首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model to predict bending stiffness of oriented strandboard (OSB) was tested with pilot plant experimental data. The experimental procedure developed in this study is unique in that it allows the model to be tested for extensive vertical configurations of strand angle distribution. After validation, the model was used to simulate a typical three-layer cross-oriented OSB panel with a vertical density profile and strand angle distribution measured on industrial panels. Analysis of the simulated vertical distribution of modulus of elasticity (MOE) indicated that the layers near the panel surfaces contributed much more to the effective parallel panel MOE than those close to the panel thickness center, with 80% of parallel MOE coming from the top 41% of weight and 32% of thickness. The effectiveness of methods to increase parallel bending stiffness through improving mat structure was evaluated. Increasing face/core weight ratio from 54/46 to 66/34 resulted in a 3.7% increase in simulated parallel MOE. Alignment of strands in face layers was identified having a greater potential to increase parallel MOE. Simulations with three improved strand angle distributions showed gains of 5.7, 12.0 and 19.8% in parallel MOE compared with a typical strand angle distribution of industrial OSB panels.  相似文献   

2.
Summary Laboratory scale cement-bonded particleboards were made from mixed particles of three tropical hardwoods. Boards were three-layered comprising of 2 mm thick sawdust face and 4 mm thick core layers made from flakes of three lengths-12.5 mm, 25.0 mm and 37.5 mm and two thicknesses of 0.25 mm and 0.50 mm. The panels were fabricated at three density levels of 1,050 kg/m3, 1,125 kg/m3 and 1,200 kg/m3. From the statistical factorial analysis carried out, flake length, flake thickness and board density had significant effects at 1% level of propability on the properties of the tested panels. Mean MOR ranged from 5.22 to 11.15 N/mm2; MOE-2,420 to 4,820 N/mm2; water absorption and thickness swelling following 144 hours soak in water, 32.95 to 46.00% and 0.35 to 5.47% respectively. The longer and thinner the flakes, the stronger, stiffer and more dimensionally stable the experimental cement-bonded particleboards. Similarly, the higher density panels generally exhibited higher strength values in terms of MOR and MOE and were more dimensionally stable. MOR, MOE, water absorption and thickness swelling were found to be highly correlated with flake length, flake thickness and panel density. Correlation coefficients (R) for these relationships were 0.888 to 0.986 for the combined variables; and 0.574 to 0.992 for the individual factors. In all the cases tested, the regression relationships were linear.  相似文献   

3.
A model is presented to determine the horizontal density distribution (HDD) and vertical density profile (VDP) of oriented strand board (OSB) panels produced by batch pressing. The HDD is simulated using input distributions of flake dimensions and orientation from plant measurements. Many previous HDD models rely on assumed distributions, which may not accurately characterize current manufacturing processes. The model predicts the VDP based on the compression behaviour of cellular materials in combination with temperature and moisture profiles calculated using a previously published heat and mass transport model. A novel empirical approach is applied rather than the time–temperature–moisture superposition method commonly used. The model predictions compare favourably with plant data and exhibit trends similar to previously reported experimental results. This work is the first of a two-part publication. The second part is concerned with stiffness property prediction and an optimization of the OSB manufacturing process. This work is novel in that no comprehensive model including HDD, VDP, stiffness property prediction and optimization has been reported in the literature.  相似文献   

4.
The purpose of this study was to evaluate compression and swelling characteristics of individual furnish elements sampled through the thickness of lab panels pressed without resin. Commercial southern pine OSB furnish was used to press resinless mats so individual flakes could be removed from the panel after pressing and evaluated for compression behavior. 19 flake sets, each set consisting of 15 southern pine flakes with 0.65% wax, were marked and measured for thickness and mass. One set of marked flakes was randomly distributed in one layer of a mat which consisted of 19 total layers; each of the 19 layers had 15 marked flakes randomly distributed in the layer. After hot pressing each marked flake was removed from the mat. After achieving equilibrium at 35%, 65% and 98% relative humidity, each flake was again remeasured for thickness and mass. Experimental results include flake compaction ratio and its distribution through the mat thickness, flake thickness swelling under different RH environments, compaction ratio-thickness swelling relationship as well as individual flake compaction ratio and thickness swelling variations. Comparison is made to adsorption/desorption behavior of pressed flakes. Flakes from surface layers exhibited compression of 25 to 37%, about double that of flakes in core layers. As expected, flakes from surface layers showed much greater thickness swell than core flakes and the response was accentuated with higher EMC conditions. Received April 26 1999  相似文献   

5.
Abstract

The objective of the study was to compare the properties of oriented strand boards (OSBs) made from the following mixtures: European beech and poplar, beech and pine, poplar and pine and 100% pine (i.e. the conventional raw material for OSB in Europe). Panels with 50–50% of beech-poplar/beech-pine/poplar-pine at two density levels of 650 kg/m3 and 720 kg/m3 were made with 5% pMDI (poly methylene di-isocyanate) as binder at 180°C and 240s as press conditions. Results showed that panels comprising a mixture of European beech and poplar have higher mechanical properties compared to panels made with mixtures of pine-beech or pine-poplar. In addition, for all panels, when density is increased from 650 kg/m3 to 720 kg/m3, mechanical properties increased. Internal bond values for all designs were in the same range, especially at higher density (720 kg/m3). The pure pine panels showed lower values between different designs. Thickness swelling, an important physical property of OSB, improved when face and core layers consisted of a mixture of beech and poplar strands.  相似文献   

6.
The properties of medium-density fiberboard (MDF) panels as affected by wood fiber characteristics were investigated. Wood chips from three softwood and one hardwood species were refined under the same refining conditions to make four different types of fibers. The resulting fibers were characterized by fiber size distribution, bulk density, pH value, and buffering capacity. Using the same resin system and hot-pressing parameters, MDF panels were produced and evaluated for internal bonding (IB), modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling, and linear expansion. The pH values and alkaline buffering capacities of raw materials were reduced considerably after refining. IB was strongly related to the pH value of fibers. The mechanical properties increased with alkaline buffering capacity. IB, MOR, and MOE increased with the bulk density of fibers. Increased proportions of coarse fibers had negative effects on the panel mechanical properties.  相似文献   

7.
Light-weight composite panels were manufactured using kenaf core particles as core material and kenaf bast fiber-woven sheets as top and bottom surfaces. Methylene diphenyldiisocyanate (MDI) resin was used as the adhesive with the resin content of 4% for core particles and 50 g/m^2 for bast fiberwoven sheets. The target board densities were set at 0.35.0.45 and 0.55 g/cm^3. The composite panels were evaluated With Japanese Industrial Standard for Particleboards (JIS A 5908- 2003).The results show that the composite panel has high modulus of rupture and internal bonding strength. The properties of 0.45 g/cm^3 density composite panel are: MOR 20.4 MPa. MOE 1.94 MPa, IB 0.36 MPa, WA142%, TS 21%. Kenaf is a good raw material for making light-weight composite panels.  相似文献   

8.
In this work, the adhesive systems used today in the European industries of particleboard, medium density fibreboard (MDF) and oriented strand board (OSB) are discussed. The structure of particleboard, MDF and OSB markets in Europe in relation to the types of adhesives and product specifications are presented as well. It is noticeable that new markets for wood-based panels like particleboard and fibreboard, known as non-furniture markets, are growing in Europe at a fast rate. It was concluded that most of the technological changes concerning the adhesive systems applied and additives have been realised from the need for niche panel products, the obligation to reach even lower formaldehyde emissions, and the necessity to decrease production costs due to the stringent competition in the market of wood-based panels.  相似文献   

9.
The objective of this study was to investigate the physical and mechanical performance of flakeboard reinforced with bamboo strips. The study investigated three different bamboo strip alignment patterns and an experimental control. All panels were tested in static bending both along parallel and perpendicular to the lengths of the bamboo strips. Internal bond strength (IB), thickness swelling (TS), linear expansion (LE), and water absorption (WA) were also examined. As expected, modulus of rupture (MOR) and modulus of elasticity (MOE) were substantially greater for all three experimental panel types as compared to the control group. LE was also improved for all three experimental panel groups. The bamboo strip alignment patterns had no significant effect on TS, WA and IB. The sample means for MOR, MOE and LE tested perpendicular to the bamboo strip lengths yielded slightly lower mean values than corresponding samples tested parallel to the bamboo strips lengths. This difference in mechanical properties is largely attributed to low panel density in the failure zones.  相似文献   

10.
Three mechanical tests with different loading modes were conducted to evaluate the effect of element type on the internal bond quality of wood-based panels. In addition to the internal bond test, which is commonly used for mat-formed panels, interlaminar and edgewise shear tests were used to test oriented strandboard (OSB), particleboard, medium-density fiberboard (MDF) of two thicknesses, and plywood. The following results were obtained. Epoxy resin proved to be suitable for determining the interlaminar shear modulus instead of hot-melt glue. There was a linear relation between panel density and interlaminar shear modulus and a linear correlation between the interlaminar shear strength and internal bond (IB) strength for the mat-formed panels tested. OSB had the highest edgewise shear modulus, and MDFs had the highest edgewise shear strength in this study. The modulus/strength ratio also depended on both panel type and loading mode. The relation between the shear moduli determined from the edgewise and interlaminar tests indicated the characteristics of the shear properties of panels made of different elements.Part of this paper was presented at the Fourth International Wood Science Symposium, Serpong, Indonesia, September 2002  相似文献   

11.
The static strength, stiffness and fatigue life of MDF, OSB and chipboard have been measured in a 65%RH environment and a 85%RH environment. Chipboard is commonly utilised as a flooring material and OSB is also used in structural applications, for example floor decking and webs of I-beams. The mean static strengths of MDF, OSB and chipboard at 65%RH were 47.9 MPa, 27.9 MPa and 21.0Mpa, respectively, compared with 34.59 MPa, 21.70 MPa and 10.61 MPa at 85%RH. However, MDF has mostly been used in non-structural applications, such as furniture, so its resistance to fatigue loads as a structural panel is of considerable interest. In a 65%RH environment dynamic modulus values showed that whilst MDF and chipboard exhibit similar stiffness values (4 GPa), OSB is approximately 50% stiffer. However, at 85%RH MDF was the stiffest of the three materials, followed by OSB and chipboard. The fatigue life performance of all three panel products was markedly lower at 85%RH compared with 65%RH. Overall, the high RH environment had a noticeably detrimental effect on the MOE (modulus of elasticity), MOR (modulus of rupture) and fatigue lives of OSB and chipboard. This is attributed to these panels retaining more of the original characteristics of the original wood, i.e. larger particle sizes (flakes/chips) compared with the homogeneous fibrous composition of MDF. Received 5 November 1999  相似文献   

12.
Summary Alignment of particles in structural composites is desirable to increase the strength and stiffness of the panel in one direction. The magnitude of resulting orthotropic panel properties are influenced by the degree of alignment. Quantification of the degree of alignment in the literature has primarily been attained by a parameter known as percent alignment. Measures of flake alignment in probability distribution form have received some, though more limited attention. However, use of statistical distributions to describes particle orientation, such as that provided by the von Mises distribution are needed for simulations of composite panel properties. It is shown that percent flake alignment is a linear transformation of the first moment (arithmetic mean) of the absolute value of angles in the range ±90 degrees. Assuming the von Mises distributional form accurately measures flake alignment, this implies that percent flake alignment is a measure of both the variability in flake direction and the mean flake angle. The numerical relationship of percent alignment with mean angle and variability is presented with a look-up table provided for converting between the two systems of measure. The relation will permit verification of models which employ the von Mises distribution to describe flake alignment using information in the literature based on percent flake alignment. A computer program is available from the author which will calculate percent alignment and distribution parameters for an experimentally obtained samples of angles.  相似文献   

13.
Thirty types of three-ply parallel- and cross-laminated woods were prepared from five species, and their static bending strength performance were investigated. The modulus of elasticity (MOE), proportional limit stress, and modulus of rupture (MOR) perpendicular to the grain were increased by cross-laminating, and the extent of the increase increased with decreasing density of the species. The measured values of MOE parallel and perpendi-cular to the grain of parallel-laminated woods and perpendicular to the grain of face laminae of cross-laminated woods were approximately equal to those calculated from true MOEs of individual laminae. However, the MOE parallel to the grain of face laminae of cross-laminated woods was much lower than the calculated MOE owing to the effect of the deflection caused by shear force on the MOE. The percentage of deflection caused by shear force versus total deflection (Y s) showed high values, from 16.1% (buna) to 40.5% (sugi), and it decreased linearly with increasing shear modulus in the cross section of the core. In addition, there was an extremely high positive correlation between the MOR and the measured MOE parallel to the grain of face laminae of cross-laminated woods. The MOR was also highly dependent on the shear modulus in cross section of the core.Part of this paper was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

14.
Kenaf composite panels were developed using kenaf bast fiber-woven sheets as top and bottom surfaces, and kenaf core particles as core material. During board manufacture, no binder was added to the core particles, while methylene diphenyldiisocyanate resin was sprayed to the kenaf bast fiber-woven sheet at 50 g/m2 on a solids basis. The kenaf composite panels were made using a one-step steam-injection pressing method and a two-step pressing method (the particleboard is steam pressed first, followed by overlaying). Apart from the slightly higher thickness swelling (TS) values for the two-step panels when compared with the one-step panels, there was little difference in board properties between the two composite panel types. However, the two-step pressing operation is recommended when making high-density composite panels (>0.45 g/cm3) to avoid delamination. Compared with single-layer binderless particleboard, the bending strengths in dry and wet conditions, and the dimensional stability in the plane direction of composite panels were improved, especially at low densities. The kenaf composite panel recorded an internal bond strength (IB) value that was slightly low because of the decrease of core region density. The kenaf composite panel with a density of 0.45 g/cm3 (one-step) gave the mechanical properties of: dry modulus of rupture (MOR) 14.5 MPa, dry modulus of elasticity (MOE) 2.1 GPa, wet MOR 2.8 MPa, IB 0.27 MPa, TS 13.9%, and linear expansion 0.23%.  相似文献   

15.
竹木复合定向刨花板强度性能研究   总被引:1,自引:0,他引:1  
本文论述了竹材、意大利杨复合定向刨花板的强度性能,就胶种、刨花厚度、竹材所占比率、板密度、板坯结构、施胶量等诸因子对板材强度性能的影响进行了探讨。结果表明:(1)胶种对竹木复合定向刨花板的强度影响不大;(2)降低刨花厚度或提高板密度均可使板材强度提高;(3)单层结构的复合定向刨花板强度最高;(4)提高板材中竹材的比率可使板子强度明显改善;但竹材比率过高时,板材强重比反而下降,呈开口向下的抛物线型变化;(5)酚醛树脂定向刨花板的强度随原料酸性增大而降低。  相似文献   

16.
The effects of thermo-mechanical refining conditions on the properties of medium density fiberboard (MDF) made from black spruce (Picea mariana) bark were evaluated. The bark chips were refined in the MDF pilot plant of Forintek Canada Corporation under nine different refining conditions in which preheating retention time was adjusted from 3 to 5 to 7 min and steam pressure was set at either 0.6, 0.9 or 1.2 MPa. The resulting bark fibers were blended with 12% UF resin (based on oven-dry fiber weight) using a mechanical blender. The resinated fibers were manually formed into fiber mats and hot-pressed into MDF panels using consistent parameters. Two panels for each refining condition were produced, resulting in a total of 18 panels. Analysis of variance (ANOVA) was used to analyze the significance of factors. Regression coefficients and 3D contour plots were used to quantify the relationship between panel properties and the two test factors. The results from this study indicated that the preheating retention time was a significant factor for both modulus of rupture (MOR) and modulus of elasticity (MOE), the steam pressure was a significant factor for internal bond strength (IB), MOR and MOE, whereas both factors were insignificant for thickness swelling, water absorption and linear expansion. The properties of MDF panels were quadratic functions of retention time and steam pressure. Compared to the ANSI standard for 120-grade MDF, most panels with a nominal density of 950 kg/m3 had very high IB (>1 MPa) and acceptable MOR, MOE and dimension stabilities. These results suggest that black spruce bark residues can be considered as a potentially suitable raw material for manufacturing MDF products.  相似文献   

17.
The crosswise bonding of the layers in laminated solid wood panels results in internal stresses when the humidity varies. The layers hinder one another as a result of the anisotropy of wood. The purpose of this study was to determine the internal stress state in free and constrained swelling. The expansion properties in the three panel directions were measured. Furthermore, the swelling of samples was constrained while the resulting forces were recorded. Hygroscopic warping experiments were carried out inducing a climate gradient within the panels. Afterwards the stresses were calculated from released deformations and non-destructive measurements of the Young’s modulus. The materials used were untreated and heat-treated beech wood, the latter modified in two levels. In addition to homogenously structured panels, treated top layers were combined with an untreated middle layer. Swelling, swelling pressure, warping and internal stresses considerably decreased from untreated to treated wood. If layers from treated and untreated material were combined, stresses and deformations increased as compared to the variants produced only from treated wood. It was concluded that the lower equilibrium moisture content of heat-treated beech wood improves its dimensional stability, which results in smaller deformation differences between the layers. Hence, the stresses were less distinctive.  相似文献   

18.
The orientation of oriented strand board (OSB) mats has been practically measured on a commercial factory production line to demonstrate the practical capabilities of the filtered image analysis (FIA) technique. Samples have been cut from OSB panels at a range of angles to the panel axis and these samples have been tested in bending. The factory data and the experimental data have been compared in order to investigate the relationship between the practical condition of fiber orientation in the factory and the bending properties as a function of orientation. The following conclusions can be drawn. Fiber orientation in the production line is good and stable irrespective of position across the width of the production line, time of day and changing line speed. The average value for the orientation angle of the forming mat on the production line is approximately 25°. The general shape of the fiber orientation distribution is similar to a normal distribution, however, at the centre of the fiber mat the sharpness of the distribution is greater than a normal distribution. The average orientations of fibers in commercial board lie at 25° and 60° to the longitudinal and perpendicular directions, respectively. The results suggest that there is potential to improve the mean fiber orientation angle of commercial OSB to improve longitudinal values of MOR and MOE, especially where perpendicular properties are not critical. Received 31 March 2000  相似文献   

19.
20.
国内外定向刨花板研究和发展动态   总被引:6,自引:0,他引:6  
本文概述了定向刨花板在国外的发展过程,介绍了国内外近年来定向刨花板工艺技术研究的动向和进展,并对我国发展定向花刨板工业提出了一些建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号