首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty-eight Holstein and 58 crossbred beef steers were individually fed one of four isonitrogenous diets to evaluate the effects of forage source (corn silage and alfalfa haylage) and protein source (soybean meal and fish meal) on feedlot performance. Phase 1 diets (up to 354 kg of BW) were 40% forage and 60% concentrates and were fed for 70 to 136 d (depending on diet and breed group). Phase 2 diets (354 kg of BW until slaughter) were 20% forage and 80% concentrates and were fed for 127 to 150 d (depending on diet and breed group). Slaughter end points were .6 cm of 12th rib fat for Holsteins and 1.0 cm of rib fat for crossbreds using real-time ultrasonic estimates. The steers were fed for a maximum of 330 d each year. Forage source was a significant component of variation for most growth, efficiency, and carcass traits. Holstein and crossbred steers fed alfalfa haylage had significantly lower average daily gain, feed efficiency, dressing percentage, and empty body fat and required more days on feed to reach slaughter end points, but had higher total feed energy intake available for production. Steers fed corn silage diets had significantly greater energetic efficiency (P less than .05) than those fed alfalfa haylage, due to increased use of ME to produce fat in the carcass. Protein type did not influence gain, feed or energetic efficiency, energy intake, or most carcass traits. A significant protein system x forage source interaction among the four diets was detected for crossbred steers fed corn silage and fish meal, for which there was significantly greater feed conversion with lower energy intake above maintenance, possibly due to better fiber digestion and(or) amino acid flow to the lower tract. Alfalfa haylage plus soybean meal diets decreased (P less than .05) the percentage of Holsteins grading USDA Choice or higher. These results indicate that corn silage, because of greater energy concentration, was a more desirable forage in feedlot diets composed of less than or equal to 40% forage and that protein type (soybean meal and fish meal) in growing diets is not an important factor in feedlot performance or carcass traits of Holstein or crossbred steers that are fed these diets.  相似文献   

2.
A 2-yr study was conducted using a 3 × 2 factorial arrangement of treatments to evaluate the effects of feeding dried distillers grains throughout a beef production system on performance, carcass characteristics, and fatty acid profile of beef. Factors were wheat pasture supplement [no supplement (CON), dry-rolled corn (DRC), and dried distillers grains (DDG)] fed at 0.5% BW daily and finishing diet [steam-flaked corn based diet containing 0 (SFC) or 35% (35DDG) DDG]. Each year, 60 preconditioned Hereford steers (initial BW = 198 kg ± 3) grazed winter wheat pasture with or without supplement. Body weight gain was 8% greater for steers consuming DDG supplement compared with CON and DRC steers (P < 0.01). After the grazing period, pastures within supplement treatment were randomly assigned to SFC or 35DDG. There was no supplement by finishing diet interaction for any performance or carcass variable of interest (P ≥ 0.41). Previous supplementation on winter wheat affected BW at feedlot entry and adjusted G:F (P ≤ 0.05) but had no effect on finishing ADG or carcass traits (P ≥ 0.12). On a carcass-adjusted basis, steers consuming 35DDG had reduced final BW, ADG, G:F, and total BW gain throughout the system (P ≤ 0.04) compared with SFC. Additionally, steers consuming 35DDG had reduced HCW, dressing percent, and fat thickness (P ≤ 0.03) compared with SFC. There was a supplement by finishing diet interaction (P = 0.02) for 18:0, in which cattle supplemented with DRC and fed the SFC finishing diet had the lowest concentration of 18:0 but DRC supplemented steers fed the 35DDG diet had the greatest concentration. The interaction was not significant (P ≥ 0.18) for other fatty acids. Main effects of supplement and finishing diet affected (P ≤ 0.05) several other fatty acids of interest, particularly 18:2, which is associated with reduced flavor-stability of beef. The use of DDG as a supplement to wheat pasture resulted in greater ADG during wheat grazing and heavier BW at feedlot entry, but final BW was not different from CON or DRC groups. Feeding DDG at 35% DM in steam-flaked corn-based finishing diets reduced ADG, G:F, and HCW, and affected the fatty acid composition of beef.  相似文献   

3.
Two experiments were conducted to determine the effects of Mg-mica supplementation on grazing and feedlot performance of stocker steers. In Exp. 1, eight groups of six steers were fed a basal diet of 80% ground grain sorghum, 15% corn silage, and 5% control protein supplement (DM basis) or a supplement containing Mg-mica (9% of supplement; 4.5 mg/kg diet DM) for 141 d. Marbling scores tended (P<0.10) to be greater, and the percentage of carcasses grading USDA Choice or higher was greater (P<0.05), from steers fed Mg-mica than from those fed the control supplement. In Exp. 2, eight groups of nine head each were offered either a control grain sorghum-based supplement or one containing 34 g/d of Mg-mica (2.7 g Mg) while grazing smooth bromegrass pastures for 112 d. Pasture groups were then placed in feedlot pens for 120 d and fed a basal diet similar to that described above. Two groups fed each pasture supplement received a control supplement, and two received a supplement containing Mg-mica (10% of supplement; 5 mg/kg diet DM). Steers fed Mg-mica during the pasture phase tended to have heavier (P=0.11) hot carcass weights, higher (P<0.05) dressing percentages, numerically (P>0.10) higher marbling scores, and a higher percentage of carcasses grading USDA Choice than steers fed the control supplement during the pasture phase. Therefore, adding Mg-mica to pasture supplements or feedlot diets appears to have no impact on grazing or feedlot performance, but may improve carcass quality.  相似文献   

4.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

5.
Three experiments were conducted to determine the effects of cattle age and dietary forage level on the utilization of corn fed whole or ground to feedlot cattle. In Exp. 1, 16 steers were used to investigate the effects of cattle age and corn processing on diet digestibility. Two cattle age categories were evaluated (weanling [254 +/- 20 kg BW] and yearling [477 +/- 29 kg BW]; eight steers per group), and corn was fed either ground or whole to each cattle age category. Cattle age and corn processing did not affect (P > 0.10) diet digestibility of DM, OM, starch, CP, NDF or ADF, and no interactions (P > 0.10) between these two factors were detected. In Exp. 2, the effects of forage level and corn processing on feedlot performance and carcass characteristics were evaluated. One hundred eighty steers (310 +/- 40 kg BW) were allotted to 24 pens, and were fed one of the following diets: high-forage (18.2% corn silage) cracked corn (HFCC); high-forage shifting corn (whole corn for the first half of the trial, then cracked corn until harvest; HFSC); high-forage whole corn (HFWC); low-forage (5.2% corn silage) cracked corn (LFCC); low-forage shifting corn (LFSC); and low-forage whole corn (LFWC). For the high-forage diets, steers fed cracked corn had 7% greater DMI than those fed whole corn, whereas for the low-forage diets, grain processing did not affect DMI (interaction; P = 0.02). No interactions (P > 0.10) between forage level and corn processing were found for ADG and G:F. Total trial ADG and G:F, and percentage of carcasses grading USDA Choice, and carcass yield grade were not affected (P > 0.10) by corn processing. Cattle with fewer days on feed grew faster and more efficiently when cracked corn was fed, whereas cattle with longer days on feed had greater ADG and G:F when corn was fed whole (interaction; P < 0.10). In Exp. 3, the effects of forage level and corn processing on diet digestibility were evaluated. The high-forage cracked corn, high-forage whole corn, low-forage cracked corn, and low-forage whole corn diets used in Exp. 2 were fed to 16 steers (350 +/- 27 kg BW) in a digestion trial. No interactions (P > 0.10) between forage level and corn processing were detected for starch digestibility. Forage level and corn processing (grinding) did not affect (P > 0.10) diet DM, OM, starch, CP, and NDF digestibility. Processing corn did not provide additional benefits to feedlot cattle performance under these experimental conditions.  相似文献   

6.
Two experiments were conducted to evaluate the effects of feeding different levels of wet corn gluten feed (WCGF) and dietary roughage on performance, carcass characteristics, and feeding behavior of feedlot cattle fed diets based on steam-flaked corn (SFC). In Exp. 1, crossbred steers (n = 200; BW = 314 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based diet containing 9% roughage (CON) and 3 SFC-based diets containing 40% WCGF, with either 9, 4.5, or 0% roughage. A linear (P = 0.04) increase in final BW and DMI (P < 0.01) was observed in diets containing WCGF as dietary roughage increased. Steers fed WCGF and higher levels of roughage had greater (P = 0.01) ADG than steers fed lower levels of roughage. Steers fed the CON diet had lower (P = 0.04) daily DMI and greater (P = 0.03) G:F than those fed WCGF. Most carcass characteristics of steers fed CON did not differ (P > 0.10) from those of steers fed WCGF. Based on feed disappearance and visual scan data, consumption rate did not differ (P > 0.10) among treatments; however, feeding intensity (animals present at the bunk after feeding) was greater for steers fed CON (P < 0.01) than for steers fed WCGF. In Exp. 2, yearling crossbred steers (n = 1,983; BW = 339 kg) were fed 4 dietary treatments (DM basis): a standard SFC-based control diet that contained 9% roughage (CON) and 3 SFC-based diets containing either 20% WCGF and 9% roughage or 40% WCGF with 9 or 4.5% roughage. Steers fed the CON diet tended to have lower final BW (P = 0.14), ADG (P = 0.01), and DMI (P < 0.01) than steers fed diets containing WCGF. Steers fed the 20% WCGF diet had greater (P = 0.08) G:F than steers fed the 40% WCGF diets. With 40% WCGF, increasing roughage from 4.5 to 9% decreased (P < 0.01) G:F and increased (P = 0.06) DMI. Gain efficiency was improved (P < 0.01) for steers fed CON vs. those fed diets containing WCGF, whereas HCW (P = 0.02) and dressing percentage (P < 0.01) were greater for steers fed WCGF. Percentage of cattle grading USDA Choice was greater (P = 0.02) for cattle fed WCGF. Results suggest that replacing SFC with up to 40% WCGF increased ADG and decreased G:F when 4.5 to 9.0% roughage was supplied. More CON steers were present at the feed bunk during the first hour after feeding than WCGF steers, suggesting that including WCGF at 40% of the diet affected feeding behavior.  相似文献   

7.
A 3-yr experiment was conducted with cows and their calves to evaluate resource inputs, animal performance, and carcass characteristics of two production systems. In the control system, cows (CON; n = 99/yr) grazed pasture and were fed hay during the winter, and CON steer calves were finished in the feedlot for 211 d after weaning. In the treatment system (TRT; n = 100/yr), cows grazed pasture and crop residue during the winter and were fed hay. Treatment steer calves grazed crop residue after weaning, grazed pasture in the spring and summer, and were finished in the feedlot for 90 d. Body condition scores after TRT cows returned from crop residue grazing were greater (P < 0.01) for CON than for TRT cows. Calving rates were similar for both groups (CON = 91%; TRT = 93%). In the feedlot, CON steers had lower (P < 0.05) ADG and DMI, but were more efficient (P < 0.01) than TRT steers. Treatment steers had greater (P < 0.05) final weight, hot carcass weight and longissimus muscle area, and decreased marbling score. The cost per weaned calf and weaning breakeven were greater (P = 0.07) for the CON system than for the TRT system (CON = 455.12 dollars, 0.91 dollar/0.45 kg; TRT = 421.43 dollars, 0.84 dollar/0.45 kg). When steers were priced into the postweaning phase on an economic basis, slaughter breakeven was lower (P = 0.01), and profit potential tended (P = 0.14) to be greater for TRT steers when they were sold on a live basis. When steers were priced into the postweaning phase on a financial basis, slaughter breakeven was lower (P = 0.03) and profit potential from the sale of steers on a live basis was greater (P = 0.07) for TRT than for CON steers. Economic evaluation of the total system resulted in greater (P = 0.06) profit potential for the TRT system when steers were priced into the system on either an economic or a financial basis and when steers were sold on a live basis, but no differences were observed when steers were sold on a grid basis. Despite differences in cow weight and body condition, calving rates did not differ between systems. Although calves were herdmates, feedlot performance and carcass characteristics differed between systems. The TRT system had lower weaning and slaughter breakeven, lower cost per weaned calf, and greater profit potential when finished steers were sold on a live basis.  相似文献   

8.
Three experiments were conducted to determine the influence of both the concentration of endophytic fungus infestation in tall fescue pastures and calf genotype on the subsequent health and performance of steers in the feedlot. In Exp. 1 and 2, Angus steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte infestations for 182 d (Exp. 1) or 78 d (Exp. 2) with 12 steers per treatment. Steers were transported 1,600 km to Texas in October (Exp. 1) and July (Exp. 2), were fed a 93% concentrate diet during the finishing period, and were harvested at an estimated backfat thickness of 12 mm. In both trials, DMI over the entire feeding period and carcass characteristics were not affected (P>0.05) by endophyte infestation. In both trials, pasture ADG decreased, and feedlot ADG and gain to feed ratio increased as the previous pasture endophyte infestation increased (P<0.05). Serum cholesterol concentrations tended (P<0.10) to decrease with increasing endophyte infestation during the first 14 d in the feedlot. In Exp. 3, Angus and Brahman × British crossbred steers grazed fescue pastures in Georgia containing low, moderate, or high endophyte in each of 2 yr. Six steers of each breed group were on each treatment each year. Steers were transported to Texas in late August of each year, were fed a 93% concentrate finishing diet, and were harvested at an estimated individual backfat thickness of 12 mm. As endophyte infestation increased, serum urea N concentrations and gain to feed ratios increased (P<0.05), whereas pasture ADG, initial BW, transit shrink, serum cholesterol concentrations, final BW, and carcass weights decreased (P<0.05) in Angus steers, but not in Brahman-cross steers. In these studies, the adverse effects of high endophyte infestations in fescue pastures appeared to carry over to the feedlot for ca. 14 d. However, steers from highly infested pastures can compensate for poor pasture performance with improved performance in the feedlot when no adverse health effects occur. Any impact of the endophyte seems to be similar in Brahman-cross and Angus steers.  相似文献   

9.
A 4-yr study was conducted to determine the effects of two grazing methods (GM) at two stocking rates (SR) on alfalfa pasture plant productivity and animal performance and to ascertain the effect of grazing systems on subsequent performance of steers fed a high-concentrate diet. Eight pasture plots (.76 ha) were seeded in 1988 with alfalfa (Medicago sativa L. var. WL225) and divided into two blocks of four pastures each. Grazing methods consisted of a traditional four-paddock or an intensive 13-paddock system. Pastures were managed to allow a 36-d rest period with an average grazing season of 110 d. The low and high SR were 5.9 vs 11.7, 5.3 vs 10.5, 5.3 vs 7.9, and 5.3 vs 7.9 steers/ha for years 1989 to 1992, respectively. Following the grazing season, steers were placed in a feedlot and fed a high-concentrate diet (81% high-moisture corn, 14% corn silage, 5% protein-mineral supplement) for an average of 211 d. There was no effect of GM on herbage mass, pasture phase ADG, or live weight gain/hectare. Increasing the number of paddocks was beneficial when herbage mass was limited and stocking rate was above 7.9 steers/ha. Increasing SR above 7.9 steers/ha decreased herbage mass and pasture-phase ADG. As forage allowance increased, pasture-phase ADG increased quadratically (R2 = .82, P < .001), reached a plateau, and then decreased. Previous grazing system did not influence the performance of steers in the feedlot or their carcass characteristics. Optimum SR is dependent on herbage mass produced.  相似文献   

10.
Two experiments with a randomized complete block design were conducted to determine the effects of phase feeding of CP on performance, blood urea nitrogen (BUN), manure N:P ratio, and carcass characteristics of steers fed in a feedlot. In Exp. 1, 45 crossbred steers (initial BW = 423 +/- 3.3 kg) were individually fed a diet formulated to contain 13.0% CP (DM basis) for 62 d. On d 63, the dietary CP was maintained at 13.0% or formulated to contain 11.5 or 10.0% CP until slaughter. Actual CP values were 12.8, 11.8, and 9.9%, respectively. Reducing the CP concentration of the diet did not affect ADG of steers from d 62 to 109 (P = 0.54) or over the 109-d feeding period (1.45, 1.50, and 1.49 kg/d for 13.0, 11.5, and 10.0% CP, respectively; P = 0.85). No differences (P > 0.12) among treatments were detected for BUN concentrations on d 0, 62, or 109. Gain:feed, DMI, and carcass characteristics did not differ among treatments (P > 0.10). In Exp. 2, 2 trials were conducted using 184 (initial BW = 406 +/- 2.6 kg) and 162 (initial BW = 342 +/- 1.9 kg) crossbred steers. Data from the 2 trials were pooled for statistical analysis, and trial effect was added to the statistical model. Steers were fed a diet formulated to contain 13.0% CP until reaching approximately 477 kg. When the average BW of the pen was 477 kg, diets were maintained at 13.0% CP or reduced to contain 11.5 or 10.0% CP. Actual CP values were 12.4, 11.5, and 9.3% CP for treatments 13.0, 11.5, and 10.0% CP, respectively. Reducing the CP content of the diet did not affect ADG after the diet changed (P = 0.16) or throughout the finishing period (P = 0.14). Immediately before slaughter, steers fed the 13.0% CP diet had greater (P < 0.001) BUN concentrations than steers fed the 11.5 and 10.0% CP diets. Carcasses from cattle fed the 11.5% CP diet had greater (P = 0.02) fat thickness than the 13.0 and 10.0% CP treatments, whereas carcasses from cattle fed 13.0% CP had greater (P = 0.004) marbling scores than steers fed the 11.5 or 10.0% CP diets. Other carcass characteristics, DMI, and G:F did not differ (P > 0.10) among treatments. The N:P ratio was increased with the 10.0% CP diet (P = 0.02) compared with the 11.5 or 13.5% CP treatments; however, manure composition did not differ (P > 0.10) among treatments. These results indicate that reduced CP concentration during the finishing period does not affect feedlot performance but can improve the N and P relationship in the manure.  相似文献   

11.
Seventy-two Angus crossbred steers (average initial BW, 351 ± 5.5 kg) were used to ascertain the breakpoint in BW above which intramuscular fat deposition was accelerated. Steers were randomly assigned to one of three treatments in an unbalanced study; treatment groups represented a BW at which steers would enter the feedlot (363, 408, or 454 kg). Until entering the feedlot, steers were grazed on pasture and supplemented to achieve 0.8 kg gain/d. Intramuscular fat deposition, measured ultrasonically, and live BW were acquired on d 0 and at 28-d intervals thereafter on each animal until harvest. In the feedlot, steers were fed a 13.4% CP concentrate diet until they reached a final BW of approximately 567 kg. After slaughter, carcass data were collected. No differences (P < 0.05) in ADG on pasture (0.85 ± 0.14 kg) or in the feedlot (1.70 ± 0.07 kg) occurred among treatments. There was good agreement between predicted and measured carcass quality grade (QG) (5.5 and 5.2, respectively). Based on broken-line analysis, deposition of intramuscular fat began to increase at approximately 378 kg regardless of BW at entry into the feedlot. The breakpoint BW for increased intramuscular fat accretion rate was calculated as 64% of mature BW of these steers.  相似文献   

12.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

13.
Sixty Angus-cross steers were used to compare the effects of recycled poultry bedding (RPB) stacking method and the inclusion of monensin in growing diets on performance. Steers were individually fed balanced, growing diets for a period of 84 d. The diets were control (CON), CON + monensin (CON+M), deep-stacked RPB (DS), DS+M, shallow-stacked RPB (SS), and SS+M. The CON diets contained corn, soybean meal, corn silage, and cottonseed hulls. In the RPB diets, 35% of the silage, cottonseed hulls, and soybean meal was replaced with RPB (as-fed basis). At the end of the growing period, 30 steers, representing all treatment groups, had liver biopsies for trace mineral analysis and ruminal fluid samples to assess pH, VFA, and ammonia concentrations. All steers had blood samples drawn at the end of the growing period for analysis of Se and urea N. Steers were transported 466.6 km to simulate shipping stress and started on a finishing diet for a 120-d period. Intake, ADG, and G:F were monitored throughout the trial. Steers fed CON diets had higher ADG, DMI, and G:F than SS, and higher ADG and G:F than DS (P < 0.05) during the growing period. Steers fed DS diets had higher DMI than SS (P < 0.05) during the growing period. Inclusion of monensin in the growing diets increased G:F and decreased DMI (P < 0.05). Steers from the RPB treatments started the finishing period at lighter BW than steers fed CON diets (P < 0.05). During the finishing period, steers fed SS diets had higher DMI than steers fed CON diets (P < 0.06), whereas steers fed DS diets were intermediate. At slaughter, steers fed CON diets had higher hot carcass weights and quality grades than steers fed SS diets (P < 0.07), whereas steers fed DS diets were intermediate. Results indicate that steers fed RPB consumed it better when processed by deep stacking before consumption, that carryover effects of RPB into the finishing phase were minimal, and inclusion of monensin did not affect consumption of RPB diets.  相似文献   

14.
One-hundred ninety-two crossbred steers (initial BW = 351 +/- 11 kg) were used to determine the effects of removing alfalfa hay (AH) from dry-rolled corn-based diets containing wet corn gluten feed (WCGF) on animal performance and nutrient (N and OM) mass balance in open feedlot pens. Steers were stratified by weight and assigned randomly to 24 pens (2 x 3 factorial) and fed for 132 d from June to October 2002. Experimental diets contained either 0 or 35% WCGF and 0, 3.75, or 7.5% AH, and were formulated to be isonitrogenous. For efficiency of gain, an interaction occurred (P = 0.09) between AH and WCGF. Feed efficiencies of cattle fed 35% WCGF were improved 4.4% (P = 0.10) compared with efficiencies of cattle fed no WCGF at 0% AH; there was a marked improvement in ADG for cattle fed WCGF compared with no WCGF in diets with 0% AH. Within 35% WCGF diets, efficiency decreased as AH inclusion increased (P = 0.06). Efficiency was equal across AH levels when 0% WCGF was fed; however, ADG was decreased when AH was removed. Interactions between AH and WCGF were not detected for other performance or carcass criteria; therefore, main effects of AH and WCGF are discussed. Daily intake, ADG, and HCW increased linearly (P < 0.05) as dietary AH level increased. Feeding 35% WCGF also resulted in greater DMI (P < 0.01) and a tendency for greater ADG and HCW (P < or = 0.10) compared with steers fed no WCGF. Interactions between AH and WCGF were not observed for feedlot N mass balance. As level of AH increased across diets, N intake, N retention, and N excretion increased (P < 0.05). Steers fed 35% WCGF consumed and excreted more N (P < 0.01) than those fed no WCGF. More manure DM (P = 0.11), OM, and N (P < 0.01) were removed from pens housing steers fed 35% WCGF as well as greater OM and N recovery in finished compost. More N (kilogram/steer) was also lost to volatilization as a result of greater N excretion when WCGF was fed. Expressed as a percentage of N excretion, loss of N from pens housing steers fed 0 and 35% WCGF was not different, averaging nearly 80%. These data suggest that AH has less value when dry-rolled corn-based diets contain 35% WCGF and can be decreased from conventional levels. Furthermore, loss of N from open feedlot pens is high during the summer months, and feeding WCGF may not reduce N losses during these times of year.  相似文献   

15.
Crossbred yearling steers (n=80; 406 ± 2.7 kg of BW) were used to evaluate the effects of S concentration in dried distillers grains with solubles (DDGS) on growth performance, carcass characteristics, and ruminal concentrations of CH(4) and H(2)S in finishing steers fed diets based on steam-flaked corn (SFC) or dry-rolled corn (DRC) and containing 30% DDGS (DM basis) with moderate S (0.42% S, MS) or high S (0.65% S, HS). Treatments consisted of SFC diets containing MS (SFC-MS), SFC diets containing HS (SFC-HS), DRC diets containing MS (DRC-MS), or DRC diets containing HS (DRC-HS). High S was achieved by adding H(2)SO(4) to DDGS. Ruminal gas samples were analyzed for concentrations of H(2)S and CH(4). Steers were fed once daily in quantities that resulted in traces of residual feed in the bunk the following day for 140 d. No interactions (P ≥ 0.15) between dietary S concentration and grain processing were observed with respect to growth performance or carcass characteristics. Steers fed HS diets had 8.9% less DMI (P < 0.001) and 12.9% less ADG (P=0.006) than steers fed diets with MS, but S concentration had no effect on G:F (P=0.25). Cattle fed HS yielded 4.3% lighter HCW (P = 0.006) and had 16.2% less KPH (P=0.009) than steers fed MS. Steers fed HS had decreased (P=0.04) yield grades compared with steers fed MS. No differences were observed among treatments with respect to dressing percentage, liver abscesses, 12th-rib fat thickness, LM area, or USDA quality grades (P ≥ 0.18). Steers fed SFC had less DMI (P < 0.001) than steers fed DRC. Grain processing had no effect (P > 0.05) on G:F or carcass characteristics. Cattle fed HS had greater (P < 0.001) ruminal concentrations of H(2)S than cattle fed MS. Hydrogen sulfide concentration was inversely related (P ≤ 0.01) to ADG (r=-0.58) and DMI (r=-0.67) in cattle fed SFC, and to DMI (r=-0.40) in cattle fed DRC. Feeding DDGS that are high in dietary S may decrease the DMI of beef steers and compromise the growth performance and carcass characteristics of feedlot cattle.  相似文献   

16.
An experiment was conducted to evaluate the effects of grain processing and lipid addition to finishing diets on cattle performance, carcass characteristics, and meat quality. Eighty Hereford x Angus steers (384 kg +/- 17 kg of BW) were fed diets containing steam-flaked corn (SFC) or dry-rolled corn (DRC) with and without the addition of tallow (SFC/Fat and DRC/Fat) or steam-flaked corn with ground flaxseed (SFC/Flax). Ribeye steaks from steers fed SFC, SFC/Fat, or SFC/ Flax were used to evaluate the effects of fat source on meat quality. Cattle fed SFC and SFC/Fat tended to have greater ADG, G:F, HCW, and USDA yield grade, compared with those fed DRC and DRC/Fat (P < 0.10). Steaks from steers fed SFC/Flax developed a detectable off-flavor (P < 0.05) compared with steaks from steers fed SFC and SFC/Fat, and steaks from steers fed SFC retained desirable color longer than those from steers fed SFC/Flax (P < 0.05). Feeding SFC/Flax increased deposition of alpha-linolenic acid in muscle tissue compared with feeding SFC or SFC/Fat (P < 0.01). Dietary treatment did not cause differences in tenderness, juiciness, or flavor intensity. Ground flaxseed can replace tallow in finishing diets without loss in performance, but flax may affect flavor and color stability of beef. Feeding flaxseed can effectively alter composition of carcass tissues to yield beef that is high in n-3 fatty acids.  相似文献   

17.
A metabolism study and two feedlot trials were conducted to evaluate urea supplementation of peanut skin (PS) diets and ammoniation of PS as methods of reducing detrimental effects of tannins in PS on nutrient digestibility and performance of beef cattle. Tannin content of PS was reduced by 42% after ammoniation. Digestibility coefficients for dry matter, crude protein, nitrogen free extract, energy and total digestible nutrients were higher (P less than .05) for the control diet without PS compared with urea-supplemented PS (UPS) and ammoniated PS (APS) diets. Ether extract digestibility was higher (P less than .05) for UPS and APS diets compared with the control diet. Fecal N was higher (P less than .05) and N retention was lower (P less than .05) in steers fed UPS and APS diets compared with controls, which suggested that in UPS and APS diets dietary protein was being complexed with tannins and excreted. Steers fed the APS diet had lower (P less than .05) plasma urea nitrogen compared with control and UPS diets at 2, 4 and 6 h post-feeding. Eighteen heifers were fed control, UPS and APS diets individually for 84 d, resulting in similar (P less than .05) feedlot performance and carcass traits for heifers on all dietary treatments. Rumen fluid propionic acid levels were similar for control and APS heifers and somewhat lower (P greater than .05) for UPS heifers at 3 and 6 h post-feeding on d 62 of the trial. The experimental diets were fed to 54 steers (360 kg initial wt) ad libitum. After 98 d on dietary treatments average daily gains (ADG), final weights, carcass weights and carcass quality grades were not different (P greater than .05) for control and APS steers. Live weight and ADG were lower (P less than .05) for UPS steers on d 98 compared with control and APS steers, and UPS steers continued in the feedlot through d 147. After 98 d on control or APS diets 72.2% of the beef carcasses produced on each diet graded USDA Choice, and 100% of the carcasses of steers fed UPS graded USDA Choice after 147 d. A urea-supplemented PS diet or a diet containing ammoniated PS was ineffective in improving digestibility and N retention of PS diets when limit-fed to steers. However, ad libitum feeding of an ammoniated PS diet was effective in overcoming detrimental effects of tannins on feedlot performance of heifers and steers.  相似文献   

18.
Strip loins from 236 carcasses from crossbred yearling steers were collected on each of 2 slaughter dates (slaughter 1 or 2) to determine the effects of feeding corn or sorghum distillers grains (DG) on beef color, fatty acid profiles, lipid oxidation, tenderness, and sensory attributes. Dietary treatments consisted of a steam-flaked corn (SFC) diet without (control) or with 15% (DM basis) corn dry or wet DG (CDDG and CWDG) or sorghum dry or wet DG (SDDG and SWDG) and alfalfa hay (R). Additional treatments included SDDG or SWDG with no alfalfa hay (NR). In slaughter 2, steaks from steers fed SFC had lesser L*, but greater a* (P < 0.05) values than those from steers fed DG. When comparing sorghum and corn DG steaks, the same color differences were detected. Steaks from steers fed sorghum DG had lower L*, but greater a* (P < 0.05) values than those from steers fed corn DG. Also, L* values in steaks from steers fed SWDG with R were greater (P < 0.05) than those from steers fed SWDG with NR. In slaughter 1, feeding DG increased (P < 0.05) steak n-6 fatty acid concentrations compared with SFC. In both slaughter groups, feeding dry DG increased (P < 0.05) steak linoleic acid concentrations compared with wet DG. In slaughter 2, feeding corn DG diets increased (P < 0.05) linoleic acid concentrations of steaks compared with sorghum DG diets. In addition, increased (P < 0.05) concentrations of alpha-linolenic acid in steaks resulted from feeding SDDG or SWDG with R compared with those sorghum treatments with NR. In each slaughter group, feeding DG increased (P < 0.05) the n-6:n-3 ratio of steaks compared with SFC, and feeding corn DG increased (P < 0.05) this ratio compared with sorghum DG. Furthermore, steaks from steers fed corn DG had greater (P < 0.05) concentrations of trans-vaccenic acid than those from steers fed sorghum DG. In slaughter 1, the CLA isomer 18:2, trans-10, cis-12 was greater (P < 0.05) in steaks from DG diets. On d 1 of retail display, steaks from steers fed SDDG with R in slaughter 2 had greater (P < 0.05) thiobarbituric acid reactive substances values than those from steers fed SDDG with NR. Feeding DG at 15% of the dietary DM did not affect sensory attributes or Warner-Bratzler shear force values of steaks. Feeding DG from either corn or sorghum as either a wet or dry by-product had no effect on beef sensory attributes.  相似文献   

19.
An experiment was conducted to determine the relationship between feeding ractopamine and different amounts of MP on growth and carcass characteristics of feedlot heifers. Seventy-two crossbred heifers (475 kg of initial BW) were fed individually a diet based on steam-flaked corn for ad libitum intake for 29 d. Heifers were implanted with 140 mg of trenbolone acetate and 14 mg of estradiol-17beta 60 d before the experiment. Treatments were arranged as a 2 x 3 factorial and included 0 or 200 mg of ractopamine-HCl (23 ppm)/ d, and urea, solvent soybean meal, or expeller soybean meal (ESBM) as the predominant protein supplement. The amounts of MP supplied by the urea, solvent soybean meal, and ESBM diets were 688, 761, and 808 g/ d, respectively, calculated according to level 1 of the NRC model. Body weights were obtained 1 d before ractopamine feeding and at slaughter. Blood samples were obtained 1 d before starting the experiment and 13 d later. Ractopamine improved ADG, efficiency of gain, carcass-adjusted ADG, and carcass-adjusted efficiency of gain (P < 0.01). For ADG, heifers demonstrated a ractopamine x protein source interaction (P < 0.05); heifers not fed ractopamine had greater ADG when fed ESBM than when fed urea, whereas for heifers fed ractopamine there were no differences (P > or = 0.10) among protein supplements. This interaction was not observed for carcass-adjusted ADG (P = 0.60). Final live weights (P = 0.02) and carcass weights (P = 0.01) were greater with ractopamine feeding. Carcass marbling scores and yield grades were not affected by ractopamine or protein source (P > or = 0.39). Plasma total alpha-amino N and glucose concentrations decreased more from pretreatment concentrations when heifers were fed ractopamine (P < 0.05). Feeding ractopamine to heifers for 28 d before slaughter improved ADG and efficiency of gain without any large effects on carcass characteristics. The MP supply does not need to be increased from that provided by finishing diets based on steam-flaked corn with urea as the primary N supplement to allow the maximal response to ractopamine by finishing heifers.  相似文献   

20.
Two finishing trials were conducted to determine the effects of adding different types of corn bran, a component of corn gluten feed, on cattle performance. In Trial 1, 60 English crossbred yearling steers (283 +/- 6.7 kg) were used in a completely randomized design with four dietary treatments. Treatments were diets with no corn bran, dry corn bran (86% DM), wet corn bran (37% DM), and rehydrated dry bran (37% DM). Bran was fed at 40% of dietary DM. All finishing diets had (DM basis) 9% corn steep liquor with distillers solubles, 7.5% alfalfa hay, 3% tallow, and 5% supplement. Gain efficiency and ADG were greater (P < 0.01) for cattle fed no corn bran compared with all treatments containing corn bran; however, no differences were detected across corn bran types. In Trial 2, 340 English crossbred yearling steers (354 +/- 0.6 kg) were used in a randomized block design with treatments assigned based on a 2 x 4 + 2 factorial arrangement (four pens per treatment). One factor was the corn processing method used (dry-rolled corn, DRC; or steam-flaked corn, SFC). The other factor was corn bran type: dry (90% DM), wet (40% DM), or dry bran rehydrated to 40 or 60% DM. Bran was fed at 30% of dietary DM, replacing either DRC or SFC. Two control diets (DRC and SFC) were fed with no added bran. All finishing diets contained (DM basis) 10% corn steep liquor with distiller's solubles, 3.5% alfalfa hay, 3.5% sorghum silage, and 5% supplement. Corn bran type did not affect DMI (P = 0.61), ADG (P = 0.53), or G:F (P = 0.10). Dry matter intake was greater (P < 0.01) by steers fed bran compared with those fed no bran, and was greater by steers fed DRC than by steers fed SFC (P < 0.01). Interactions occurred (P < 0.01) between grain source and bran inclusion for ADG and G:F. The ADG by steers fed the SFC diet without bran was greater (P < 0.01) than by steers fed SFC diets with bran, whereas the ADG by steers fed DRC diets with or without bran was similar. Daily gain was 15.2% greater (P < 0.01) by steers fed SFC without bran than by steers fed DRC without bran. Gain efficiency was 16.9% greater (P < 0.01) for steers fed SFC without bran compared with steers fed DRC without bran. In DRC and SFC diets, feeding bran decreased (P < 0.01) G:F by 5.2 and 13.8%, respectively. The moisture content of corn bran had no effect on finishing steer performance, and drying corn bran did not affect its energy value in finishing cattle diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号