首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Five isonitrogenous (420 g kg?1 crude protein) and isoenergetic (16.3 kJ g?1) practical diets were formulated to contain fish oil (FO), Kilka fish oil (KFO), linseed (LO), canola (CO) and soybean (SBO) oils fed to juveniles of three‐spot gourami (Trichopodus trichopterus) (initial weight 1 ± 0.03 g) three times per day to apparent satiation for 14 weeks. Results showed the mean final weight of brooders was not significantly affected by dietary oil sources. Specific growth rate for fish fed in SBO and CO diets was statistically higher than for fish fed diet LO. Fish fed diets CO and KFO showed in significantly higher GSI value compared with other diets. Absolute fecundity was greatest in fish fed diets KFO and CO, which significantly differ with other treatments. Except for KFO diet, high fertilization percentages (87.3–93.45%) were observed in other treatments. Fatty acid composition of muscle and egg was found to be positively correlated with their respective dietary lipid sources. High levels of EPA, DHA and n‐3 HUFA in brooders fed diet FO negatively affect egg quality parameters. Therefore, the results demonstrated that vegetable oil‐based diets (CO, SBO and LO, respectively) can positively affect on growth performance of juveniles compared with fish oil‐based diets. Furthermore, CO and LO diets, respectively, showed positive effects on reproductive performance in Ttrichopterus compared with fish oil diets during experimental period under controlled conditions.  相似文献   

2.
A 10‐week trial was conducted to determine the response of juvenile jade perch Scortum barcoo on the replacement of dietary fish oil (FO) in a fishmeal free diet. Three iso‐nitrogenous, isocaloric and isolipidic diets were formulated, each containing a different primary fat source: FO, linseed oil (LO), and a mixture of Schizochytrium and LO. The substitution of FO with the mixture of Schizochytrium and LO did not cause a difference in growth. However, there was an 8% reduction in weight gain in fish fed dietary LO, indicating that juvenile jade perch do require a minimal concentration of dietary n‐3 highly unsaturated fatty acids (HUFA). Fish fed the Schizochytrium diet stored more efficient n‐3 HUFA and in particular DHA in their flesh, and retained a higher fillet recovery compared to fish fed FO. In addition, we demonstrated that jade perch are able to produce both n‐3 HUFA and n‐6 HUFA when dietary PUFA are present. Fish fed the LO diet for 10 weeks contained the lowest amount of n‐3 HUFA in fillets among dietary treatment groups. However, feeding these fish the Schizochytrium diet for an additional 4 weeks increased the n‐3 HUFA content towards the same concentration of n‐3 HUFA found in the flesh of fish fed FO, without affecting the sensory properties of the fillets. In contrary, feeding the Schizochytrium diet for a continuous period of 14 weeks lowered overall sensory property scores.  相似文献   

3.
The use of non‐marine arachidonic acid (ArA) and docosahexaenoic acid (DHA) as highly unsaturated fatty acid (HUFA) enrichments was evaluated as complete replacements for marine fish oil in practical diets formulated with solvent‐extracted soybean meal (SESM). Litopenaeus vannamei juveniles (0.59 g) were reared over 84 days in an outdoor tank system with no water discharge. Fishmeal was replaced with SESM, while fish oil was replaced with HUFA‐rich algal cells, alternative oil and/or fermentation products. Spray‐dried Schizochytrium algal cells (Schizomeal‐Hi DHA) served as the DHA enrichment source. Oil extracted from Mortierella sp. was used as the ArA enrichment (AquaGrow® ArA). DHA and ArA sources (Advanced BioNutrition Corp., Columbia, MD, USA) were non‐marine products obtained from a commercial supplier. Five diets were formulated with ArA inclusion levels of 0, 0.65, 1.3, 2.6 and 5.2 g kg?1. In addition, one diet was formulated to be DHA deficient and another was formulated with menhaden fish oil (control). Different inclusion levels of non‐marine ArA had no effect on survival or growth. Shrimp fed the non‐marine HUFA‐supplemented diets had lower average weight compared to shrimp offered the diet containing fish oil. No differences were detected in average weights of shrimp offered the ArA‐deficient and ArA‐supplemented diets.  相似文献   

4.
The jundiá (Rhamdia quelen) is a siluriform with great potential for aquaculture in South America. Fish oil is a raw material in diets for fish. However, the fisheries that provide fish oil have reached their limit of sustainability. Thus, the use of alternative sources for this ingredient is primordial. The aim of this study was to evaluate the performance and body composition of the jundiá fed with different sources of the vegetable oils. Jundiá (1.0±0.2 g) were fed for 31 days with five isonitrogenous (37%) and isoenergetic (19 kJ g?1) diets, in which the following oils were added: 50 g kg?1 corn oil (CO), 50 g kg?1 fish oil (FO), 50 g kg?1 linseed oil (LO), 33.4 g kg?1 fish oil and 16.7 g kg?1 linseed oil (1/3LO), 16.7 g kg?1 fish oil and 33.4 g kg?1 linseed oil (2/3LO). The performance did not show differences between treatments. The final fatty acid profile and n‐3/n‐6 ratio of the fish were highly influenced by the diet. Fish‐fed diets with linseed and/or fish oil showed superior n‐3/n‐6 ratios to the minimal recommended by the World Health Organization; whereas fish fed diets with corn oil showed an inferior value. Albeit in the present study the commercial size of fish was not attained, these results show a clear tendency. The desaturation/elongation capacity was evidenced, in this species, for the first time. Linseed oil can be utilized as a substitute for fish oil in diets of jundiá without affecting their performance and for producing good‐quality fish. However, more studies are necessary to confirm these results for commercial size.  相似文献   

5.
6.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as the lipid sources, added at 120 g kg?1 of crude lipid each. The diets were fed by hand to triplicate groups of Pangasius nasutus (Bleeker, 1863) juveniles (mean weight 10.66 ± 0.04 g), to apparent satiation twice daily for 12 weeks. Fish survival rate was 100% among all the treatments. Growth performance (DGR) was similar among fish fed the SBO, CPO and LO diets, but was significantly (P < 0.05) higher in the CPO compared to fish fed the control (FO) diet. Fish fed SBO and CPO diets also recorded significantly (P < 0.05) higher intraperitoneal fat compared to fish fed the control, whereas fish fed the LO diet did not significantly differ from the other treatments. Muscle and liver fatty acid profile of fish from all the treatments generally mirrored the composition of the diets fed and the major fatty acids recorded were 18:3n‐3 and 18:2n‐6 in the tissues of fish fed the LO and SBO treatments, respectively. Results of this study suggests that P. nasutus fed diets containing vegetable oils (especially CPO and SBO) produce better growth performance, without compromising fish survival and feed efficiency compared with those fed a diet containing only FO.  相似文献   

7.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

8.
An 84‐day growth trial was designed to investigate effects of dietary replacements fish oil with pork lard (PL) or rapeseed oil (RO) on growth and quality of gibel carp (Carassius auratus gibelio var. CAS III) (initial body weight: 158.2 ± 0.2 g), and responses of the fish refed fish oil (FO) diet. Three isonitrogenous (crude protein: 30%) and isolipid (crude lipid: 10%) diets were formulated containing 7.73% FO, PL or RO. Five experimental treatments including FO group (FO), PL group (PL), RO group (RO), group fed PL for 42 days and refed FO for 42 days (PL+rFO), RO and refed FO group (RO+rFO) was tested. At the end of first 42 days, the fish fed PL and RO had higher mortality than that of the control (P > 0.05). At the end of whole experiment, fish fed PL and RO showed higher plasma cortisol than FO fish (P < 0.05). RO+rFO fish showed higher lysozyme activity than RO fish (P < 0.05). Fish growth and feed utilization, composition of whole body and muscle, free amino acids, texture, off‐flavour substances or sensory attributes were not affected by dietary treatments (P > 0.05). PL and RO diet decreased muscle EPA, DHA and n‐3/n‐6 ratio (P < 0.05), while FO‐refeeding had recovery effect. It can be concluded that the replacement of FO by PL and RO does not affect the growth, feed utilization or fish tasting quality in gibel carp. Fish muscle fatty acids modified by dietary PL and RO can be recovered by refeeding with FO diet.  相似文献   

9.
This study investigated the effect of the replacement of fish oil (FO) with DHA‐Gold (DHA‐G)‐supplemented plant oils (PO) in rainbow trout fed plant‐protein‐based diets. Five diets (450 mg g?1 digestible protein and 150 mg g?1 crude lipid) were fed to rainbow trout (initial weight 37 ± 0.5 g) for 12 weeks in a 15 °C recirculating water system. The lipid inclusion types and levels were FO, PO and PO with DHA‐G supplemented at 30 mg g?1, 60 mg g?1 or 90 mg g?1 of the diet replacement for corn oil. Fish fed 90 mg g?1 DHA‐G were significantly larger and consumed more feed than fish‐fed PO or FO (218 g and 2.6% bwd?1 versus 181 g and 2.4% and 190 g and 2.3%, respectively). Feed conversion ratio was significantly increased in fish fed 90 mg g?1 DHA‐G (0.99) as compared to fish‐fed FO (0.90) and 30 mg g?1 DHA‐G (0.91). Panellists found trout fillets from fish fed the 90 mg g?1 DHA‐G diet to have significantly fishier aroma and flavour than fish fed the FO diet. Fatty acid analysis demonstrated that 60 mg g?1 or 90 mg g?1 DHA‐G supplementation increased PO fed fish fillet DHA to fatty acid levels equivalent or higher than those fish fed a FO diet.  相似文献   

10.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as lipid sources each at inclusion level of 120 g kg?1 and fed to triplicate groups of 15 juvenile iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) (mean weight 10.00 ± 0.70 g) to apparent satiation twice daily for 12 weeks. The results showed that survival of fish was consistently over 95% for all treatments whereas growth performance in the SBO and CPO treatments was similar and significantly (P < 0.05) higher than for fish fed the LO diet. However, fish fed all vegetable oil‐based diets performed better than those fed the FO diet. Muscle and liver fatty acid composition for all treatments generally reflected the composition in the diet and the ratio of n‐3/n‐6 was found to play an important role in P. hypophthalmus, suggesting that excessive amounts of n‐3 fatty acids reduce the overall growth performance. Results of this study thus suggests that P. hypophthalmus fed diets containing vegetable oils (especially CPO and SBO) produce better growth than those fed FO diet without showing any signs of nutrient deficiency.  相似文献   

11.
Pike perch (Sander lucioperca) has been identified as specie destined to diverse European inland aquaculture, but knowledge on the nutritional requirements is weak. Therefore, we investigated the effect of varying dietary fatty acid (FA) profile by partial replacement of fish oil (FO) with vegetable oils on growth, FA and body composition of juvenile pike perch. An extruded basal diet containing 59 g kg?1 crude lipids (FO) was added with 60 g kg?1 FO, 60 g kg?1 linseed oil (LO) or 60 g kg?1 soybean oil (SO). The resulting dietary FA composition differed mainly in the triglyceride fraction and was characterized by highest amounts of linolenic acid (18:3 n‐3) in the LO diet and linoleic acid in the SO diet. Diet enriched with FO contained highest contents of highly unsaturated FA 20:5 n‐3 (eicosapentaenic acid) and 22:6 n‐3 (docosahexaenic acid). Pike perch were held in a recirculation system and each feeding group (in triplicate) was fed with experimental diets at a daily rate of 35 g kg?1 of biomass for 57 days by automatic feeders. Weight gain and specific growth rate of experimental feeding groups ranged between 18.47 and 19.58 g and 1.37–1.45% day?1 and was not affected by the dietary composition indicating that FO can be replaced by vegetable oils without negative impact on growth performance. In contrast to the whole body and muscle composition, liver tissue was affected by the varying diets. Liver tissues of fish fed diets enriched with vegetable oils showed significantly increased lipid contents of 162 (LO) and 147 (SO) g kg?1 and indicate decreased lipid utilization compared with fish fed FO diet (liver lipid content 112 g kg?1). Nevertheless, hepatosomatic index of pike perch was not influenced by dietary lipid composition. The FA profile of pike perch was generally determined by the dietary FAs.  相似文献   

12.
Three isonitrogenous (520 g protein kg?1 DM) and isoenergetic (25 MJ kg?1 DM) diets containing increasing levels of flaxseed oil (FxO; 0%, 40% and 70% of total added oil) at the expense of fish oil (FO) were tested for 33 weeks in groups of 61 individually PIT‐tagged halibut (initial weight, 849 ± 99 g). Effects on fish growth performance, fillet nutritional and sensory quality were determined. Specific growth rate (0.2% day?1), feed conversion ratio (1.2–1.3) and nitrogen and energy retention were not affected by dietary treatments. Dietary fatty acid composition was reflected in fatty acid profiles of halibut muscle, liver and heart. Muscle of fish fed FxO diets contained higher 18:2n‐6 and 18:3n‐3 concentrations whereas 20:5n‐3 and 22:6n‐3 levels were significantly reduced. However, increasing FO replacement induced preferential retention of 22:6n‐3 especially in heart, and a trend for 20:5n‐3 conservation in heart and muscle was observed. FO replacement did not affect colour, texture and the characteristic fish odour and flavour of cooked fillets. By selectively retaining long‐chain polyunsaturated fatty acids halibut can adapt to a lower dietary supply without adverse effects on growth, feed conversion ratio, survival, and fillet nutritional and sensory quality.  相似文献   

13.
Atlantic salmon were fed extruded diets based on either 100% fish oil (FO) or 100% vegetable oil blend (VO) substitution for 22 months. A total of seven distinct feeding periods were studied that incorporated higher levels of dietary oil inclusion, and larger pellet size as fish size increased. Whole fish levels of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/F) and dioxin‐like PCBs (DLPCB) were analysed at the beginning and end of each of the seven feeding periods. The PCDD/F and DLPCB concentrations in the FO diets increased from 2.43 to 4.74 ng WHO‐TEQ kg?1 (TEQ, toxic equivalents), while VO diets decreased from 1.07 to 0.33 WHO‐TEQ kg?1 as oil inclusion increased. Partial least square regression analyses identified feed concentration, growth rate and feed utilization, but not variations in lipid content, as factors significantly affecting fish PCDD/F and DLPCB levels. Accumulation efficiencies for DLPCB (740 ± 90 g kg?1) were significantly (P < 0.01) higher than for PCDD/F (430 ± 60 g kg?1), explaining the increasing dominance of DLPCB levels over PCDD/F levels in whole fish (DLPCB : PCDD/F ratio of 2.4 ± 0.1 for both VO and FO fed fish) compared with feed (DLPCB : PCDD/F ratio of 1.5 and 0.34 for FO and VO feed respectively). Vegetable oil substitution significantly reduced the level of PCDD/F and DLPCB (eightfold and twelve‐fold, respectively) in the fillet of a 2 kg salmon, but, also negatively affected beneficial health components such as fillet n‐3/n‐6 fatty acid ratio.  相似文献   

14.
The static or declining supply of fish oil from industrial fisheries demands the search of alternatives, such as plant (vegetable) oils, for diets in expanding marine aquaculture. Vegetable oils are rich in C18 polyunsaturated fatty acids but devoid of the n-3 highly unsaturated fatty acids in fish oils. Previous studies, primarily with salmonids, have shown that including vegetable oils in their diets increased hepatocyte fatty acid desaturation. In the present study, we have investigated the effects of dietary partial substitution of fish oil (FO) with rapeseed oil (RO), linseed oil (LO) and olive oil (OO) on the desaturation /elongation and, -oxidation capacities of [1-14C]18:3n-3 in isolated hepatocytes from European sea bass (Dicentrarchus labrax L.), in a simultaneous combined assay. Fish were fed during 34 weeks with diets containing 100% FO, or RO, LO and OO, each included at 60% with the balance being met by FO, with no detrimental effect upon growth or survival. The highest total desaturation rates were found in hepatocytes of fish fed FO diet (0.52±0.08 pmol/h/mg protein) and OO diet (0.43±0.09 pmol/h/mg protein), which represented 3.2% and 2.7% of total [1-14C]18:3n-3 incorporated, respectively. In contrast, lowest desaturation rates were presented by hepatocytes of fish fed LO and RO diets (0.23±0.06 and 0.14±0.05 pmol/h/mg protein, respectively) represented 1.4% and 0.9% of total [1-14C]18:3n-3 incorporated, respectively. The rates of [1-14C]18:3n-3 β-oxidized were between 11-fold and 35-fold higher than desaturation. However, no significant differences were observed among β-oxidation activities in hepatocytes of fish fed any of the diets. The present study demonstrated that the European sea bass, as a carnivorous marine fish, presented a ‘marine’ fish pattern in the metabolism of 18:3n-3 to 20:5n-3 and 22:6n-3. This species appeared to have all the enzymic activities necessary to produce 22:6n-3 but presented only extremely low rates of fatty acid bioconversion. Furthermore, nutritional regulation of hepatocyte fatty acid desaturation was minimal, and dietary vegetable oils did not increase desaturase activities, and in RO and LO treatments the activity was significantly lower. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Three diets were formulated to be iso‐nitrogenous (450 g kg?1), iso‐lipidic (65 g kg?1) and iso‐energetic (18.5 KJ g?1), varying only in their lipid sources and designated as 100% fish oil (FO), 100% crude palm oil (CPO) and 100% palm fatty acid distillate (PFAD). Feed were hand fed to homogenous groups of 12 Channa striatus fingerlings (mean weight 3.5 ± 0.3 g) per tank in triplicate for 12 weeks, in a recirculation system. The growth performance and feed intake in the CPO and PFAD treatments were significantly (P<0.05) higher than those in the fish fed the control diet (FO), respectively, whereas the feed conversion ratio was better in PFAD than that in the other treatments respectively. The biological indices monitored (hepatosomatic index and viscerosomatic index) as well as carcass yield did not vary significantly among all the treatments respectively. The muscle fatty acid (FA) profile of fish was influenced by the composition of the diets fed, whereas no differences were recorded in the activities of the hepatic lipogenic enzymes monitored (fatty acid synthetase, citrate cleavage enzyme and malic enzyme). Whole‐body proximate composition analysis revealed that PFAD treatment, compared with others, contained significantly higher protein and ash, but lower lipid contents, although the muscle content of these nutrients was similar among all the treatments. Based on the results of this trial, CPO and PFAD could be used to partially substitute FO in the diet for C. striatus fingerling, to achieve good growth performance without any negative effects or compromising the muscle n‐3 FA composition (especially in the docosa hexaenoic acid and eicosa pentaenoic acid content).  相似文献   

16.
A 12‐week growth trial was conducted with gibel carp Carassius auratus gibelio (initial weight: 2.69 g) to evaluate the effects of dietary n‐3 highly unsaturated fatty acids (n‐3 HUFA) on growth performance and tissue fatty acid composition. Five diets of different n‐3 HUFA levels from 0 to 17 g kg?1 diet were supplemented at 80 g kg?1 dietary lipid by including fish oil (FO) at 0, 25, 50, 75 and 100% of supplemental lipid. The remainder was coconut oil. The results showed that fish fed FO25 and FO50 obtained highest specific growth rate and lowest with FO0. Feed efficiency was highest at FO100 and lowest at FO0. Apparent digestibility coefficient of lipid increased with increasing dietary n‐3 HUFA. The fish fed FO0 diet had the lowest thiobarbituric acid reactive substance in serum and muscle and highest moisture and lowest lipid content in viscera. Fatty acid compositions of muscle and liver were correlated with dietary fatty acids. Fish muscle concentration of 20:5n‐3 increased with increasing dietary n‐3 HUFA while the concentration of 22:6n‐3 was distinctly reduced in FO0 group. It suggested that 4 g kg?1 n‐3 HUFA in diet could permit gibel carp normal growth performance and provide considerable n‐3 HUFA in fish muscle. Excessive n‐3 HUFA showed impact on growth performance of gibel carp.  相似文献   

17.
This study evaluated the omega‐3 (n‐3) fatty acids and the proximate composition of muscle tissue of adult Nile tilapias to select the best feeding time length with a diet containing 70 (g kg?1 wt) flaxseed oil (FO). The results showed that dietary complementation with FO for 45 days is suitable for obtaining high levels of protein (164 g kg?1), total lipids (94 g kg?1), and ash (18 g kg?1). Furthermore, there was a significant difference (P < 0.05) in the reduction of n‐6 and an increase in the concentration of n‐3. With 45 days’ time of FO feeding, fish weight was 532 g and it was improved by the incorporation of total n‐3 (9.8%), consisting of alpha‐linolenic acid (LNA; 6.3%), and n‐3 very long‐chain polyunsaturated fatty acid (n‐3 VLC‐PUFA; 3.5%), and including docosahexaenoic acid (DHA; 1.2%). This gave a better n‐6/n‐3 ratio (1.1) of muscle tissue, a more desirable ratio than the present ratio sometimes as high as 1 : 20 in human diets. The concentrations of n‐3 VLC‐PUFA were higher than those of native Brazilian freshwater fish. Thus, 45 days is the shortest time period required for the inclusion of FO oil in tilapia feed to raise the nutritional value of adult Nile tilapia.  相似文献   

18.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

19.
This study was undertaken to assess the effects of fish oil (FO) substitution by a mixture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154‐day feeding experiment was conducted using juveniles (39.2 ± 1.6 g average weight). Three isolipidic and isoenergetic meal‐based diets were formulated varying their lipid component. The control diet contained 100% FO (FO100), whereas diets VO50 and VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect growth performance, biometric indices, feed efficiency, plasma chemistry and liver and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (C16:0) and oleic acid (C18:1n‐9) and apparent selective retention of long‐chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, C20:5n‐3) and docosahexaenoic acid (DHA, C22:6n‐3). The nutritional value and the potential ability to prevent the development of coronary heart diseases of the flesh lipid fraction decreased with gradual FO substitution.  相似文献   

20.
Five isonitrogenous and isoenergetic diets with soybean oil (SO), linseed oil (LO), algae oil from Schizochytrium sp. (AO), mixed oil (MO, SO:LO:AO = 1:1:1) and fish oil (FO; control group) were selected to feed juvenile Onychostoma macrolepis (initial weight 1.86 ± 0.07 g) for eight weeks. The results showed that in the LO and FO groups fish grew best. There was no significant difference in specific growth rate (SGR) and feed efficiency (FE) between the MO and FO groups (p > .05). The highest contents of 18:2n‐6, 18:3n‐3 and 22:6n‐3 in liver and muscle were found with the SO, LO and AO groups, respectively (p < .05). There appeared the highest malondialdehyde (MDA) content and the lowest superoxide dismutase (SOD) activity in the fish liver of the AO group. There appeared the highest concentrations of serum glucose (GLU), cholesterol (CHOL) and triglycerides (TG) in the SO group. The expressions of lipid anabolism genes were significantly up‐regulated by dietary SO and LO (p < .05). The expressions of lipid catabolism genes were significantly higher with the AO, MO and FO groups (p < .05). This study recommended that LO or MO as a better vegetable oil source for juvenile O. macrolepis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号