首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为探讨应用无人机多光谱技术估算矮林芳樟(Cinnamomum camphora(Linn.)Presl)光合参数的有效分析模型和方法,本研究以矮林芳樟为研究对象,通过无人机搭载的多光谱相机获取其冠层六波段光谱反射率,同步测量其净光合速率(Pn)、胞间二氧化碳浓度(Ci)、气孔导度(Gs)和蒸腾速率(Tr)4种光合参数,采用最佳指数因子(OIF)筛选光谱反射率和植被指数的组合作为自变量,分别采用偏最小二乘法(Partial least squares method, PLS)、反向传播神经网络(Back propagation neural network,BPNN)和随机森林(Random forest, RF)构建自变量与光合参数的估算模型,并分析比较各估算模型的精度。结果显示:矮林芳樟光合参数与叶片红边波段2(中心波长750 nm)和近红外波段(中心波长840 nm)反射率有密切关系;红边波段2、增强型植被指数2(EVI2)、红边叶绿素指数(CIrededge)组合的OIF值最大,为0.012 6,可作为模型自变量的最佳组合;Pn、Ci、Gs、Tr 4种光合参...  相似文献   

2.
叶片含水率和叶水势反映植物组织中水分的状态,是衡量植物水分供应和水分利用效率的重要指标。为探究基于不同高度下无人机多光谱影像反演叶片含水率和叶水势模型的差异,本研究在3个飞行高度处理F30、F60、F100 (30、60、100m)下采集多光谱影像数据,通过使用6种光谱反射率+经验植被指数的组合与地面实测数据进行相关性分析,获得不同飞行高度下的光谱反射率+经验植被指数组合与叶片含水率和叶水势的反演模型及其决定系数,以决定系数为依据分别构建支持向量机(SVM)、随机森林(RF)和径向基神经网络(RBFNN)模型,分析不同飞行高度无人机多光谱影像反演芳樟叶片含水率和叶水势的精度。结果发现:3个飞行高度下,基于RF模型的反演精度均高于SVM模型和RBFNN模型。F30处理对叶片含水率与叶水势反演效果均优于F60和F100处理。F30处理对叶片含水率反演的敏感光谱反射率+植被指数组合为红光波段反射率(R)、红边1波段反射率(RE1)、红边2波段反射率(RE2)、近红外波段反射率(NIR)、增强型植被指数(EVI)、土壤调节植被指数(SAVI)。RF模型训练集的R2、RMSE、MRE分别为0.845、0.548%、0.712%;测试集的R2、RMSE、MRE分别为0.832、0.683%、0897%。对叶水势反演的敏感光谱反射率+植被指数组合为R、RE2、NIR、EVI、SAVI、花青素反射指数(ARI)。RF模型训练集的R2、RMSE、MRE分别为0.814、0.073MPa、3.550%;测试集的R2、RMSE、MRE分别为0.806、0.095MPa、4.250%。研究结果表明飞行高度30m与RF方法分别为反演叶片含水率和叶水势的最优光谱获取高度与最优模型构建方法。本研究可为基于无人机平台的矮林芳樟水分监测提供技术支持,并可为筛选无人机多光谱波段与经验植被指数、实现植物长势参数快速估测提供应用参考。  相似文献   

3.
为实现利用多光谱技术开展芳樟叶绿素相对含量(SPAD)监测,及时快速诊断芳樟矮林生长状况,为田间管理决策提供信息支持,以红壤区芳樟矮林为研究对象,利用无人机多光谱遥感影像,提取波段反射率,筛选植被指数,分别以波段反射率和植被指数为模型输入量,采用偏最小二乘回归、支持向量回归、反向传播(Back propagation, BP)神经网络和径向基函数(Radial basis function, RBF)神经网络4种方法构建芳樟矮林SPAD反演模型,并对比不同输入量、不同模型模拟结果的反演精度。研究结果表明:对比两种不同的输入量,在同一模型反演的精度相差不大;其中,基于偏最小二乘回归法,以植被指数为模型自变量估测芳樟矮林SPAD效果略优;基于支持向量回归、BP神经网络和RBF神经网络,以波段反射率为模型自变量估测芳樟矮林SPAD效果略优;对比4种建模方法,不同方法建模预测精度不同,与偏最小二乘回归、支持向量回归和BP神经网络相比,基于RBF神经网络反演芳樟SPAD的精度最高,以波段反射率和植被指数为模型输入量的测试集为例,其决定系数R2分别为0.788、0.751,均...  相似文献   

4.
基于无人机多光谱遥感的大豆生长参数和产量估算   总被引:1,自引:0,他引:1       下载免费PDF全文
为适应现代农业发展对作物生长动态、连续、快速监测的要求,本文基于无人机多光谱遥感技术,以西北地区大豆作为研究对象,分别筛选出与大豆叶面积指数(Leaf area index, LAI)、地上部生物量和产量相关性较好的5个植被指数,采用支持向量机(Support vector machine, SVM)、随机森林(Random forest, RF)和反向神经网络(Back propagation neural network, BPNN)分别构建了大豆LAI、地上部生物量和产量的估计模型,并对模型进行了验证。结果表明,基于RF模型构建的大豆LAI和地上部生物量预测模型的精度显著高于SVM与BP模型,LAI估计模型验证集的R2为0.801,RMSE为0.675 m2/m2,MRE为18.684%;地上部生物量估算模型验证集的R2为0.745,RMSE为1 548.140 kg/hm2,MRE为18.770。而在产量的估算模型构建中,在大豆开花期(R4)基于RF模型构建的大豆产量预...  相似文献   

5.
大田葵花土壤含盐量无人机遥感反演研究   总被引:5,自引:0,他引:5  
以内蒙古河套灌区沙壕渠灌域内大田葵花为研究对象,划分4块不同盐分梯度的试验地,利用无人机搭载六波段多光谱相机和热红外成像仪获取遥感数据,并同步采集区域内不同土壤深度处的盐分数据。利用灰色关联法对构建的光谱指数进行筛选,同时结合冠层温度数据,采用偏最小二乘回归(PLSR)、支持向量机(SVM)、反向传播神经网络(BPNN)和极限学习机(ELM) 4种建模方法构建大田葵花不同生育期、不同土壤深度的盐分反演模型。结果表明,基于葵花现蕾期数据构建的盐分反演模型整体效果优于开花期,以优选盐分指数和光谱指数作为变量组构建的模型效果优于植被指数变量组,盐分反演效果较好的土壤深度为0~20 cm和20~40 cm。不同建模方法对比结果表明,机器学习盐分反演模型的效果优于偏最小二乘回归模型,其中在葵花现蕾期0~20 cm土壤深度处,以光谱指数作为变量组构建的BPNN盐分模型反演效果最好,建模集和验证集R2分别达到0.773和0.718,验证集RMSE、CC分别达到0.062%和0.813。本研究成果可为无人机遥感在大田葵花土壤盐分监测方面的应用及相关研究提供参考。  相似文献   

6.
基于无人机多光谱遥感的土壤含盐量反演模型研究   总被引:7,自引:0,他引:7  
为探究无人机多光谱遥感技术快速监测植被覆盖下的土壤含盐量问题,以内蒙古河套灌区沙壕渠灌域内4块不同盐分梯度的耕地为研究区域,利用无人机搭载多光谱传感器获取2018年8月遥感影像数据,并对0~40cm〖JP〗的土壤进行盐分测定。分别引入敏感波段组、光谱指数组、全变量组作为模型输入变量,采用支持向量机(Support vector machine,SVM)、BP神经网络(Back propagation neural network,BPNN)、随机森林(Random forest,RF)、多元线性回归(Multiple linear regression, MLR)4种回归方法,建立基于3组输入变量下的土壤盐分反演模型,并进行精度评价,比较不同输入变量、不同回归方法对模型精度的影响,评价并优选出最佳盐分反演模型。结果表明,通过分析3个变量组的R2和RMSE,光谱指数组在4种回归方法中均取得了最佳的反演效果,敏感波段组和全变量组在不同的回归方法中反演效果不同。4种回归方法中,3种机器学习算法反演精度明显高于MLR模型,且MLR模型中的敏感波段组和全变量组均出现了“过拟合”现象,RF算法在3种机器学习算法中表现最优,SVM算法和BPNN算法在基于不同变量组的模型中表现也不相同。基于光谱指数组的RF的盐分反演模型在12个模型中取得了最佳的反演效果,R2c和R2v分别达到了0.72和0.67,RMSEv仅为0.112%。  相似文献   

7.
土壤盐渍化是影响农业可持续发展的重要制约因素,为准确及时地获取土壤中盐分含量,实现盐渍化精准监测,以内蒙古自治区巴彦淖尔市五原县境内的覆被农田为研究对象,探讨无人机多光谱遥感平台结合机器学习模型估测不同深度土壤含盐量的可行性。首先,利用无人机搭载五波段多光谱相机获取研究区域高时空分辨率遥感图像数据,并同步采集地面不同深度处土壤盐分数据,使用皮尔逊相关系数法(PCC)、极端梯度提升(XGBoost)和灰色关联分析法(GRA)对构建的光谱指数进行优选;然后,采用决策树(DT)、反向传播神经网络(BPNN)、支持向量机(SVM)和随机森林(RF)4种机器学习方法建立植被覆盖下不同深度的农田土壤含盐量反演模型。结果表明,使用方案3(XGBoost-GRA)变量优选方法可以有效地筛选出敏感光谱指数,且基于此方法优选后的光谱指数建立含盐量估算模型的精度高于仅使用PCC或XGBoost法构建的反演模型。对比不同建模方法在不同土壤深度处的反演精度,可知随机森林RF模型整体表现最优,同时另外3种反演模型也取得了较好的预测效果,0~20 cm土壤深度处的预测效果是3个土壤深度中最优的,其中精度最高模型的决...  相似文献   

8.
无人机多源光谱反演大田夏玉米叶面积指数   总被引:1,自引:0,他引:1  
【目的】研究多源光谱反演大田夏玉米叶面积指数(LAI)的效果。【方法】以大田夏玉米为研究对象,利用无人机获取试验区不同生育期热红外以及多光谱影像,提取热红外冠层温度(TC)以及多光谱植被指数,结合地面实测LAI数据,分析光谱数据与实测LAI之间的相关关系,并将TC与筛选出的11种植被指数作为输入变量,LAI作为输出变量利用多元线性回归、支持向量机和随机森林3个算法模型训练学习,建立了夏玉米LAI的反演模型。【结果】多光谱植被指数以及TC均与夏玉米LAI在P0.000 1水平上显著相关,相关系数均在0.5以上;RF算法于拔节期、喇叭口期、以及吐丝期3个生育期的LAI预测值与实测值的R~2均高于MLR算法和SVM算法,对应的RMSE及NRMSE均低于MLR算法和SVM算法;融合热红外TC后的RF模型反演精度均有不同程度的提升,各生育期LAI预测值与实测值R~2均大于同时期未融合TC的LAI反演模型。【结论】多光谱植被指数以及TC均与夏玉米LAI具有较强的相关性,且RF算法构建的夏玉米LAI反演模型精度优于MLR和SVM算法,同时TC的加入可以有效提升夏玉米LAI反演精度。  相似文献   

9.
及时准确地监测棉花长势和产量是精准农业栽培管理的关键。无人机(UAV)平台能够快速获取高时空分辨率的遥感数据,在作物生长参数和产量估算方面显示出巨大的潜力。以山东省滨州市棉花为研究对象,利用安装在无人机上的多光谱相机获取遥感影像,分别提取各波段反射率,筛选出8种植被指数,采用多元线性回归(MLR)、随机森林(RF)、人工神经网络(BPNN)3种方法分别构建棉花的株高、叶绿素相对含量、单株产量的估计模型并进行验证。结果表明,基于BPNN的预测模型精度明显优于MLR和RF模型,盛花期与成熟期棉花株高估计模型验证集的R2分别为0.842和0.670;叶绿素相对含量估算模型验证集的R2分别为0.725和0.765;产量估算模型验证集的R2分别为0.860和0.846。为无人机遥感在作物生长参数与产量估算领域中的应用提供理论依据,为进一步优化农业生产管理、科学决策提供参考。  相似文献   

10.
基于无人机遥感技术获取农田土壤盐分信息为盐渍化治理提供了快速、准确、可靠的理论依据。本文在内蒙古河套灌区沙壕渠灌域试验地上采集了取样点0~20cm的土壤含盐量,并使用M600型六旋翼无人机平台搭载Micro-MCA多光谱相机采集图像。利用Otsu算法对多光谱图像进行图像分类(土壤背景和植被冠层),基于分类结果分别提取剔除土壤背景前后的光谱指数和图像纹理特征,采用支持向量机(SVM)和极限学习机(ELM)构建土壤含盐量监测模型,其4种建模策略分别为:未剔除土壤背景的光谱指数(策略1)、剔除土壤背景后的光谱指数(策略2)、未剔除土壤背景的光谱指数+图像纹理特征(策略3)、剔除土壤背景的光谱指数+图像纹理特征(策略4),通过比较4种建模策略的模型精度以筛选出最优变量组合。结果表明:策略3、4所计算出的土壤含盐量反演精度高于策略1、2,策略1~4验证集决定系数R2v分别为0.614、0.640、0.657、0.681,因此利用图像纹理特征+植被指数对提高土壤含盐量的反演精度有重要意义。对比策略3、4,图像纹理特征+植被指数受到土壤背景的影响,策略4精度低于策略3精度,其R2v分别为0.614、0.657;各变量处理的最优模型均为ELM模型,建模集R2c分别为0.625、0.644、0.618、0.683,标准均方根误差分别为0.152、0.134、0.206、0.155。相比于SVM模型,ELM模型提高了土壤含盐量的反演精度。  相似文献   

11.
基于NDWI和卷积神经网络的冬小麦产量估测方法   总被引:1,自引:0,他引:1  
为进一步提高冬小麦单产估测的效率和准确性,利于宏观指导农业生产、制定冬小麦整个生长期的精准管理决策,针对目前已有的县域冬小麦单产估测方法存在时效性差、准确度低、成本高等问题,以中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer, MODIS)为数据源,分别提取不同时段可见光与近红外波段信息,选择归一化差值植被指数(Normalized difference vegetation index, NDVI)、归一化差值水指数(Normalized difference water index, NDWI)、土壤调节植被指数(Soil adjusted vegetation index, SAVI)、调整土壤亮度植被指数(Optimal soil adjusted vegetation index, OSAVI)、绿色归一化植被指数(Green normalized difference vegetation index, GNDVI)、改进型土壤调节植被指数(Modified soil adjusted vegetation index, MSAVI)以及绿红植被指数(Green red vegetation index, GRVI)7个遥感植被指数,以其直方图分布信息作为输入变量,应用卷积神经网络(Convolutional neural network, CNN)回归预测冬小麦产量,对比分析NDWI在冬小麦产量估测上的表现并探究其在霜冻害影响下的精度变化。研究表明,相对于植被指数NDVI、SAVI、OSAVI、GNDVI、MSAVI、GRVI,NDWI对冬小麦生育早期的产量预测表现出更好的预测效果,单产去趋势前后的NDWI对产量的预测精度均高于NDVI、SAVI等植被指数,决定系数最高可达到0.79,且在霜冻害影响下仍能保持较好的预测效果;NDWI在抽穗—灌浆阶段对冬小麦最终产量影响最大,4月23—30日时间段内NDWI对产量的决定系数可达到0.72;空间分布上,研究区域冬小麦具有东部单产最高、中部次之、西部单产最低的空间分布特征,西部和北部山区与东部黄淮海平原交界处误差较大。研究结果可为冬小麦生育早期产量预测提供科学依据。  相似文献   

12.
为在田间管理中对作物产量进行估测,通过两年大田试验收集了大豆生殖生长期的高光谱数据及产量数据,基于各生育期一阶微分光谱反射率计算了7个光谱指数:比值指数(Ratio index,RI)、差值指数(Difference index,DI)、归一化光谱指数(Normalized difference vegetation index,NDVI)、土壤调整光谱指数(Soil-adjusted iegetation index,SAVI)、三角光谱指数(Triangular vegetation index,TVI)、改进红边归一光谱指数(Modified normalized difference index,mNDI)和改进红边比值光谱指数(Modified simple ratio,mSR),使用相关矩阵法将光谱指数与大豆产量数据进行相关性分析并提取最佳波长组合,随后将计算结果作为与大豆产量相关的最佳光谱指数,最后将各生育期筛选出的与大豆产量相关系数最高的5个光谱指数作为模型输入变量,利用支持向量机(Support vector machine,SVM)、随机森林(Random forest,RF)和反向神经网络(Back propagation neural network,BPNN)构建大豆产量估算模型并进行验证。结果表明,各生育期(全花期(R2)、全荚期(R4)和鼓粒期(R6))计算的光谱指数与产量的相关系数均高于0.6,相关性较好,其中全荚期的光谱指数FDmSR与大豆产量的相关系数最高,达到0.717;大豆产量最优估算模型的方法是输入变量为全荚期构建的一阶微分光谱指数和RF组合的建模方法,模型验证集R2为0.85,RMSE和MRE分别为272.80kg/hm2和5.12%。本研究成果可为基于高光谱遥感技术的作物产量估测提供理论依据和应用参考。  相似文献   

13.
无人机多光谱遥感用于冬小麦产量预测中捕获的数据准确性不高,为指导田块尺度下冬小麦产量的精准预测,需构建高精度的冬小麦产量估算模型。本研究利用校正后的近地面高光谱数据(Field-Spec 3型野外光谱仪获取)验证低空无人机多光谱遥感数据(大疆精灵4型多光谱相机获取),将通过无人机多光谱影像计算的植被指数与经验统计方法结合,采用一元回归和多元线性回归分别对抽穗期、开花期和灌浆期冬小麦进行基于单一植被指数和多植被指数组合的产量估算,其中多植被指数包括归一化差异植被指数(NDVI)、优化的土壤调节植被指数(OSAVI)、绿色归一化差值植被指数(GNDVI)、叶片叶绿素指数(LCI)和归一化差异红色边缘指数(NDRE)。结果表明,基于单一植被指数的冬小麦估产模型,一元二次回归模型精度最高,而基于5种植被指数的多元线性回归模型在3个生育时期的拟合效果均优于单植被指数模型。一元或多元回归模型在抽穗期的拟合效果最好。冬小麦基于GNDVI指数的一元二次回归估产模型建模集的决定系数(R2)、均方根误差(RMSE)分别为0.69、428.91 kg/hm2,验证...  相似文献   

14.
This study investigated the relationship between sorghum grain yield for a range of soil depths, with the seasonal crop water stress index based on relative evapotranspiration deficits and spectral vegetation indices. A root zone water balance model was used to evaluate seasonal soil water fluctuations and actual evapotranspiration within a toposequence; soil depth varied between 30 and 75 cm and available water capacity ranged from 6.9 to 12.6% (v/v, %). An empirical model was used to determine root growth. Runoff was estimated from rainfall data using the curve number techniques of the Soil Conservation Services, combined with a soil water-accounting procedure. The high r2 values between modeled and observed values of soil water in the root zone (r2 > 0.70, significant at P < 0.001) and runoff (r2 = 0.95, significant at P < 0.001) indicated good agreement between the model output and observed values. Canopy reflectance was measured during the entire crop growth period and the following spectral indices were calculated: simple ratio, normalized difference vegetation index (NDVI), green NDVI, perpendicular vegetation index, soil adjusted vegetation index (SAVI) and modified SAVI (MSAVI). All the vegetation indices, except for the perpendicular vegetation index, measured from booting to anthesis stage, were positively correlated with leaf area index (LAI) and yield. The correlation coefficient for spectral indices with dry biomass was relatively less than for LAI and yield. Modified SAVI recorded from booting to milk-grain stage gave the highest average correlation coefficient with grain yield. Additive and multiplicative forms of water-production functions, as well as water stress index calculated from water budget model, were used to predict crop yield. A multiple regression was carried out with yield, for the years 2001–2003, as the dependent variable and MSAVI, from the booting to the milk-grain stage of crop and relative yield values, calculated using both additive and multiplicative water production functions as well as water stress index, as the independent variables. The multiplicative model and MSAVI, recorded during the heading stage of crop growth, gave the highest coefficient of determination (r2 = 0.682, significant at P < 0.001). The multiple regression equation was tested for yield data recorded during 2004; the deviation between observed and estimated yields varied from −6.2 to 9.4%. The water budget model, along with spectral vegetation indices, gave satisfactory estimates of sorghum grain yields and appears to be a useful tool to estimate yield as a function of soil depth and available water.  相似文献   

15.
基于无人机多光谱遥感的马尾松林叶面积指数估测   总被引:2,自引:0,他引:2  
快速、准确、无损估测马尾松林叶面积指数对精准林业管理具有重要意义。以小型低空无人机为平台,搭载RedEdge多光谱传感器,获取福建省西部马尾松林多光谱影像,运用重采样的方式获取并计算不同空间分辨率(0.08、0.1、0.2、0.5、1、2、5m)下的植被指数,结合地面实测LAI数据,分析其与植被指数的相关性,进而采用线性模型(LR)、多元逐步回归模型(MSR)、随机森林模型(RF)、支持向量机模型(SVM)和人工神经网络模型(BP)构建不同空间分辨率下的马尾松林LAI估测模型,以决定系数(R2)、均方根误差(RMSE)、相对分析误差(RPD)和总体精度(TA)来评价估测模型精度,从而确定最佳空间分辨率和最佳模型。结果表明,不同空间分辨率下LAI与植被指数均呈极显著相关(p<0.01);多变量模型(MSR、RF、SVM、BP)的调整R2平均值高于LR模型;随着空间分辨率的增加,不同模型的R2整体上呈先增大后减小的趋势;当空间分辨率为0.5m时,利用植被指数建立的RF模型为马尾松林LAI的最佳估测模型,RF模型的调整R2为0.766,模型估测的R2、RMSE、RPD和TA分别为0.554、0.421、1.523和81.95%。本研究可为无人机多光谱遥感反演森林LAI表型参数的空间分辨率和模型选择提供理论参考。  相似文献   

16.
针对现有监测方式难以大面积准确监测植株个体水分状况,且猕猴桃果园的郁闭性导致根域土壤含水率(Root domain soil water content,RSWC)监测方法匮乏的问题,使用多层感知机(Multi-layer perceptron,MLP)和冠层植被指数来预测果实膨大期(5—9月)徐香猕猴桃植株40cm深度的RSWC。在MLP训练数据的预处理中,采用Pearson相关系数作为输入(植被指数)与输出(RSWC)的相关性评价指标,采用单因素方差分析作为输入与输出的显著性评价指标。进一步考虑冠层采集范围可能对模型精度造成的影响,将数据分割为不同尺度对MLP进行训练评估。结果表明,重归一化植被指数(Renormalized difference vegetation index,RDVI)与RSWC具有最高的相关性与显著性,相关系数和P分别为0.744和0.007,该指数可以作为RSWC反演的输入量。对不同尺度RDVI的建模数据表明,模型精度与RDVI采样面积A及对角线长度L有着较强的相关性(R2分别为0.991和0.993),为了使模型精度最大化,采样面积应在2.540~3.038m2之间。通过使用该尺度的RDVI建立的MLP模型达到最大精度(R2为0.638,RMSE为0.016)。本研究可为建立非接触性猕猴桃果园土壤含水率估算方法与果园灌溉系统设计提供依据。  相似文献   

17.
快速获取作物叶片叶绿素含量对及时诊断作物健康状况、指导田间管理具有重要意义。本研究以关中地区2020年夏玉米为研究对象,获取试验区无人机多光谱影像,提取植被指数,分析所选植被指数与SPAD的相关性,筛选得到模型的输入变量,利用偏最小二乘法(PLS)、随机森林回归(RF)和分层线性模型(HLM)分别构建拔节期、抽雄期、灌浆期以及全生育期的SPAD估算模型,最终选出最优估算模型,以期为快速获取夏玉米SPAD提供参考。研究发现:除NRI之外,NDVI、OSAVI、GNDVI、RVI、MCARI、MSR、CIre与SPAD均显著相关,其中,OSAVI、NDVI与SPAD呈现出较强且稳定的相关性;各个生育期的最优模型均是RF模型,在拔节期、抽雄期、灌浆期和全生育期,验证集R2分别为0.81、0.81、0.73、0.61,RMSE分别为1.24、2.32、3.13、3.20;对于SPAD估算模型,将降雨量、最高气温这两个气象因子与植被指数耦合的HLM模型可以一定程度提升线性模型的估算精度,但其精度低于RF模型。因此,基于无人机多光谱影像的RF模型可以实现夏玉米SPAD的快速准确估算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号