首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Using a correlation between trunk diameter fluctuation (TDF) and stem water potential (SWP) it appears possible to determine water deficit threshold values (WDTV) for young cherry trees. This correlation must be based on a significant effect between SWP and at least one variable associated with the vegetative or reproductive growth of the trees. The objectives of this study are: (1) to determine the effect of several irrigation treatments on vegetative and reproductive growth and the SWP of young cherry trees; (2) to determine the correlation between TDF and SWP, and; (3) to propose a first approximation of SWP and TDF water deficit threshold values for young cherry tree plants. The experiment was carried out between September and April of the 2005-2006 and 2006-2007 seasons, in Quillota, in the Valparaiso region, central Chile. The irrigation treatments consisted of applications of 50% (T50), 100% (T100) and 150% (T150) of potential evapotranspiration (ET0) over the two growing seasons, using a randomized complete block design (RCB). The effect of irrigation scheduling was observed on: apical shoot growth rate (GRAS), branch cross-sectional area (BCSA), canopy volume (CV), annual length of accumulated growth (ALAG) and productivity. This effect showed that the T50 treatment caused lower SWP (measured pre-dawn), vegetative growth and productivity. The fruit quality variables (cracking and size) were not affected by the different treatments. Combining the vegetative growth, productivity and SWP results shows that the water deficit threshold value, as a first approximation, is between 50% and 100% of ET0, and therefore the critical SWP for defining irrigation frequency should be close to −0.5 MPa. Upon applying a post-harvest drought period (14 days without irrigation), a linear correlation was determined both between SWP and maximum daily trunk shrinkage, MDS (R2 = 0.69) and between SWP and trunk growth rate, TGR (R2 = 0.57). Using these correlations and the SWP reference value, reference values were obtained for MDS (165 μm) and TGR (83 μm day−1), which would permit automated control of water status in young cherry trees.  相似文献   

2.
We studied the suitability of empirical crop water stress index (CWSI) averaged over daylight hours (CWSId) for continuous monitoring of water status in apple trees. The relationships between a midday CWSI (CWSIm) and the CWSId and stem water potential (ψ stem), and soil water deficit (SWD) were investigated. The treatments were: (1) non-stressed where the soil water was close to field capacity and (2) mildly stressed where SWD fluctuated between 0 and a maximum allowable depletion (MAD of 50 %). The linear relationship between canopy and air temperature difference (ΔT) and air vapor pressure deficit (VPD) averaged over daylight hours resulted in a non-water-stressed baseline (NWSBL) with higher correlation (?T = ?0.97 VPD – 0.46, R 2 = 0.78, p < 0.001) compared with the conventional midday approach (?T = ?0.59 VPD – 0.67, R 2 = 0.51, p < 0.001). Wind speed and solar radiation showed no significant effect on the daylight NWSBL. There was no statistically meaningful relationship between midday ψ stem and CWSIm. The CWSId agreed well with SWD (R 2 = 0.70, p < 0.001), while the correlation between SWD and CWSIm was substantially weaker (R 2 = 0.38, p = 0.033). The CWSId exhibited high sensitivity to mild variations in the soil water content, suggesting it as a promising indicator of water availability in the root zone. The CWSId is stable under transitional weather conditions as it reflects the daily activity of an apple crop.  相似文献   

3.
Precision irrigation in grapevines could be achieved using physiologically based irrigation scheduling methods. This paper describes an investigation on the effects of three midday stem water potential (midday ΨS) thresholds, imposed from post-setting, over water use, vegetative growth, grape quality and yield of grapevines cv. Cabernet Sauvignon. An experiment was carried out on a vineyard located at the Isla de Maipo, Metropolitana Region, Chile, throughout the 2002/03, 2003/04 and 2004/05 growing seasons. Irrigation treatments consisted in reaching the following midday ΨS thresholds: −0.8 to −0.95 MPa (T1); −1.0 to −1.2 MPa (T2) and −1.25 to −1.4 MPa (T3) from post-setting to harvest. Results showed significant differences in grape quality components among treatments and seasons studied. In average, T3 produced smallest berry diameter (6% reduction compared to T1), high skin to pulp ratio (13% increment compared to T1) and significant increments in soluble solids and anthocyanins. Improvements in grape quality attributes were attributed to mild grapevine water stress due to significant reductions in water application (46% for T2 and 89% for T3 less in average, both compared to T1). This study found significant correlations between midday ΨS and berry quality components, no detrimental effects on yield by treatments were found in this study. This research proposes a suitable physiological index and thresholds to manage RDI and irrigation scheduling on grapevines to achieve high quality grapes on mild water stress conditions.  相似文献   

4.
Canopy temperature measurements with infrared thermometry have been extensively studied as a means of assessing plant water status for field and row crops but not for fruit trees such as peaches. Like in many regions of the world, the lack of water is beginning to impact production of tree fruit such as peaches in the San Joaquin Valley of California. This is an area where irrigation is the only source of water for agricultural crops in the summer growing season. A two-year field study was conducted to assess plant water stress using infrared canopy temperature measurements and to examine its feasibility for managing postharvest deficit irrigation of peach trees. Twelve infrared temperature sensors were installed in a mature peach orchard which received four irrigation treatments: furrow and subsurface drip irrigation with or without postharvest water stress. During the two-year period, measured midday canopy to air temperature differences in the water-stressed postharvest deficit irrigation treatments were in the 5-7 °C range, which were consistently higher than the 1.4-2 °C range found in the non-water-stressed control treatments. A reasonable correlation (R2 = 0.67-0.70) was obtained between stem water potential and the canopy to air temperature difference, indicating the possibility of using the canopy temperature to trigger irrigation events. Crop water stress index (CWSI) was estimated and consistently higher CWSI values were found in the deficit irrigation than in the control treatments. Results of yield and fruit quality assessments were consistent with the literature when deficit irrigation was deployed.  相似文献   

5.
Trunk sap flow of tree is an important index in the irrigation decision of orchard. On the basis of the measured sap flow (SF) of pear tree (Pyrus pyrifolia) in the field, the multiple-linear regression for simulating the SF was obtained after analyzing the relationships between the SF and its affecting factors in this study and an artificial neural network (ANN) technique was applied to construct a nonlinear mapping to simulate the SF, then the simulated SF by two models was, respectively, compared to the measured value. Results showed that trunk SF had significant relationship with the vapour pressure deficit (VPD) in the single-variable analysis method but with soil volumetric water content (θ) using the ANN models with default of different variables. The correlation coefficient (R2), mean relative error (MRE) and root mean square error (RMSE) between the measured and simulated sap flows by the ANN model developed by taking VPD, solar radiation (Sr), air temperature (T), wind speed (Ws), θ, leaf area index (LAI) as the input variables were 0.953, 10.0% and 5.33 L d−1, respectively, and the simulation precision of ANN model was superior to that of multiple-linear regression due to its better performance for the nonlinear relationship between trunk SF and its affecting factors, thus ANN model can simulate trunk sap flow and then may help the efficient water management of orchard.  相似文献   

6.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

7.
Large areas of vineyards have been established in recent years in arid region of northwest China, despite limited water resources. Water to support these vineyards is mainly supplied by irrigation. Accurate estimation of vineyard evapotranspiration (ET) can provide a scientific basis for developing irrigation management. Transpiration and soil evaporation, as two main components of ET, were measured separately in a vineyard in this region by heat balance sap flow system and micro-lysimeters during the growing season of 2009. Diurnal and seasonal dynamics of sap flow and its environmental controls were analyzed. Daily sap flow rate (SRl) increased linearly with solar radiation (Rs), but showed an exponential increase to its maximum curve as a function of vapor pressure deficit (VPD). Residuals of the two regressions both depended on volumetric soil water content to a depth of 1.0 m (VWC). VWC also significantly influenced SRl. The relationship of them could be expressed by a piecewise regression with the turnover point of VWC = 0.188 cm3 cm−3, which was ∼60% of the field capacity. Conversely, soil evaporation (Es) increased exponentially with VWC. Thus, we recommended keeping VWC in such vineyards slightly above ∼60% of the field capacity to maintain transpiration while reducing soil evaporation. Vineyard transpiration (Ts) was scaled from sap flow by using leaf area (Al) as it explained 60% of the spatial variability of sap flow. Vine transpiration was 202.0 mm during the period from April 28 to October 5; while that of Es was 181.0 mm. The sum of these two components was very close to ET estimated by the Bowen ratio energy balance method (386.9 mm), demonstrating the applicability of sap flow for measuring grape water use in this region.  相似文献   

8.
Gas exchange was measured in potatoes (cv. Folva) grown in lysimeters (4.32 m2) in coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI and started after tuber bulking and lasted for six weeks until final harvest. Midday photosynthesis rate (An) and stomatal conductance (gs) of fully irrigated (FI) plants were lowest in coarse sand and mean An of diurnal measurements in FI, PRD and DI tended to be lower in this soil as compared with the loamy sand and sandy loam. The results revealed that diurnal values of An and gs in PRD and DI were consistently lower than FI without reaching significant differences in accordance with findings that xylem [ABA] in PRD was significantly higher than FI, and tended to be higher than in DI. Diurnal measurements showed that An reached peak values during mid-morning and midday, while gs were highest during the morning. Intrinsic water use efficiency (An/gs) correlated linearly well with the leaf to air vapor pressure deficit (VPD) and the slope of the line revealed the rate of An/gs increase per each kPa increase in VPD, i.e. approximately 10 μmol mol−1. Transpiration efficiency (An/T) of PRD was higher than DI, which shows slightly better efficient water use than DI. The slope of the linear relationship between transpiration efficiency and VPD decreased from −2.03 to −1.04 during the time course of the growing season, indicating the negative effect of leaf ageing on photosynthesis and thus on plant water use efficiency. This fact shows the possibility to save water during last growth stages through applying water-saving irrigations without much effect on transpiration efficiency.  相似文献   

9.
Tieguanyin Oolong tea (Camellia sinensis (L.) O. Kuntze) is a name brand important commodity for Anxi county, Fujian province in China. Four-year-old tea plants at a tea plantation in Anxi were subjected to six different irrigation treatments (i.e. 5, 10, 15, 20, and 25 d irrigation intervals for T1 to T5 with a rate of 3.5 kg water per plant, plus a non-irrigated control). After 50 d of irrigation treatments, leaf water potential was −1.70, −2.34, −2.48, −2.89, −3.55, and −4.92 MPa for treatment T1, T2, T3, T4, T5, and control, respectively. Leaf biomass yield increased by 32.8%, 21.9%, and 21.3% for T1, T2, and T3, respectively, compared to control. The net photosynthesis (Pn), stomatal conductance (gs) and transpiration (E) decreased with irrigation interval increasing. Tea polyphenol (TP) and free amino acid (AA) decreased when the irrigation intervals were increased, but caffeine (CA) content apparently increased as the irrigation intervals were increased. To balance irrigation water demand and tea yield and quality, it is recommended that the irrigation interval should be set at 10 d with a rate of 3.5 kg water per plant for the optimal production in Anxi, Fujian province of China.  相似文献   

10.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

11.
Over the last two decades, a significant increase in intensively managed olive orchards has occurred in the northwest of Argentina where climatic conditions differ greatly from the Mediterranean Basin. Annual amounts of applied irrigation are generally high due to low rainfall, access to deep ground water, and little information about water use by the crop in the region. The objectives of this study were to: (1) assess the responses of plant growth, yield components, and several physiological parameters to five different irrigation levels and (2) determine an optimum crop coefficient (Kc) for the entire growing season considering both fruit yield and vegetative growth. Five irrigation treatments (Kc = 0.50, 0.70, 0.85, 1.0, 1.15) were employed from late winter to the fall over 2 years in a 6-year-old cv. ‘Manzanilla fina’ olive orchard. Tree canopy volume was approximately 15 m3 with a leaf area of about 40 m2 at the beginning of the experiment. During much of each year, the volumetric soil water content was lower in the Kc = 0.50 treatment than in the other irrigation levels evaluated (Kc = 0.85 and 1.15). Although differences in midday stem water potential (Ψs) were not always apparent between treatments during the first year, there were lower Ψs values in Kc = 0.50 and 0.70 relative to the higher irrigation levels during the second year. Shoot elongation in Kc = 0.50 was about 50% of that in Kc = 1.0 and 1.15 during both years leading to significant differences in the increase of tree canopy volume by the end of the first year. Fruit yield was similar among irrigation levels the first year, but yield reached a maximum value the second year between Kc = 0.70 and 0.85 above which no increase was apparent. The somewhat lower fruit yield values in Kc = 0.50 and 0.70 were associated with decreased fruit number rather than reductions in individual fruit weight. The water productivity on a yield basis (fruit yield per mm of applied irrigation) decreased as irrigation increased in the second year, while similar calculations based on trunk cross-sectional area growth indicated that vegetative growth was proportional to the amount of irrigation. This suggests that the warm climate of northwest Argentina (28° S) can induce excessive vegetative growth when very high irrigation levels are applied. A Kc value of approximately 0.70 over the course of the growing season should be sufficient to maintain both fruit yield and vegetative growth at adequate levels. An evaluation of regulated deficit irrigation strategies for table olives in this region could be beneficial to further reduce irrigation.  相似文献   

12.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

13.
The use of digital infrared thermography and thermometry to investigate early crop water stress offers a producer improved management tools to avoid yield declines or to deal with variability in crop water status. This study used canopy temperature data to investigate whether an empirical crop water stress index could be used to monitor spatial and temporal crop water stress. Different irrigation treatment amounts (100%, 67%, 33%, and 0% of full replenishment of soil water to field capacity to a depth of 1.5 m) were applied by a center pivot system to soybean (Glycine max L.) in 2004 and 2005, and to cotton (Gossypium hirsutum L.) in 2007 and 2008. Canopy temperature data from infrared thermography were used to benchmark the relationship between an empirical crop water stress index (CWSIe) and leaf water potential (ΨL) across a block of eight treatment plots (of two replications). There was a significant negative linear correlation between midday ΨL measurements and the CWSIe after soil water differences due to irrigation treatments were well established and during the absence of heavy rainfall. Average seasonal CWSIe values calculated for each plot from temperature measurements made by infrared thermometer thermocouples mounted on a center pivot lateral were inversely related to crop water use with r2 values >0.89 and 0.55 for soybean and cotton, respectively. There was also a significant inverse relationship between the CWSIe and soybean yields in 2004 (r2 = 0.88) and 2005 (r2 = 0.83), and cotton in 2007 (r2 = 0.78). The correlations were not significant in 2008 for cotton. Contour plots of the CWSIe may be used as maps to indicate the spatial variability of within-field crop water stress. These maps may be useful for irrigation scheduling or identifying areas within a field where water stress may impact crop water use and yield.  相似文献   

14.
Plant water status is a key factor impacting crop growth and agricultural water management. Crop water stress may alter canopy temperature, the energy balance, transpiration, photosynthesis, canopy water use efficiency, and crop yield. The objective of this study was to calculate the Crop Water Stress Index (CWSI) from canopy temperature and energy balance measurements and evaluate the utility of CWSI to quantify water stress by comparing CWSI to latent heat and carbon dioxide (CO2) flux measurements over canopies of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.). The experiment was conducted at the Yucheng Integrated Agricultural Experimental Station of the Chinese Academy of Sciences from 2003 to 2005. Latent heat and CO2 fluxes (by eddy covariance), canopy and air temperature, relative humidity, net radiation, wind speed, and soil heat flux were averaged at half-hour intervals. Leaf area index and crop height were measured every 7 days. CWSI was calculated from measured canopy-air temperature differences using the Jackson method. Under high net radiation conditions (greater than 500 W m−2), calculated values of minimum canopy-air temperature differences were similar to previously published empirically determined non-water-stressed baselines. Valid measures of CWSI were only obtained when canopy closure minimized the influence of viewed soil on infrared canopy temperature measurements (leaf area index was greater than 2.5 m2 m−2). Wheat and maize latent heat flux and canopy CO2 flux generally decreased linearly with increases in CWSI when net radiation levels were greater than 300 W m−2. The responses of latent heat flux and CO2 flux to CWSI did not demonstrate a consistent relationship in wheat that would recommend it as a reliable water stress quantification tool. The responses of latent heat flux and CO2 flux to CWSI were more consistent in maize, suggesting that CWSI could be useful in identifying and quantifying water stress conditions when net radiation was greater than 300 W m−2. The results suggest that CWSI calculated by the Jackson method under varying solar radiation and wind speed conditions may be used for irrigation scheduling and agricultural water management of maize in irrigated agricultural regions, such as the North China Plain.  相似文献   

15.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

16.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

17.
Upper and lower crop water stress index (CWSI) baselines adaptable to different environments and times of day are needed to facilitate irrigation scheduling with infrared thermometers. The objective of this study was to develop dynamic upper and lower CWSI baselines for corn and soybean. Ten-minute averages of canopy temperatures from corn and soybean plots at four levels of soil water depletion were measured at North Platte, Nebraska, during the 2004 growing season. Other variables such as solar radiation (R s), air temperature (T a), relative humidity (RH), wind speed (u), and plant canopy height (h) were also measured. Daily soil water depletions from the research plots were estimated using a soil water balance approach with a computer model that used soil, crop, weather, and irrigation data as input. Using this information, empirical equations to estimate the upper and lower CWSI baselines were developed for both crops. The lower baselines for both crops were functions of h, vapor pressure deficit (VPD), R s, and u. The upper baselines did not depend on VPD, but were a function of R s and u for soybean, and R s, h, and u for corn. By taking into account all the variables that significantly affected the baselines, it should be possible to apply them at different locations and times of day. The new baselines developed in this study should facilitate the application of the CWSI method as a practical tool for irrigation scheduling of corn and soybean.  相似文献   

18.
Boundary lines of stem water potential (Ψstem) responses to vapour pressure deficit (VPD) have been reported for several species and are generally referred to as VPD reference lines (RL). In order to study the response of Ψstem to VPD, RLs were determined in plants that received full (Control) and deficit (SSDI) irrigation during three consecutive years. The Control plants received irrigation equivalent to full crop water evapotranspiration minus effective rainfall and the SSDI plants were irrigated at 50% of the Control level. Ψstem values for the Control treatment during crop development tended to decrease, and those corresponding to SSDI plants were always lower than those for Control plants. Considering the 3-year data set, no relationship was found between Ψstem and VPD. However, there was a differential seasonal response between Ψstem and VPD, which depended on the stage of fruit development. A separate phenological analysis enabled the detection of RL for stage II (from fruit-set to veraison) and for stage III (post-veraison), whereas during stage I (from bud-break to fruit set) RL was not apparent. RL slopes increased as the season progressed and were significantly correlated to average values of Ψstem. The seasonal decrease in midday Ψstem for Control plants was interpreted as being a result of a progressive increase in canopy size and water consumption, which led to increased water depletion before each afternoon’s daily irrigation event. The apparent lack of RL during stage I was related to lower levels of water demand and high Ψstem.  相似文献   

19.
This study was conducted to develop the relationship between canopy-air temperature difference and vapour pressure deficit for no stress condition of wheat crop (baseline equations), which was used to quantify crop water stress index (CWSI) to schedule irrigation in winter wheat crop (Triticum aestivum L.). The randomized block design (RBD) was used to design the experimental layout with five levels of irrigation treatments based on the percentage depletion of available soil water (ASW) in the root zone. The maximum allowable depletion (MAD) of the available soil water (ASW) of 10, 40 and 60 per cent, fully wetted (no stress) and no irrigation (fully stressed) were maintained in the crop experiments. The lower (non-stressed) and upper (fully stressed) baselines were determined empirically from the canopy and ambient air temperature data obtained using infrared thermometry and vapour pressure deficit (VPD) under fully watered and maximum water stress crop, respectively. The canopy-air temperature difference and VPD resulted linear relationships and the slope (m) and intercept (c) for lower baseline of pre-heading and post-heading stages of wheat crop were found m = −1.7466, c = −1.2646 and m = −1.1141, c = −2.0827, respectively. The CWSI was determined by using the developed empirical equations for three irrigation schedules of different MAD of ASW. The established CWSI values can be used for monitoring plant water status and planning irrigation scheduling for wheat crop.  相似文献   

20.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号