首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood samples form 120 consecutive clinical cases (40 cats, 40 dogs and 40 horses) were analyzed on the QBC VetAutoread analyzer and the results compared with those obtained by a Baker 9000 electronic resistance cell counter and a 100-cell manual differential leukocyte (WBC) count. Packed cell volume (PCV), hemoglobin (Hb) concentration, mean cell hemoglobin concentration (MCHC), and platelet, total WBC, granulocytes, and lymphocyte plus monocyte (L+M) counts were determined. Indistinct separation of red blood cell and granulocytes layers on the QBC VetAutoread was observed in samples from five cats (12.5%), two dogs (5%), and one horse. Significantly different (P=0.002) median values for the two methods were obtained for PCV, Hb concentration, MCHC and platelet count in cats; PCV, MCHC, WBC, count and granulocytes count in dogs; and PCV, Hb concentration, MCHC and WBC, granulocytes and platelet counts in horses. Results from the QBC VetAutoread should not be interpreted using reference ranges established using other equipment. Results were abnormal on a limited number of samples; however, when correlation coefficients were low, marked discrepancy existed between values within as well as outside of reference ranges. Spearman rank correlation coefficients were excellent (r=0.93) for PCV and Hb concentration in dogs, and Hb concentration and WBC count in horses. Correlation was good (r=0.80-0.92) for PCV and Hb concentration in cats, WBC count in dogs, and PCV, granulocytes count and platelet count in horses. For remaining parameters, correlation was fair to poor (r=0.79). Acceptable correlations (r>0.80) were achieved between the two test systems for all equine values except MCHC and L+M count, but only for PCV and HB concentration in feline and canine blood samples.  相似文献   

2.
BACKGROUND: The ADVIA 120 is an automated laser cell counter widely used in veterinary medicine. Although specific software for equine samples is available and validated, only a few reports have been published comparing the ADVIA 120 with other methods for equine hemogram evaluation. OBJECTIVES: The purpose of this study was to compare the hematologic values and reference intervals obtained on the ADVIA 120 with those obtained on an impedance cell counter and manual differential counts in healthy horses. METHODS: EDTA-anticoagulated blood samples were obtained from 114 clinically healthy horses of various breeds, both sexes, and 2-6 years of age. Samples were stored for up to 12 hours at 4 degrees C and then analyzed on the ADVIA 120 and the Hemat 8. A 100-cell to 200-cell differential leukocyte count was performed by 3 independent observers on May-Grünwald-Giemsa-stained smears. Intra-assay precision of the ADVIA 120 was determined by analyzing 5 replicates each of 10 of the blood samples. RESULTS: Results from the ADVIA were significantly higher than those from the impedance counter for RBC count, total WBC count, hemoglobin concentration, red cell distribution width, MCH, and MCHC, and significantly lower for HCT and platelet count. Significantly higher neutrophil and basophil counts and significantly lower lymphocyte counts were obtained with the ADVIA 120 compared with manual counts. Based on Passing-Bablok regression analysis, RBC and platelet counts were in good agreement between the 2 analyzers; a constant and proportional bias was present for other values. Coefficients of variation for erythrocyte parameters on the ADVIA were <1%, but were higher for platelet (6%), total WBC (2%), differential WBC (4%-30%), and reticulocyte (75%) counts. CONCLUSIONS: Results obtained with equine samples on the ADVIA 120 were comparable with those obtained on an impedance counter; reference intervals differed statistically but overlapped. The ADVIA had poor precision for reticulocyte and differential leukocyte counts such that the latter should always be verified on smears.  相似文献   

3.
Differential leukocyte (WBC) counts in blood from clinically healthy silver foxes (n=32) and blue foxes (n=37) obtained from an automated hematology analyzer (Technicon H*1 Hematology System) with canine software were compared with microscopic differential WBC counts (M-diff). There was good agreement between the automated differential cell count (A-diff) and the M-diff for neutrophil and lymphocyte percentages. The correlation was lower for monocyte percentages and variable for eosinophil percentages. There was no significant difference between the A-diff and M-diff in either fox species. The A-diff counts were very precise, and may be a good alternative to the traditional M-diff for screening populations of clinically healthy foxes or for studies on stress and animal welfare. Intercept values, however, indicated a constant bias that must be taken into account before interpreting results based on different methods of analysis  相似文献   

4.
BACKGROUND: The CA530-VET is a completely automated impedance cell hematology analyzer, which yields a 16-parameter blood count including a 3-part leukocyte differential. OBJECTIVES: The aim of this study was to examine the operational potential of the CA530-VET and its value for use in veterinary practice. METHODS: The analyzer was tested for blood carry-over, precision, and accuracy. Comparison methods included the CELL-DYN 3500, microhematocrit centrifugation, manual platelet (PLT) counting for feline and equine species, and a 100-cell manual WBC differential. Blood samples for comparison of the methods were obtained from 242 dogs, 166 cats, and 144 horses. RESULTS: The carry-over ratio (K) was 0.28% for RBC, 0.59% for PLT, 0.32% for WBC, and 0.18% for hemoglobin (HGB) concentration. Coefficients of variation (CVs) for within-batch precision and duplicate measurement of blood samples were clearly within the required limits, except for duplicate platelet counts in cats (8.7%) and horses (9.5%). The WBC count was in excellent agreement for dogs and horses and RBC count was in excellent agreement for horses. The accuracy of feline WBC counts was not acceptable, with the exception of values at the high end of the range. RBC counts in dogs and cats, and HGB concentration and MCV in all 3 species were sufficiently accurate. The CA530-VET HCT results were in excellent agreement with microhematocrit results in horses but exceeded the maximum allowed inaccuracy for cats and dogs. In all species, PLT counts established mechanically and manually were not in adequate agreement. Large differences were found between the CA530-VET and the manual differential percentage for lymphocytes and "mid-sized cells" (monocytes and basophilic granulocytes). CONCLUSIONS: The CA530-VET can be considered useful for routine canine, feline, and equine blood cell analyses. It should not be considered accurate, however, for PLT counts, feline total WBC counts in the subnormal and normal range, and leukocyte differentials, except for granulocytes.  相似文献   

5.
Two domestic shorthair cats were presented with anorexia and dehydration following ingestion of caramelized onions. Shared key findings from a CBC (ADVIA 2120), serum biochemistry, and urinalysis included a spurious, marked leukocytosis with discordant basophil (BASO) channel and peroxidase channel WBC counts, normal manual leukocyte counts, mild, non-regenerative anemia with discrepancies between automated and manual reticulocyte counts, an abundance of large Heinz bodies (HBs), and highly irregular scattergrams. Case 1 also demonstrated a markedly elevated mean corpuscular hemoglobin concentration (MCHC) and discrepancies between RBC hemoglobin indices. Spurious leukocyte results were confirmed through re-analysis of samples (including the acquisition of a new sample, use of an alternate analyzer (Sysmex XT-2000iV; Case 1 only), and evaluation of scattergrams and blood films (Cases 1 and 2). Repeatedly discrepant reticulocyte counts were also identified. In both cases, the erroneous BASO WBC counts, discrepancies in reticulocyte counts and RBC indices, and atypical scattergrams were interpreted to result from various effects of the HBs. These cases emphasize the importance of reviewing blood films, interpreting scattergrams, and the usefulness of duplicate methods for determining various measurands on hematology analyzers.  相似文献   

6.
A Baker 9000 hematology analyzer (electronic impedance) was purchased to replace an Ortho ELT-8/ds analyzer (laser optics) due to discontinued technical support. An analytical comparison of hemograms from healthy dogs, rats, and mice was made from paired disodium ethylenediamine tetra-acetate anticoagulated blood samples. Both instruments were calibrated with human blood products, and the ELT-8/ds hematocrit (HCT) was calibrated to a spun packed cell volume (PCV) for each species. For Beagle dogs (n = 49), Baker 9000 mean platelet (PCV) counts had a negative bias of -89 X 10(3)/microliter when compared to ELT-8/ds values. Mean +/- standard error manual PLT counts compared well with Baker 9OOO values for dogs (n = 10): 369 +/- 28 vs. 367 +/- 27 X 10(3)/microliter; r = 0.93. For CD-1 mice (n = 44), Baker 9000 mean white blood cell (WBC) counts had positive biases of 1. 1 X 10(3)/microliter when compared to ELT-8/ds and 0.5 X 10(3)/microliter when compared to hemacytometer counts. Diluted microsamples using the predilution mode on the Baker 9000 compared well with undiluted samples for mice. For Sprague-Dawley rats (n = 70), Baker 9000 mean WBC, red blood cell (RBC), and PLT counts had absolute biases of 0.8 X 10(3)/microliter, -1.09 X 10(6)/microliter, and -357 X 10(3)/microliter, respectively, when compared to ELT-8/ds values. Baker 9000 RBC, WBC, and PLT counts from rats compared well with reference hemacytometer counts. The Baker 9000 HCT determination for rats had an absolute negative bias of 6% when compared to the ELT-8/ds values or spun PCV. The Baker 9000 required whole blood calibration to PCV for accurate determination of HCT for rats. The biases between analyzers may be due to inherent physical differences between the analytical methods and/or the calibration techniques.  相似文献   

7.
OBJECTIVE: To compare WBC, neutrophil, and platelet counts and Hct values obtained with a point-of-care hematology analyzer with values obtained by a reference method for dogs and cats receiving chemotherapy. DESIGN: Cross-sectional study. ANIMALS:105 dogs and 25 cats undergoing chemotherapy. PROCEDURES:Blood samples were analyzed with a point-of-care hematology analyzer and with an impedance- and laser-based analyzer with manual differential WBC counts. Results for WBC, neutrophil, and platelet counts and Hct were compared. Sensitivity and specificity of the point-of-care analyzer to detect leukopenia, neutropenia, and anemia were calculated. RESULTS: 554 canine and 96 feline blood samples were evaluated. Correlation coefficients for dogs and cats, respectively, were 0.92 and 0.95 for total WBC count, 0.91 and 0.88 for neutrophil count, 0.95 and 0.92 for Hct, and 0.93 and 0.71 for platelet count. Sensitivity and specificity, respectively, of the point-of-care analyzer to detect leukopenia were 100% and 75% for dogs and 100% and 68% for cats; to detect neutropenia were 80% and 97% for dogs and 100% and 80% for cats; to detect anemia were 100% and 80% for dogs and 100% and 66% for cats; and to detect thrombocytopenia were 86% and 95% for dogs and 50% and 87% for cats. CONCLUSIONS AND CLINICAL RELEVANCE:The point-of-care analyzer was reliable for monitoring CBCs of dogs and cats receiving chemotherapy. It had good to excellent correlation for WBC and neutrophil counts and Hct and accurately detected leukopenia, neutropenia, and anemia. Sensitivity of the analyzer for detecting thrombocytopenia was lower but acceptable.  相似文献   

8.
Background: Microscopy is usually used to obtain manual total and differential cell counts in equine synovial fluid. A faster, more precise method is desirable. Objectives: The objectives were to compare an automated impedance method with a manual method for obtaining total and differential cell counts in equine synovial fluid and to evaluate the effect of pretreatment with hyaluronidase on automated results. Methods: Synovial fluid samples (n=48) were collected into EDTA and analyzed within 48 hours. Automated total and differential cell counts were evaluated using a Medonic CA620‐VET hematology analyzer before and after pretreatment for 5–30 minutes with hyaluronidase (final concentration 0.01 mg/mL). A hemacytometer count and microscopic evaluation of a direct smear were used as the reference method. Intra‐assay coefficients of variation (CV) were determined. Results: Thirty‐one of 46 untreated samples and 0/46 hyaluronidase‐treated samples were error‐flagged by the analyzer. Correlation between automated (ANCC) and manual (MNCC) nucleated cell counts in untreated samples (n=15; R2=0.93) and pretreated samples (n=46; R2=0.94) was high, and pseudomedian difference was low. Intra‐assay CVs for samples with medium and high cellularity were significantly lower for ANCC (1.5–2.7%) compared with MNCC (6.1–15.7%) (P<.01). Valid automated differential cell counts were not obtained. Conclusions: Automated total cell counts obtained on the Medonic analyzer correlate well with manual counts in equine synovial fluid; however, pretreatment with hyaluronidase is required to minimize error flags. Automated differential counts are not accurate for synovial fluid.  相似文献   

9.
Background: Automated hematology instruments commonly are used for mammalian blood analysis, but there is a lack of accurate automated methods available for avian leukocyte analysis. Objective: The aim of this study was to validate differential leukocyte counts in blood from chickens using the Cell-Dyn 3500 hematology system and avian-specific software.
Methods: Blood samples were collected in lithium-heparin tubes from 2 groups (n = 84 and n = 139) of laying hens. Manual 200-cell differential counts were done on routinely-stained blood smears, and manual total granulocyte counts (heterophils and eosinophils) were done using an eosinophil stain in a counting chamber. Automated differential counts were done using VET 2.3, a research and development version of avian-specific software for the Cell-Dyn 3500. Results were analyzed using Pearson's correlation and difference plots.
Results: Automated granulocyte counts from the Cell-Dyn were in good agreement with manual granulocyte counts ( r = 0.93 and 0.80 for the 2 study groups). No correlation was found between automated and manual lymphocyte counts. Correlation coefficients for monocyte counts were 0.70 and 0.43. Conclusion: Automated leukocyte results from the Cell-Dyn using VET 2.3 software were not fully accurate. Total granulocyte counts may be of clinical usefulness, but results obtained for other parameters were unreliable.  相似文献   

10.
选择1日龄健康贵妃雏鸡192只,随机分为16组,每组12只。试验雏鸡经受比正常温度低10℃的急、慢性冷应激和冷适应处理,并对急性冷应激组添加益生菌、慢性冷应激和冷适应组添加葡聚糖处理。翼下采血制血涂片,镜检观察雏鸡白细胞分类变化,并用血细胞分析仪测定血相变化与之对比分析。结果表明,在急性冷应激期间,雏鸡的白细胞分类计数波动变化明显,嗜碱粒细胞数目和H/L比值都明显增加;血红蛋白、红细胞以及血小板数目显著增加。冷适应后淋巴细胞数目明显增加,嗜中性粒细胞明显减少,H/L比值下降。益生菌、葡聚糖处理对白细胞总数和嗜酸粒细胞影响明显,益生菌处理24h明显增加白细胞数量,葡聚糖处理15d降低了嗜酸粒细胞数目。本试验结果提示急性冷应激能引起雏鸡血液学参数的明显波动,贵妃雏鸡抗冷应激能力较强,而益生菌、葡聚糖能提高雏鸡适应冷应激的能力,改善应激状态下的免疫功能。  相似文献   

11.
Abstract: A study was performed to evaluate blood from young lambs using the Technicon H*1 hematology analyzer, with emphasis on RBC parameters, comparison of tripotassium EDTA and heparin, and the effects of storage on heparinized blood. Blood samples from lambs 2 days to 18 weeks of age were analyzed within 6 hours, revealing a high precision, except for WBC counts in heparinized blood. The HCT values estimated by the H*1 correlated well (r2= .90) with those obtained by the microhematocrit method. Mean hematologic values obtained for heparinized blood differed by up to 4% from values obtained for blood collected into EDTA. WBC counts decreased 8.4% in heparinized blood stored at 4°C for 1 day, but differences observed in RBC counts were ≤ 2%. Problems occurred when analyzing blood from young lambs with low hemoglobin values because the H*1 incorrectly counted microcytes with volumes of < 10 fL as platelets. When the necessary corrections were performed, the H*1 was useful for analyzing RBC parameters in lamb blood collected both into EDTA and into heparin.  相似文献   

12.
Analysis of canine and feline haemograms using the VetScan HMT analyser   总被引:2,自引:0,他引:2  
The VetScan HMT is an impedance counter haematology analyser which produces a full blood count and three-part white blood cell differential. The aim of this study was to compare the results generated by the analyser with those obtained by standard methods used routinely in the authors' laboratory. Blood samples from 68 dogs and 59 cats were run on the VetScan HMT analyser and also subjected to reference methods, and the results obtained were compared. Correlation coefficients (feline/canine) were: 0.97/0.99 for haematocrit (Hct), 0.98/0.99 for haemoglobin (Hb), 0.81/0.98 for total white blood cells (WBC), and 0.89/0.97 for granulocyte and 0.65/0.93 for platelet counts. Coefficients for lymphocyte counts were 0.25/0.28 and for monocyte counts were 0.12/0.79. In conclusion, the VetScan HMT performed well on canine samples, showing excellent correlation for canine Hct, Hb, RBC, WBC, granulocyte and platelet counts. For feline samples, although there was excellent correlation for Hct, Hb and RBC, the WBC and three-part white blood cell differential and platelet count should be interpreted with caution as they can be unreliable.  相似文献   

13.
Abstract: The objective of this study was to compare and assess the agreement between the Coulter AcT Diff hematology analyzer (CAD) and the Bayer Technicon H1 (H1) using blood samples from 391 animals of 4 species. The H1 has been used in veterinary laboratories for many years. Recently, Coulter modified the CAD and added veterinary software for hematologic analysis of feline, canine, and equine samples. A comparison of hemograms from dogs, cats, horses, and cattle was made using EDTA-anticoagulated blood samples. Both instruments were calibrated using human blood products. Performance characteristics were excellent for most values. The exceptions were MCV in canine samples (concordance correlation of .710), platelet counts for feline and equine samples (.258 and .740, respectively), feline and bovine WBC counts (.863 and .857, respectively), and bovine hemoglobin (.876).  相似文献   

14.
Gray squirrels (Sciurus carolinensis carolinensis) (N=180) from Jacksonville, Fl, were examined for hematologic values: erythrocyte sedimentation rate, packed cell volume, hemoglobin (Hb) concentration, erythrocyte and leukocyte counts, differential leukocyte counts, blood platelet counts, Hb electrophoresis, and erythrocyte fragility. Results were compared by age and by sex of the squirrels and by month of capture.  相似文献   

15.
The differential leukocyte counts performed by an automated hematology analyzer, the Technicon H-1E Hematology System, and traditional microscopic method (M-Diff) from blood samples of 129 horses, 40 cattle, and 140 cats were compared. The comparison was repeated after selected subsets of data were created by deleting samples with certain patterns suggesting error with the automated differential cell count (A-Diff). The two methods had good comparison of results for neutrophils and lymphocytes in all three species. Results for equine monocytes correlated moderately well between the two methods and the correlation improved in the selected data set Monocyte results did not compare well for the bovine and feline samples. The A-Diff for feline eosinophils was inaccurate. The A-Diff may be accurate for bovine and equine eosinophils but too few examples of eosinophilia were present in the sample set to prove this. Basophils were too rarely seen in cattle and horses to validate A-Diff accuracy, but basophilia identified by the M-Diff in a cat was not identified by the A-Diff.  相似文献   

16.
The Hematologic values of 19 equine fetuses between 202 and 238 days gestation were compared with those of their dams. The red blood cell (RBC) count, hemoglobin concentration, hematocrit, and mean corpuscular hemoglobin concentration were significantly lower in fetal blood, while the mean corpuscular volume, mean corpuscular hemoglobin, and red cell distribution width were significantly higher. Mares had a significantly higher nucleated blood cell count than fetuses, and all nucleated cells were leukocytes (WBC). Most WBC in mare blood were segmented neutrophils and lymphocytes. In contrast, over one-half of the nucleated cells in fetal blood were nucleated RBC, and the majority of WBC in fetal blood were lymphocytes. Mares also had significantly higher plasma protein and fibrinogen concentrations than their fetuses. Mild macrocytosis and mild polychromasia were observed in most fetal blood samples, but not in blood samples from mares. All fetal blood contained reticulocytes, and most samples contained Heinz bodies and Howell-Jolly bodies. The results of this study will contribute to the development of hematologic reference values that may be useful in equine fetal research and, possibly, in the diagnosis of equine fetal disease.  相似文献   

17.
BACKGROUND: Conventional techniques for canine cerebrospinal fluid (CSF) analysis require large sample volumes and are labor intensive and subject to operator variability. Objective: The purpose of this study was to evaluate the ADVIA120 CSF assay for analysis of canine CSF samples. METHODS: CSF samples collected from 36 healthy control dogs and 17 dogs with neurologic disease were processed in parallel using the automated assay and established manual methods using a hemocytometer and cytocentrifugation. Results for WBC (total nucleated cell) count, RBC count, and differential nucleated cell percentages were compared using Spearman rank correlation coefficients and Bland-Altman bias plots. RESULTS: Correlation coefficients for WBC and RBC counts were 0.57 and 0.83 for controls, and 0.92 and 0.94 for ill dogs, respectively. Coefficients for the percentages of neutrophils, lymphocytes, and monocytes were 0.53, 0.26, and 0.12 for controls and 0.77, 0.92, and 0.70 for dogs with neurologic disease. When data were combined (n=53), correlation coefficients were 0.86 and 0.91 for WBC and RBC counts, and 0.63, 0.43, and 0.30 for neutrophil, lymphocyte, and monocyte percentages. A 9.5% positive bias and 7.0% negative bias were obtained for the ADVIA 120 CSF assay for lymphocytes and macrophages in dogs with neurologic disease with Bland-Altman analysis. A 12.2% positive bias was found for lymphocyte percentage in dogs with neurologic disease. CONCLUSIONS: Manual and automated CSF assays had moderate to excellent correlation for WBC and RBC concentrations, but results were more variable for differential cell percentages. The ADVIA assay may be more useful for assessment of canine CSF with adjustment of cell differentiation algorithms.  相似文献   

18.
The aims of the study were to evaluate the effect of iron-dextran injection given on the first, third or fourth day after birth on haematology in piglets. An advanced automated blood analyser; Technicon H*1, which performs a complete blood cell count and leukocyte differential counts was used to analyse the blood. Six litters of Norwegian Landrace x Yorkshire piglets were included in the study. The day after birth (day 1), half of the piglets in each litter (split litters) were injected subcutaneously with 180 mg iron as iron-dextran (1.5 ml Idofer). The untreated piglets from two of the litters were injected with the same amount of iron-dextran on day 3, and those from the remaining four litters on day 4. The piglets were weighed and blood samples collected on days 1, 3 or 4, 7, 14 and 21. Erythropoiesis, but not leukocyte count, responded to injection on day 1 compared with injection on the third or fourth day. The difference between groups in haematological parameters was greatest on day 7. The two groups of piglets treated on day 1 had a haemoglobin concentration (Hb) +/-SD of 92 g litre-1(+/-9) and 94 g litre-1(+/-9), and the piglets treated on day 3 had a Hb of 81 g litre-1(+/-7) and the one treated on day 4 had a Hb of 78 g litre-1(+/-7) on day 7. On days 14 and 21 there were no differences between groups. This study indicates that some piglets were anaemic and responded to subcutaneous iron injection on day 1.  相似文献   

19.
BACKGROUND: The LaserCyte hematology analyzer (IDEXX Laboratories, Chalfont St. Peter, Bucks, UK) is the first in-house laser-based single channel flow cytometer designed specifically for veterinary practice. The instrument provides a full hematologic analysis including a 5-part WBC differential (LC-diff%). We are unaware of published studies comparing LC-diff% results to those determined by other methods used in practice. OBJECTIVE: To compare LC-diff% results to those obtained by a manual differential cell count (M-diff%). METHODS: Eighty-six venous blood samples from 44 dogs and 42 cats were collected into EDTA tubes at the Forest Veterinary Centre (Epping, UK). Samples were analyzed using the LaserCyte within 1 hour of collection. Unstained blood smears were then posted to Langford Veterinary Diagnostics, University of Bristol, and stained with modified Wright's stain. One hundred-cell manual differential counts were performed by 2 technicians and the mean percentage was calculated for each cell type. Data (LC-diff% vs M-diff%) were analyzed using Wilcoxon signed rank tests, Deming regression, and Bland-Altman difference plots. RESULTS: Significant differences between methods were found for neutrophil and monocyte percentages in samples from dogs and cats and for eosinophil percentage in samples from cats. Correlations (r) (canine/feline) were .55/.72 for neutrophils, .76/.69 for lymphocytes, .05/.29 for monocytes and .60/.82 for eosinophils. Agreement between LC-diff% and Mdiff% results was poor in samples from both species. Bland-Altman plots revealed outliers in samples with atypical WBCs (1 cat), leukocytosis (2 dogs, 9 cats), and leukopenia (16 dogs, 11 cats). The LaserCyte generated error flags in 28 of 86 (32.6%) samples, included 7 with leukopenia, 8 with lymphopenia, 7 with leukocytosis, 1 with anemia, and 1 with erythrocytosis. When results from these 28 samples were excluded, correlations from the remaining nonflagged results (canine/feline) were .63/.65 for neutrophils, .67/.65 for lymphocytes, .11/.33 for monocytes, and .63/.82 for eosinophils. CONCLUSION: Although use of a 100-cell (vs 200-cell) M-diff% may be a limitation of our study, good correlation between WBC differentials obtained using the LaserCyte and the manual method was achieved only for feline eosinophils.  相似文献   

20.
Background: Plasma biochemical and hematologic variables are important in the management of endangered sea turtles, such as loggerheads. However, studies on blood biochemistry and hematology of loggerheads are limited, and different concentrations according to variable criteria have been reported. Objective: The purpose of this study was to establish and compare baseline plasma chemistry and hematology values in Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta). Methods: Blood samples were collected from 69 healthy juvenile loggerhead sea turtles after their rehabilitation in captivity, and from 34 adult nesting loggerheads after oviposition. Fresh blood was used for leukocyte differential count and PCV determination. Heparinized blood was used for RBC and WBC counts. Plasma biochemical concentrations were measured using an automated biochemical analyzer. For the comparative study, nonparametric statistical analysis was done using the Mann–Whitney U‐test. Results: Minimum, maximum, and median concentrations were obtained for 14 hematologic and 15 plasma chemistry variables. Statistically significant differences between juvenile and adult turtles were found for PCV; RBC, WBC, and leukocyte differential counts; total protein, albumin, globulins, calcium, triglycerides, glucose, total cholesterol and urea concentrations; and lactate dehydrogenase activity. Conclusions: Age, size, and reproductive status cause important variations in the hematologic and plasma biochemical results of loggerheads. The reference values obtained in this study may be used as a standard profile, useful for veterinary surgeons involved in sea turtle conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号