首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ozima M  Zashu S 《Science (New York, N.Y.)》1983,219(4588):1067-1068
Thirteen diamond stones from various unspecified mines in South Africa were analyzed for the isotopic ratio of helium-3 to helium-4. Values of the ratio ranged from less than 10(-7) to (3.2 +/- 0.25) x 10(-4). The latter value is higher than the primordial helium-3/helium-4 ratio in meteorites and close to the ratio for solar-type helium. Such extremely high values may represent primitive helium that evolved very little (that is, showed very little increase in radiogenic helium-4) since the formation of the earth.  相似文献   

2.
An extensive plume of water enriched with helium-3 has been discovered in the deep Pacific Ocean at latitude 15 degrees S on the East Pacific Rise. In the core of the plume, at a depth of 2500 meters over the ridge crest, the helium-3/helium-4 ratio is 50 percent higher than the ratio in atmospheric helium, indicating a strong injection of mantle or primordial helium at the spreading center axis through local hydrothermal systems. The helium-3 plume is completely absent east of the rise, but it can be traced over 2000 kilometers to the west above a newly observed physical feature: a density discontinuity here caled the "ridge-crest front." The injected plume provides a unique deep-sea tracer with an asymmetric distribution which shows that the deep circulation across the rise is from east to west. The striking intensity and lateral extent of this helium-3 anomaly, compared to observations at known oceanic hydrohrmal sites, suggest that the largest hydrothermal fields in the ocean are yet to be discovered and that they will be found near 15 degrees S on the East Pacific Rise.  相似文献   

3.
Helium loss, tectonics, and the terrestrial heat budget   总被引:1,自引:0,他引:1  
It has been known for the last decade that primordial helium incorporated in Earth at the time of its formation is still being degassed during the formation of new ocean crust at spreading ocean ridges. It is now clear that somewhat contrary to expectation, substantial degassing is also taking place through the continental crust. In western Europe the escape of mantle volatiles seems to occur largely where the crust is undergoing active extension. Although it is known that melting is the principal process for extracting and concentrating helium from the mantle at ocean ridges, the equivalent subcontinental process remains poorly understood. The same elements that are responsible for most of Earth's radiogenic heating (uranium and thorium) are also responsible for the generation of radiogenic helium. The present rate of mantle heat loss, however, is out of equilibrium with the rate of helium loss-too large by about a factor of 20. Either radiogenic helium is accumulated in the mantle while heat escapes or current models for the bulk chemistry of Earth are in error and much of the terrestrial heat loss is nonradiogenic.  相似文献   

4.
The lithospheric mantle beneath the Kaapvaal-Zimbabwe craton of southern Africa shows variations in seismic P-wave velocity at depths within the diamond stability field that correlate with differences in the composition of diamonds and their syngenetic inclusions. Middle Archean mantle depletion events initiated craton keel formation and early harzburgitic diamond formation. Late Archean accretionary events involving an oceanic lithosphere component stabilized the craton and contributed a younger Archean generation of eclogitic diamonds. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the Archean diamond suite.  相似文献   

5.
The rare gas distribution in lunar soil, breccias, and rocks was studied with a micro-helium-probe. Gases are concentrated in grain surfaces and originate from solar wind. Helium-4 concentrations of different mineral components vary by more than a factor of 10 apart from individual fluctuations for each type. Also grains with no detectable helium-4 exist. Titanium-rich components have the highest, calcium-rich minerals the lowest concentrations. The solar wind was redistributed by diffusion. Mean gas layer thicknesses are 10, 6, and 5 microm for helium, neon, and argon respectively. Lithic fragments in breccias contain no solar gases. Glass pitted surfaces of crystalline rocks contain about 10(-2) cubic centimeter of helium-4 per square centimeter. Etched dust grains clearly show spallogenic and radiogenic components. The apparent mean exposure age of dust is approximately 500 x 10(6) years, its potassium-argon age is approximately 3.5 x 10(9) yerars. Cavities of crystalline rocks contain helium-4, radiogenic argon, H(2), and N(2).  相似文献   

6.
The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.  相似文献   

7.
Helium-3 in hotspot magmas has been used as unambiguous evidence for the existence of a primordial, undegassed reservoir deep in the Earth's mantle. However, a large amount of helium-3 is delivered to the Earth's surface by interplanetary dust particles (IDPs). Recycling of deep-sea sediments containing these particles to the mantle, and eventual incorporation in magma, can explain the high helium-3/helium-4 ratios of hotspot magmas. Basafts with high helium-3/helium-4 ratios may represent degassing of helium introduced by ancient (probably 1.5 to 2.0 billion years old) pelagic sediments rather than degassing of primordial lower mantle material brought to the surface in plumes. Influx of IDPs can also explain the neon and siderophile compositions of mantle samples.  相似文献   

8.
The isotope effect in the solution of helium in water from 0 degrees to 40 degrees C has been determined by microgasometric measurements of the solubilities of pure helium-3 and helium4. At 0 degrees C helium-3 is less soluble than helium-4 in both distilled water and sea-water by 1.2 percent. The observed fractionation factor is 0.988+/-0.002 at 0 degrees C and appears to decrease with increasing temperature at the rate of 0.0001 per degree Centigrade, although the existence of this trend is of limited statistical certainty. The measured isotope effect is in agreement with the ratio of helium-3 to helium-4 in surface ocean water reported by Clarke, Beg, and Craig.  相似文献   

9.
Gases trapped in individual vesicles in the volatile-rich basaltic glass "popping rock" were found to have the same carbon dioxide, helium-4, and argon-40 composition, but a variable 40Ar/36Ar ratio ( approximately 4000 to >/=40,000). The argon-36 is probably surface-adsorbed atmospheric argon; any mantle argon-36 trapped in the vesicles cannot be distinguished from an atmospheric contaminant. Consequently the 40Ar/36Ar ratios and 3He/36Ar ratios (1.45) determined are minimum estimates of the upper mantle composition. Heavy noble gas relative abundances in the mantle resemble solar noble gas abundance patterns, and a solar origin may be common to all primordial mantle noble gases.  相似文献   

10.
Mantle plume helium in submarine basalts from the galapagos platform   总被引:1,自引:0,他引:1  
Helium-3/helium-4 ratios in submarine basalt glasses from the Galapagos Archipelago range up to 23 times the atmospheric ratio in the west and southwest. These results indicate the presence of a relatively undegassed mantle plume at the Galápagos hot spot and place Galápagos alongside Hawaii, Iceland, and Samoa as the only localities known to have such high helium-3/helium-4 ratios. Lower ratios across the rest of the Galápagos Archipelago reflect systematic variations in the degree of dilution of the plume by entrainment of depleted material from the asthenosphere. These spatial variations reveal the dynamics of the underlying mantle plume and its interaction with the nearby Galápagos Spreading Center.  相似文献   

11.
Late accretion, early mantle differentiation, and core-mantle interaction are processes that could have created subtle (182)W isotopic heterogeneities within Earth's mantle. Tungsten isotopic data for Kostomuksha komatiites dated at 2.8 billion years ago show a well-resolved (182)W excess relative to modern terrestrial samples, whereas data for Komati komatiites dated at 3.5 billion years ago show no such excess. Combined (182)W, (186,187)Os, and (142,143)Nd isotopic data indicate that the mantle source of the Kostomuksha komatiites included material from a primordial reservoir that represents either a deep mantle region that underwent metal-silicate equilibration or a product of large-scale magmatic differentiation of the mantle. The preservation, until at least 2.8 billion years ago, of this reservoir-which likely formed within the first 30 million years of solar system history-indicates that the mantle may have never been well mixed.  相似文献   

12.
Peridotitic and highly magnesian pyroxenitic komatiites, thus far known to occur almost exclusively in the Archean (before 2.5 x 10(9) years ago) terranes, are reported from an Ordovician (0.5 x 10(9) years) ophiolite suite in Newfoundland. Their occurrence as pillow lavas or as chilled dikes, their possession of quench textures and geochemical parameters such as high contents of magnesium oxide, nickel, and chromium and low contents of titanium dioxide and potassium monoxide, low ratios of iron to iron plus magnesium, and values of the ratio of calcium oxide to aluminum oxide of close to unity demonstrate that they were formed through the rapid cooling of a highly mobile komatiitic melt. These features resemble those of many Archean peridotitic-pyroxenitic komatiites and indicate that the Archean-type magmatism did prevail in the younger segments of the earth's history although perhaps in a more erratc manner.  相似文献   

13.
Composition of the Earth   总被引:1,自引:0,他引:1  
New estimates of solar composition, compared to earlier measurements, are enriched in Fe and Ca relative to Mg, Al, and Si. The Fe/Si and Ca/Al atomic ratios are 30 to 40 percent higher than chondritic values. These changes necessitate a revision in the cosmic abundances and in the composition of the nebula from which the planets accreted (which have been based on chondritic values). These new values imply that the mantle could contain about 15 weight percent FeO and more CaMgSi(2)O(6) than has been supposed. Geophysical data are consistent with a dense, FeO-rich lower mantle and a CaMgSi(2)O(6) (diopside)-rich transition region. FeO contents of 13 to 18 weight percent appear to be typical of the mantles of bodies in the inner solar system. The oldest komatiites (high-temperature MgO-rich magmas) have a similar chemistry to the derived mantle. These results favor a chemically zoned mantle.  相似文献   

14.
Measurements of the ratio of helium-4 to helium-3 and of calcium ion in the pore waters of sediments at two locations in the eastern equatorial Pacific indicate that solution advection is occurring through the sediments. Both the helium ratio and the calcium ion profile yield velocity values for advective flow of about 20 centimeters per year. Mass balance constraints are also consistent with the interpretation presented. Flow appears to be occurring thorugh relatively thick sediments, on the order of 300 meters.  相似文献   

15.
The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust.  相似文献   

16.
In plate tectonic theory, lithosphere that descends into the mantle has a largely derivative composition, because it is produced as a refractory residue by partial melting, and cannot be resorbed readily by the parent mantle. We suggest that lithosphere sinks through the asthenosphere, or outer mantle, and accumulates progressively beneath to form an accretionary mesosphere, or inner mantle. According to this model, there is an irreversible physicochemical evolution of the mantle and its layers. We make the key assumption that the rate at which mass has been transferred from the lithosphere to the mesosphere is proportional to the rate of radiogenic heat production. Calculations of mass transfer with time demonstrate that the entire mass of the present mesosphere could have been produced in geologically reasonable times (3 x 10(9) to 4.5 x 10(9) years). The model is consistent with the generation of the continental crust during the last 3 x 1O(9) years and predicts an end to plate tectonic behavior within the next 10(9) years.  相似文献   

17.
Choi H  Takahashi D  Kono K  Kim E 《Science (New York, N.Y.)》2010,330(6010):1512-1515
Supersolidity, the appearance of zero-viscosity flow in solids, was first indicated in helium-4 torsional oscillator (TO) experiments. In this apparatus, the irrotationality of the superfluid component causes it to decouple from the underlying normal solid, leading to a reduction in the resonant period of the TO. However, the resonant period may be altered for reasons other than supersolidity, such as the temperature dependence of the elastic modulus of solid helium. Superimposing rotation onto oscillatory measurements may distinguish between supersolidity and classical effects. We performed such simultaneous measurements of the TO and the shear modulus, and observed substantial change in the resonant period with rotational speed where the modulus remained unchanged. This contrasting behavior suggests that the decrease in the TO period is a result of supersolidity.  相似文献   

18.
Populations of sulfide inclusions in diamonds from the Orapa kimberlite pipe in the Kaapvaal-Zimbabwe craton, Botswana, preserve mass-independent sulfur isotope fractionations. The data indicate that material was transferred from the atmosphere to the mantle in the Archean. The data also imply that sulfur is not well mixed in the diamond source regions, allowing for reconstruction of the Archean sulfur cycle and possibly offering insight into the nature of mantle convection through time.  相似文献   

19.
The isotopic compositions of lead and the concentrations lead, uranium, and thorium in samples of oceanic tholeiite and alkali suites are determined, and the genetic relations of the oceanic basalts are discussed. Lead of the oceanic tholeiites has a varying lead-206: lead-204 ratio between 17.8 and 18.8, while leads of the alkali basalt suites from Easter Island and Guadalupe Island are very radiogenic with lead-206: lead-204 ratios between 19.3 and 20.4 It is concluded that (i) the isotopic composition of lead in oceanic tholeiite suggests that the upper mantle source region of the tholeiite was differentiated from and original mantle material more than 1 billion years ago and that the upper mantle is not homogeneous at the present time, (ii) less than 20 million years was required for the crystal differentiation within the alkali suite from Easter Island, (iii) no crustal contamination was involved in the course of differentiation of rocks from Easter Island; however, some crustal contamination may have affected Guadalupe Island rocks, and (iv) alkali basalt may be produced from the tholeiite in the oceanic region by crystal differentiation. Alternatively the difference in the isotopic composition of lead in oceanic basalts may be produced by partial melting at different depths of a differentiated upper mantle.  相似文献   

20.
Snow JE  Hart SR  Dick HJ 《Science (New York, N.Y.)》1993,262(5141):1861-1863
The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号