil pH and pHs were observed in T2. The soil electrical conductivity, organic carbon, exchangeable sodium percentage and sodium adsorption ratio of soil extracts and available K were increased with the increase in PBSW as compared to RD-NPK. The soil available N and P were decreased as PBSW increased at all the soil depths. The greatest yields and total N,P,K uptake of soybean and wheat were observed in T5. 相似文献
18.
Christianah Olubunmi Kayode Gideon Olajiire Adeoye Dorcas Tinuke Ezekiel-Adewoyin Olufemi Emmanuel AyanfeOluwa David Ogundeji Ogunleti Adenike Fisayo Adekunle 《Communications in Soil Science and Plant Analysis》2018,49(17):2113-2122
This experiment evaluated the potentials of cocoa pod husk (CPH)-based compost on okra and soil chemical properties. Three CPH-based compost: CPH+ Neem leaf (CPH+ NL), CPH+ Poultry manure (CPH+ PM) and CPH+ PM+ NL were prepared. The treatments; 25, 50, 75, 100 kg N/ha of each compost and NPK mineral fertilizer at 40, 50, 60 kg N/ha and control, were applied to 5 kg soil each and arranged in a completely randomized design in three replicates. Two varieties of okra (NH47-4 and LD88) were grown for six weeks and residual effect evaluated. The Nitrogen, Phosphorus, and Potassium uptake of okra were determined. Pre- and post-cropping soil analyses were done. Data were analyzed using ANOVA and means separated by Duncan Multiple Range Test at α0.05. The results showed that the nutrient uptake of okra consistently increased with CPH-based compost compared to control in both main and residual cropping. Nitrogen uptake ranged from 53.6 (60 kg N/ha NPK) to 106.7 (50 kg N/ha CPH+ PM) and 16.10 (50 kg N/ha NPK) to 55.06 (25 kg N/ha CPH+ PM+ NL); Phosphorus uptake ranged from 6.9 (25 kg N/ha CPH+ NL) to 24.1 (60 kg N/ha NPK) and 3.70 (25 kg N/ha CPH+ NL) to 9.98 (50 kg N/ha CPH+ PM+ NL), while potassium uptake ranged from 166.4 (25 kg N/ha CPH+ NL) to 244.48 (25 kg N/ha CPH+ PM+ NL) and 64.06 (40 kg N/ha NPK) to 122.29 (75 kg N/ha CPH+ NL) mg/plant in main and residual cropping, respectively. Organic carbon, pH, nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg) and sodium (Na) were also significantly increased by the CPH-based compost. It could, therefore, be concluded that CPH-based compost could be a good fertilizer for okra production. 相似文献
19.
20.
Long-term soil management effects on crop yields and soil quality in a dryland Alfisol 总被引:11,自引:0,他引:11
K.L. Sharma Uttam Kumar Mandal K. Srinivas K.P.R. Vittal Biswapati Mandal J. Kusuma Grace V. Ramesh 《Soil & Tillage Research》2005,83(2):246-259
A long-term experiment was conducted with the objective of selecting the appropriate land management treatments and to identify the key indicators of soil quality for dryland semi-arid tropical Alfisols. The experiment was conducted using a strip split–split plot design on an Alfisol (Typic Haplustalf) in southern India under sorghum (Sorghum vulgare (L))-castor (Ricinus communis (L)) bean rotation. The strip constituted two tillage treatments: conventional tillage (CT) and minimum tillage (MT); main plots were three residues treatments: sorghum stover (SS), gliricidia loppings (GL), ‘no’ residue (NR) and sub plots were four nitrogen levels: 0 (N0), 30 (N30), 60 (N60), and 90 kg ha−1 (N90). Soil samples were collected after the sixth and seventh year of experimentation and were analyzed for physical, chemical and biological parameters. Sustainable yield index (SYI) based on long-term yield data and soil quality index (SQI) using principal component analysis (PCA) and linear scoring functions were calculated. Application of gliricidia loppings proved superior to sorghum stover and no residue treatments in maintaining higher SQI values. Further, increasing N levels also helped in maintaining higher SQI. Among the 24 treatments, the SQI ranged from 0.90 to 1.27. The highest SQI was obtained in CTGLN90 (1.27) followed by CTGLN60 (1.19) and MTSSN90 (1.18), while the lowest was under MTNRN30 (0.90) followed by MTNRN0 (0.94), indicating relatively less aggradative effects. The application of 90 kg N ha−1 under minimum tillage even without applying any residue (MTNRN90) proved quite effective in maintaining soil quality index as high as 1.10. The key indicators, which contributed considerably towards SQI, were available N, K, S, microbial biomass carbon (MBC) and hydraulic conductivity (HC). On average, the order of relative contribution of these indicators towards SQI was: available N (32%), MBC (31%), available K (17%), HC (16%), and S (4%). Among the various treatments, CTGLN90 not only had the highest SQI, but also the most promising from the viewpoint of sustainability, maintaining higher average yield levels under sorghum–castor rotation. From the view point of SYI, CT approach remained superior to MT. To maintain the yield as well as soil quality in Alfisols, primary tillage along with organic residue and nitrogen application are needed. 相似文献