首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Forest disturbance and recovery are critical ecosystem processes,but the temporal patterns of disturbance have not been studied in subtropical China.Using a tree-ring analysis approach,we studied post-logging above-ground(ABG)biomass recovery dynamics over a 26-year period in four plots with different degrees of logging disturbance.Before logging,the ABG biomass ranged from 291 to 309 t ha-1.Soon after logging,the plots in primary forest,secondary forest,mixed forest and singlespecies forest had lost 33,91,90 and 100%of their initial ABG biomass,respectively.Twenty-six years after logging,the plots had regained 147,62,80 and 92%of their original ABG biomass,respectively.Over the 26 years following logging,the mean CAI(Current annual increment)were 10.1,5.5,6.4 and 10.8 t ha^-1 a^-1 and the average MAI(Mean annual increment)8.7,2.5,5.6 and 7.8 t ha^-1 a^-1 for the four forest types,respectively.The results indicate that subtropical forests subjected to moderate logging or disturbances do not require intensive management and single-species plantings can rapidly restore the above-ground biomass to levels prior to heavy logging.  相似文献   

2.
Tree mortality shapes forest development, but rising mortality can represent lost production or an adverse response to changing environmental conditions. Thinning represents a strategy for reducing mortality rates, but different thinning techniques and intensities could have varying impacts depending on how they alter stand structure. We analyzed trends in stand structure, relative density, stand-scale mortality, climate, and correlations between mortality and climate over 46 years of thinning treatments in a red pine forest in Northern Minnesota, USA to examine how thinning techniques that remove trees of different crown classes interact with growing stock manipulation to impact patterns of tree mortality. Relative density in unharvested plots increased during the first 25 years of the study to around 80%, then began to plateau, but was lower (12–62%) in thinned stands. Mortality in unharvested plots claimed 2.5 times more stems yr−1 and 8.6 times as large a proportion of annual biomass increment during the last 21 years of the study compared to the first 25 years, but showed few temporal trends in thinned stands. Mortality in thinning treatments was generally lower than in controls, particularly during the last 21 years of the study when mortality averaged about 0.1% of stems yr−1 and 4% of biomass increment across thinning treatments, but 0.8% of stems yr−1 and 49% of biomass increment in unharvested plots. Treatments that combined thinning from above with low growing stock levels represented an exception, where mortality exceeded biomass production after initial thinning. Mortality averaged less than 0.1% of stems yr−1 and less than 1% of annual biomass production in stands thinned from below. These trends suggest thinning from below minimizes mortality across a wide range of growing stock levels while thinning from above to low growing stock levels can result in dramatic short-term increases in mortality. Moderate to high growing stock levels (21–34 m2 ha−1) may offer greater flexibility for limiting mortality across a range of thinning methods. Mean and maximum annual and growing season temperatures rose by 0.6–1.8 °C during the study, and temperature variables were positively correlated with mortality in unharvested plots. Mortality increases in unharvested plots, however, were consistent with self-thinning principles and probably not driven by rising temperatures. These results suggest interactions between thinning method and intensity influence mortality reductions associated with thinning, and demonstrate the need for broader consideration of developmental processes as potential explanations for increased tree mortality rates in recent decades.  相似文献   

3.
Wawan Sujarwo 《林业研究》2016,27(4):913-917
Bamboo forest is an important land use in the traditional village of Penglipuran, Bali Indonesia. Bamboo growing in the rural areas can be a good choice for capturing CO2. I harvested selected culms to determine biomass content, and 50 % of dry weight biomass was calculated as carbon content. The Penglipuran bamboo forest supported six bamboo species in a one hectare sampling plot, all of the genus Gigantochloa. The clump and culm densities were 339 and 7190 ha-1, respectively.Total above- plus below-ground biomass was87.35 Mg ha-1, and carbon storage was 43.67 Mg ha-1.Carbon storage estimated in the bamboo forest at Penglipuran offers insight into the opportunity for PES(payment for ecosystem services) through emission trading mechanisms.  相似文献   

4.
This study assessed the net above-ground carbon stock in six community forests in the Dolakha district, Nepal. A survey was conducted of above-ground timber species, using random sampling. A tree-ring chronology for Pinus roxburghii was created to construct a growth model representative of the various mainly-pine species. The allometric model combined with tree ring analysis was used to estimate carbon stock and annual growth in the above-ground tree biomass. The out-take of forest biomass for construction material and fuelwood was estimated on the basis of interviews and official records of community forest user groups. The average annual carbon increment of the community forests was 2.19 ton/ha, and the average annual carbon out-take of timber and fuelwood was 0.25 ton/ha. The net average carbon balance of 1.94 ton/ha was equivalent to 117.44 tons of carbon per community forest annually. All the community forests were actively managed leading to a sustainable forest institution, which acts as a carbon sink. It is concluded that community forests have the potential to reduce emissions by avoiding deforestation and forest degradation, enhance forest carbon sink and improve livelihoods for local communities.  相似文献   

5.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

6.
We studied the effects of two types of selective thinning on beech stands formed by a shelterwood cut in 1910 — with lower number of crop trees and higher thinning intensity (T1) and higher number of crop trees with lower thinning intensity (T2). The stands were thinned in 1980, 1991 and 2001. Despite a lower stand density after thinning, the annual basal area increments of thinned stands in both thinning periods (1980–1991 and 1991–2002) were around 20% higher compared to those of the control (unthinned) stands. The mean annual basal area increment of dominant trees was 30–56% larger in the thinned plots compared to the control plots. Of 176 initial crop trees in the T1, 72% were chosen again during the last thinning. In the T2, 258 crop trees were chosen in the first thinning, and only 62% of these trees were chosen again during the last thinning. Only crown suppression and diameter classes of crop trees significantly influenced their basal area increment when diameter classes, crown size, crown suppression, and social status were tested. In the thinned stands, the dominant trees are more uniformly distributed if compared to the dominant trees in the control plots. Finally, the herbaceous cover and the species diversity were higher in the thinned plots.  相似文献   

7.
Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO_2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent eastern Asia.Earlier studies have depended on remote sensing,ecosystem modeling,carbon fluxes,or single period forest surveys to estimate carbon sequestration capacities,and the results vary significantly.This study was designed to utilize multi-period forest survey data to explore spatial-dynamics of biomass storage in subtropical forests of China.Jiangxi province,a region with over 60% subtropical forest cover,was selected as the case study site and is located in central east China.Based on forest inventory data 1984-2013,and the stock-difference and biomass expansion factor methods,the carbon storage and density,of arboreal forests,economic forests,bamboo forests,woodlands and shrubberies were estimated.The results show that carbon storage increased from 159.1 Tg C in 1988 to 276.1 TgC in 2013,making up 3.1-3.8% of carbon stored throughout China.Among the four types of forests,the amount of carbon stored was as follows:arboreal forest economic forest bamboo forest woodland and shrubbery.Arboreal forests accounted for 64.0-79.4% of the total.Forest carbon density increased from 21.2 Mg C ha~(-1) in 1984 to26.2 Mg C ha~(-1) in 2013,equal to 61.2-70.2% of the average carbon density of China's forests in the same period.Forest carbon storage in Jiangxi will reach 355.5 Tg C and 535.8 Tg C in 2020 and 2030,respectively,and forest carbon density is predicted to be 31.9 Mg C ha~(~-1)and 46.4 Mg C ha~(-1),respectively.As one of the few studies using multi-period data tracking biomass dynamics in Jiangxi province,the findings of this study may be used as a reference for other research.Using Jiangxi as a case study underlies the fact that subtropical forests in China have great carbon sequestration potential and have fundamental significance to offset global environmental change effects.  相似文献   

8.
The establishment of biomass plantations with short-rotation forestry principles is one of the after-use options for cutaway peatlands. We studied biomass production and carbon sequestration in the above- and below-ground biomass of 25 naturally afforested, 10–30 years old downy birch (Betula pubescens Ehrh.) stands located in peat cutaway areas in Finland. Self-thinning reduced the stand density from 122,000 trees ha?1 (stand age of 10 years) to 10,000 trees ha?1 (25–30 years), while the leafless above-ground biomass increased from 17?Mg ha?1 up to 79–116?Mg ha?1. The total leafless biomass (including stumps and roots) varied from 46 to 151?Mg ha?1. The mean annual increment (MAI) of the above-ground biomass increased up to the stand age of 15 years, after which the MAI was on the average 3.2?Mg ha?1a?1. With below-ground biomass, the MAI of the stands older than 15 years was 4.7?Mg ha?1. The organic matter accumulated in the O-layer on the top of the residual peat increased linearly with the stand age, reaching 29.3?Mg ha?1 in the oldest stand. The O-layer contributed significantly to the C sink, and the afforestation with downy birch converted most of sites into C sinks.  相似文献   

9.
《林业研究》2021,32(1)
High potential productivity together with short rotation periods have made hybrid aspen an interesting option for wood production on former arable land in Nordic countries.In this study,some of the oldest active experimental plots with hybrid aspen in Sweden were remeasured at 23-30 years of age.A main aim was to assess age and productivity at the time of maximum mean annual volume increment.In addition,the influence of commercial thinning on stand development and differences in genetic gain among clones were investigated.Data from five experiments in southern Sweden were used,including three genetic trials,one demonstration stand with a clone mixture and one stand regenerated from root suckers.The three genetic trials were treated as single plot experiments,subject to a standard thinning program.In the remaining experiments,different thinning strategies were tested in a balanced block design.Volume growth had culminated or was close to maximum at age25-30 years.Mean annual stem volume increment at culmination was 20-22 m~3 ha~(-1) a~(-1).Dominant height reached30-35 m at 28-30 years of age.Mean diameter at breast height was 27-29 cm after 29-30 years in the genetic trials.Clonal ranking based on diameter at age 7-9 years was positively correlated with the ranking at the final measurement in the genetic trials,20 years later.This indicates that clones can be selected for superior growth based on results from young trials.More intense thinning programs increased the mean diameter compared to light thinning.The study indicates that one or two early and relatively heavy thinnings can promote the development of crop trees,without jeopardizing total volume production during a rotation of 25-30 years.  相似文献   

10.
We studied the combined effects of thinning on stand structure, growth, and fire risk for a Scots pine thinning trial in northern Spain 4 years following treatment. The thinning treatments were: no thinning, heavy thinning (32–46% of basal area removed) and very heavy thinning (51–57% of basal area removed). Thinning was achieved via a combination of systematic and selective methods by removing every seventh row of trees and then by cutting suppressed and subdominant trees in the remaining rows (i.e., thinning from below). Four years after thinning, mean values and probability density distributions of stand structural indices showed that the heavier the thinning, the stronger the tendency towards random tree spatial positions. Height and diameter differentiation were initially low for these plantations and decreased after the 4-year period in both control and thinned plots. Mark variograms indicated low spatial autocorrelation in tree diameters at short distances. Diameter increment was significantly correlated with the inter-tree competition indices, and also with the mean directional stand structural index. Two mixed models were proposed for estimating diameter increment using a spatial index based on basal area of larger trees (BALMOD) in one model versus spatial competition index by Bella in the other model. As well, a model to estimate canopy bulk density (CBD) was developed, as this variable is important for fire risk assessment. Both heavy and very heavy thinning resulted in a decrease of crown fire risk over no thinning, because of the reduction in CBD. However, thinning had no effect on the height to crown base and thus on the flame length for torching. Overall, although thinning did not increase size differentiation between trees in the short term, the increase in diameter increment following thinning and the reduction of crown fire risks support the use of thinning. Also, thinning is a necessary first step towards converting Scots pine plantations to more natural mixed broadleaved woodlands. In particular, the very heavy thinning treatment could be considered a first step towards conversion of overstocked stands.  相似文献   

11.
Nitrogen(N) and phosphorus(P) additions can affect soil microbial carbon(C) accumulation.However,the mechanisms that drive the changes in residual microbial C that occur after N and P additions have not been well-defined for Chinese fir plantations in subtropical China.We set up six different treatments, viz.a control(CK), two N treatments(N_1: 50 kg ha~(-1) a~(-1); N2:100 kg ha~(-1) a~(-1)), one P treatment(P: 50 kg ha~(-1) a~(-1)),and two combined N and P treatments(N_1P:50 kg ha~(-1) a~(-1) of N+50 kg ha~(-1) a~(-1) of P; N_2P:100 kg ha~(-1) a~(-1) of N+50 kg ha~(-1) a~(-1) of P).We then investigated the influences of N and P additions on residual microbial C.The results showed that soil pH and microbial biomass decreased after N additions, while microbial biomass increased after P additions.Soil organic carbon(SOC) and residual microbial C contents increased in the N and P treatments but not in the control.Residual microbial C accumulation varied according to treatment and declined in the order: N_2PN_1PN2N_1PCK.Residual microbial C contents were positively correlated with available N, P, and SOC contents, but were negatively correlated with soil p H.The ratio of residual fungal C to residual bacterial C increased under P additions, but declined under combined N+P additions.The ratio of residual microbial C to SOC increased from 11 to 14%under the N_1P and N_2P treatments, respectively.Our results suggest that the concentrations of residual microbial C and the stability of SOC would increase under combined applications of N and P fertilizers in subtropical Chinese fir plantation soils.  相似文献   

12.
Biomass burning in tropical forests – the normal practice to prepare land for agriculture and ranching – has been a major source of CO2 emitted to the atmosphere. Mass transformations by burning are still little studied in the tropics. The present study estimated parameters, such as the stock of carbon contained in the biomass, burning efficiency and the formation of charcoal and ashes in a tropical moist forest. Two sets of plots arranged in the form of ‘stars' (720 m2 total) were installed in a 3.5 ha area of forest that had been felled for planting pasture at Fazenda Nova Vida, Ariquemes, Rondônia. Each ‘star' had six rays measuring 2 m × 30 m; alternating rays were designated for pre-burn and post-burn measurements. All above-ground biomass present in the plots was weighed directly before the burn in the pre-burn rays and after the burn in the post-burn rays. Pieces of wood with diameter ≥10 cm also had their biomasses estimated from volume estimates, using line-intersect sampling (LIS) in order to increase the area of sampling and to allow volume loss to be estimated as an increment based on individual pieces measured before, and after, the burn at the same point (as opposed to inferring change as a difference between independent estimates of stocks). The initial above-ground biomass (dry weight) before the burn was estimated at 306.5 ± 48.6 (mean ± SE) Mg ha−1, with an additional 4.5 Mg ha−1 for trees left standing. Carbon stock in the initial biomass (including trees left standing) was 141.3 (Mg C) ha−1. After burning, carbon stock was reduced by 36.8% (burning efficiency). The stocks of charcoal and ash formed in the burn were, respectively, 6.4 ± 2.7 and 5.7 ± 1.0 Mg ha−1. The destructive and nondestructive (LIS) methods did not differ significantly (t-test, p > 0.05) in estimating post-burn stocks of wood and charcoal. The results of this study contribute to improving the estimates of parameters needed for global carbon calculations and point to ways in which estimates of these parameters could be further improved.  相似文献   

13.
This study investigated, in a Pinus laricio forest of south Italy, how systematic thinning of different intensities (intense thinning, T45; moderate thinning, T25; clear cut, CC; and no thinning, T0) affected soil biological properties, organic matter trend and carbon (C) storage in soil and plants. Soil carbon content and carbon/nitrogen (C/N) ratio were significantly higher in the T45 than in control, T25 and CC. Under T45, the soils had also the highest enzymatic activities, microbial biomass carbon (MBC) and colonies of fungi and bacteria. The humification parameters (humification ratio, HR; the degree of humification, DH; humification index, HI) indicated T45 as the best silvicultural practice-approach method to manage Pinus laricio forest for increasing soil carbon storage. The dendrometric parameters evidenced that T45 caused the greatest increment in wood growth (diameter and height), showing that the positive effect of the intense systematic thinning (T45) on the mechanical stability of plantation was related to the ability of trees to accumulate large amounts of carbon in their wood tissues. These data were confirmed by wood density value that was the highest in pine trees under the T45. This study showed that in Pinus laricio forest under T45 C stock increased in soil and plant, already 4 years after thinning.  相似文献   

14.
Projected changes in forest carbon stocks and carbon balance differ according to the choice of estimation methods and the carbon pools considered. Here, we compared three carbon assessment methods for optimizing timber production and carbon sequestration in six example Scots pine (Pinus sylvestris L.) stands in Finland. The forest carbon stock was assessed, with three methods: stem carbon, biomass expansion factors (BEFs), and a process-based model. Given a carbon price of 40 € t−1 (equivalent to 10.9 € t−1 CO2) and a 3% discount rate, the highest average carbon stock and mean annual increment (MAI) were obtained with the BEF method. Increasing the carbon price from 0 to 200 € t−1 resulted in longer optimal rotations and higher MAI, and increased the average carbon stock, especially when carbon was assessed by the BEF method. Comparison of these carbon assessment methods, using economic sensitivity analyses, indicated that optimal thinning regimes and average carbon stocks are strongly dependent on the assessment method. The process-based method led to less frequent thinnings and shorter rotations than the BEF method, due to different predictions of biomass production. As a cost-effective option, optimal thinning regimes play a very important role in timber production and carbon sequestration.  相似文献   

15.
Although allometric equations can be used to accurately estimate biomass and/or carbon stock in forest ecosystems, few have been developed for logged-over tropical rainforests in Southeast Asia. We developed allometric relationships between tree size variables (stem diameter at breast height (dbh) and tree height) and leaf, branch, stem and total above-ground biomass in two logged-over tropical rainforests with different soil conditions in Sarawak, Malaysia. The study sites were originally classified as mainly lowland dipterocarp forest and have been selectively logged in the past 20 years. In total, 30 individuals from 27 species were harvested to measure above-ground parts. The correlation coefficients for the allometric relationships obtained for total above-ground biomass as a function of dbh had high values (0.99), although the relationships for leaf biomass had a relatively low coefficient (0.83). We also found relatively high coefficients for allometric relationships between tree height and plant-part biomass, ranging from 0.82 to 0.97. Moreover, there were no differences for allometric equations of total above-ground biomass between study sites. A comparison of equations of above-ground biomass in various previously reported tropical rainforests and pan-tropic general equations imply that our allometric equations differ largely from the equations for tropical primary forests, early successional secondary forest, and even for the general models. Therefore, choosing the biomass estimation models for above-ground biomass in the logged-over forests of Southeast Asia requires careful consideration of their suitability.  相似文献   

16.
We tested the hypothesis that productivity of intensively managed loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.) stands is dependent not only on leaf area, but also on foliar photosynthetic rate. Effects of irrigation (irrigation treatment), irrigation with a fertilizer solution (fertigation treatment), and fertigation + pest control (loblolly pine only; fertigation + pest control treatment) on leaf physiology and growth were compared with control plots during the third and fourth growing seasons. Complete weed control was maintained on all plots. Aboveground net primary productivity of loblolly pine and sweetgum increased from 16.3 to 40.5 Mg ha(-1) and from 4.2 to 23.9 Mg ha(-1), respectively, in response to the most intensive treatment. Relative to the control treatment, neither fertigation of sweetgum nor fertigation + pest control of loblolly pine had a significant or consistent influence on foliar N concentration, quantum yield, carboxylation efficiency, net photosynthesis, stomatal conductance, or production efficiency (increment in woody biomass per unit leaf area). Irrigation increased predawn leaf water potential and photosynthesis of loblolly pine, but it had no effect on production efficiency. Leaf area was the predominant determinant of maximum productivity in these rapidly growing plantations.  相似文献   

17.
Although it is generally accepted that the rate of accumulation of biomass declines as forests age, little is known about the relative contributions to this decline of changes in net primary production (NPP) and tree mortality. We used 10-15 years of observations of permanent plots in three small watersheds in and near the H.J. Andrews Experimental Forest, Oregon, to examine these issues. The three watersheds are of similar elevation and potential productivity and support young (29 years at last measurement), mature (approximately 100 years) and old (approximately 400 years) forest dominated by Pseudotsuga menziesii (Mirb.) Franco and Tsuga heterophylla (Raf.) Sarg. Accumulation of tree bole biomass was greatest in the young stand, reaching approximately 7 Mg ha-1 year-1 in the last measurement interval. Bole biomass accumulation was relatively constant (approximately 4-5 Mg ha-1 year-1) in the mature stand, and there was no net accumulation of bole biomass in the old-forest stand. The NPP of boles increased with time in the young stand, from approximately 3 to approximately 7 Mg ha-1 year-1, but was nearly constant in the mature and old-forest stands, at approximately 6 and 3-4 Mg ha-1 year-1, respectively. Mortality increased slowly in the young stand (from < 0.1 to 0.3 Mg ha-1 year-1), but fluctuated between 1-2 and 2-6 Mg ha-1 year-1 in the mature and old-forest stands, respectively. Thus, declining biomass accumulation with stand age reflects, in approximately equal amounts, both decreasing NPP and increasing mortality.  相似文献   

18.
This paper tests the reliability of a biomass prediction procedure which combines aerial data collection, biometric models and optimisation for forest management planning. Tree stock information is obtained by predicting species-specific diameter and height distributions by a combination of field sampling, ALS data and aerial photographs. The subsequent steps in the chain are (1) assignment of the plots to forestry operation classes by means of remote sensing-based tree stock estimates, (2) estimation of the biomass components removed by simulating forestry operations, and (3) estimation of forest owners’ income flow from optimised bucking of the species-specific diameter distributions. The error effects caused by these steps are analysed, and the applicability of remote sensing–based data collection for biomass inventories and planning is assessed. The approach used for assigning the plots to operation classes resulted in moderate accuracies (75%). The reliability estimates indicated quite poor performance when predicting the biomass components removed in forest treatments, with RMSEs of 33.0–69.4% in the case of final cutting and 76.9–228.0% in the case of thinning. The relative RMSEs of the above-ground biomass estimates of the standing stock were about 19%. The relative bias for the biomasses removed was 10.0–88.6% and that for the standing stock biomasses 0.0%. When optimising bucking, the bucked assortments were larger and the incomes enhanced with this estimation method relative to the reference. This explains why the estimation of forest owner’s incomes in the energy wood thinning simulations led to suboptimal decisions and income losses.  相似文献   

19.
Mass transformations were estimated in burns in the clearings of three colonist lots near Altamira, Pará, Brazil. In each lot, two groupings of six 60-m2 plots were established in sites where the forest had been recently felled; plots were arranged as rays in a star-shaped pattern, with pre- and post-burn measurements made in alternate rays. Pre- and post-burn above-ground biomass was estimated by cutting and weighing the felled vegetation in 15 pre-burn and 18 post-burn plots (three pre-burn plots could not be weighed before one of the colonists burned the clearing) and by line intersect sampling (LIS) done along the axis of each of the 36 plots. Because of the high variability of the initial biomass present in the plots, volume data from LIS were more reliable for assessing change in the biomass of material over 10 cm in diameter (because this technique permits measuring the same trees before, and after, burning); other quantities relied on data from direct weighing. The best estimate of the mean pre-burn above-ground biomass at the site is 263 metric tons per hectare (t ha−1); considering available measurements of the proportion of below-ground biomass elsewhere in Amazonia, the total dry weight biomass at the Altamira site corresponds to ≈322 t ha−1. Assuming 50% carbon (C) content for biomass, the above-ground biomass at Altamira represents a carbon stock of 130 t ha−1. Assuming a carbon content of 75% for charcoal, 1.3% of the pre-burn above-ground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models.Measurements at Altamira imply a 42% reduction of above-ground carbon pools if calculated along with the scattered trees that farmers leave standing in their clearings, or 43% if these trees are excluded from the analysis. These values are substantially higher than the 27.6% measured in an earlier study near Manaus. However, most of the difference between results at the two sites is explained by differences in the distribution of initial biomass among the fractions, especially greater quantities of vines and of litter (including dead wood <5 cm in diameter) than at Manaus. Smaller diameter pieces burn more thoroughly than larger ones. At Altamira, the large percentage of above-ground carbon in vines (12.0%) is less typical of Amazonian forests than the lower percentage at Manaus (3.1%). The lower overall burning efficiency found at Manaus is, therefore, believed to be more typical of Amazonian burning. High variability indicates a need for further studies in many localities, and for perfecting less laborious indirect methods. Both a high biomass and low percentage of charcoal formation suggest significant potential contribution of forest burning to global climate changes from CO2 and trace gases.  相似文献   

20.
We sought to quantify changes in tree species composition, forest structure and aboveground forest biomass (AGB) over 76 years (1930-2006) in the deciduous Black Rock Forest in southeastern New York, USA. We used data from periodic forest inventories, published floras and a set of eight long-term plots, along with species-specific allometric equations to estimate AGB and carbon content. Between the early 1930s and 2000, three species were extirpated from the forest (American elm (Ulmus americana L.), paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (nigra) (Mill.) BSP)) and seven species invaded the forest (non-natives tree-of-heaven (Ailanthus altissima (Mill.) Swingle) and white poplar (Populus alba L.) and native, generally southerly distributed, southern catalpa (Catalpa bignonioides Walt.), cockspur hawthorn (Crataegus crus-galli L.), red mulberry (Morus rubra L.), eastern cottonwood (Populus deltoides Bartr.) and slippery elm (Ulmus rubra Muhl.)). Forest canopy was dominated by red oak and chestnut oak, but the understory tree community changed substantially from mixed oak-maple to red maple-black birch. Density decreased from an average of 1500 to 735 trees ha(-1), whereas basal area doubled from less than 15 m(2) ha(-1) to almost 30 m(2) ha(-1) by 2000. Forest-wide mean AGB from inventory data increased from about 71 Mg ha(-1) in 1930 to about 145 Mg ha(-1) in 1985, and mean AGB on the long-term plots increased from 75 Mg ha(-1) in 1936 to 218 Mg ha(-1) in 1998. Over 76 years, red oak (Quercus rubra L.) canopy trees stored carbon at about twice the rate of similar-sized canopy trees of other species. However, there has been a significant loss of live tree biomass as a result of canopy tree mortality since 1999. Important constraints on long-term biomass increment have included insect outbreaks and droughts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号