首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
Abstract

Seedlings of nine different conifers were exposed to 355 and 730 μmol mol-1 CO2, or low (> 15 nmol mol?1) and elevated 03 concentration (70 nmol mol?1) for 81–116 days. The experiments were conducted in growth chambers placed in a greenhouse. Increased CO2 concentration enhanced the mean relative growth rate (RGR) and total plant dry weight by 4 and 33% in Larix leptolepis, by 4 and 38% in Larix sibirica, by 7 and 47% in Picea glauca and by 3 and 16% in Picea sitchensis, respectively. The growth rates and dry weights of Pimis contorta, Pinus mugo and Pseudotsuga menziesii were not significantly affected. Carbon dioxide enrichment enhanced RGR of two provenances of Picea abies by 4 and 6%, respectively, while a third provenance was unaffected. In Pimis sylvestris, only the RGR of one of three provenances was stimulated by CO2 enrichment (4%).

After two growth seasons CO2 enrichment enhanced RGR and total plant dry weight by 11 and 35% in Picea abies and by 12 and 36% in Pinus sylvestris, respectively. Elevated CO2 decreased the shoot:root ratio in Larix leptolepis, and decreased the needlerstem ratio in Picea glauca, but increased it in Pseudotsuga menziesii.

Elevated O3 significantly decreased the plant dry weight in Picea sitchensis, Pseudotsuga menziesii and in one of three provenances of Pinus sylvestris, while the other species and provenances were unaffected. Increased O3 concentration increased the shoot:root dry weight ratio in one of three Picea abies provenances, in all three Pinus sylvestris provenances and in Pinus contorta. The needle:stem ratio was enhanced by O3 in seven of the nine species. The O3 exposure caused chlorosis of needles in all species except Pseudotsuga menziesii.  相似文献   

2.
Infection with Neotyphodium spp. endophytes increases resistance to drought stress and soil mineral imbalances in tall fescue (Festuca arundinacea Schreb. = Lolium arundinaceum (Schreb.) S. J. Darbysh.) and meadow fescue (Festuca pratensis Huds. = Lolium pratense (Huds.) Darbysh.). We hypothesized that resistance of these grasses to salinity stress may also be attributed to endophyte infection. Two tall fescue genotypes, Fa75 and Fa83, and one meadow fescue genotype, Fp60, infected (E+) with their endophytic fungi, Neotyphodium coenophialum (Glenn, Bacon and Hanlin) and N. uncinatum (Glenn, Bacon and Hanlin), respectively, and their noninfected counterparts (E–) were cultured in nutrient solution at three salinity levels of 0, 85, and 170 mM NaCl. Except for genotype Fa75, E+ plants exhibited higher leaf survival rates than E– clones at a high salinity level (170 mM). Root dry matter was higher in E+ than in E– plants, but shoot dry matter was not affected by endophyte infection. This resulted in a lower shoot‐to‐root ratio in E+ plants (1.63) compared with E– plants (2.40). Sodium (Na+) and chloride (Cl) concentrations were greater in roots of E– than in E+ clones. In shoots, Na+ and Cl concentrations were not affected by the endophyte. In contrast, E+ plants accumulated more potassium (K+), which resulted in a greater K+ : Na+ ratio in shoots of E+ than in those of E– plants. Our results show that endophyte infection reduced Na+ and Cl concentrations in tall fescue and meadow fescue roots but increased K+ concentrations in the shoots. Based on these results, we conclude that endophyte‐infected grasses may thrive better in salinity‐stress environments.  相似文献   

3.

Seedlings of Betula pubescens Ehrh. (mountain birch) and Phleum pratense L. (timothy) were grown for 42 days under full light or 50% shade in the field at 12°C, and at comparable photosynthetic active radiation (PAR) levels in a greenhouse at 18°C. Plants from the four pretreatments were exposed to 78 nmol mol-1 (ppb) O3 (8 h day-1) under two temperatures (15 and 25°C), two relative air humidities (50 and 80% RH) or two CO2  相似文献   

4.
The effects of ozone (O3) and soil water stress, singly and in combination, on the growth and photosynthesis of Fagus crenata seedlings were investigated. Four-year-old seedlings were exposed to charcoal-filtered air (< 5 nmol mol?1 O3) or 60 nmol mol?1 O3, 7 hours per day (11:00–18:00), for 156 days from 10 May to 11 October 1999 in naturally-lit growth chambers at 20/15 °C (6:00–18:00/18:00–6:00). During the same period, half of the seedlings in each gas treatment received 250 mL of water at the 3-day intervals (well-watered treatment), while the rest received 175 mL of water at the 3-day intervals (water-stressed treatment). The exposure of the seedlings to O3 caused reductions in the leaf, stem, root and whole-plant dry weights. The net photosynthetic rate at 350 µmol mol?1 CO2, the maximum net photosynthetic rate at saturated CO2-concentration, carboxylation efficiency of photosynthesis and Rubisco content were significantly reduced by the exposure to O3. The soil water stress induced reductions in the stem, bud and whole-plant dry weights, transpiration rate and leaf water potential during the midday. The additive effects of O3 and soil water stress were observed on the dry matter production, leaf gas exchange rates and leaf water potential. As a result, the whole-plant dry weight of the seedlings exposed to both stresses was markedly reduced compared with that of the seedlings exposed to charcoal-filtered air and grown in the well-watered treatment.  相似文献   

5.

The relationship between regrowth rates and the content of water-soluble carbohydrates in stubble (WSC) and percentage of non-elongated tillers (PNT) was studied in timothy (Phleum pratense L.) and meadow fescue (Festuca pratensis Huds.) cut at different phenological stages. Single plants were grown in pots and cut outdoors and then regrown under controlled climatic conditions. The data for the dry matter production during the following 3 weeks were fitted to an expolinear growth equation to determine an initial maximum relative regrowth rate (R m) and a daily maximum regrowth rate (C m). C m appeared to be positively correlated to PNT in both species, whereas R m was increased with increasing WSC. For regrowth after later cuts of meadow fescue there was a positive contribution to R m by PNT.  相似文献   

6.
Cultivars of Triticum aestivum, T. durum, and Secale cereale were grown at low (2 μM) and sufficient (500 μM) phosphorus (P) under ambient carbon dioxide (380 μmol mol?1; aCO2) and elevated CO2 (700 μmol mol?1, eCO2) to study responses of cereal species in terms of growth and P utilization efficiency (PUE) under P x CO2 interaction. Dry matter accumulation increased under eCO2 with sufficient P. Nevertheless, dry matter accumulated at eCO2 with low-P was similar to that obtained at aCO2 with sufficient P. Leaf area was 43% higher under eCO2 with sufficient P. Significant increase in lateral root density, length and surface area were noted at low-P under eCO2. Phosphorus use efficience (PUE) increased by 59% in response to eCO in low-P plants. Thus, eCO2 can partly compensate effect of low-P supply because of improved utilization efficiency. Among cereals, durum wheat was more suitable in terms of PUE under high CO2 and limiting P supply.  相似文献   

7.
Abstract

The diurnal net photosynthesis of Ficus benjamina L., cultivar Cleo, was studied at different daylengths (12, 18 and 24 h day?1), photosynthetic photon flux densities (40 and 120 μmol m?2 s?1 PPFD) and CO2 concentrations (350 and 700 μmol mol?1). Net photosynthesis increased to a maximum after 5–6 and 6–7h of light at 12 and 18h day?1photoperiods, respectively, followed by a decrease towards the end of the photoperiod. At a photoperiod of 18 h day?1 similar diurnal curves were found at 350 and 700 μmol mol?1 CO2, and at 40 and 120 μmol m?2 s?1 PPFD. Five days after the photoperiod was changed from 18 to a 24h day?1the diurnal rhythm disappeared. Transpiration followed the same diurnal rhythm as that for photosynthesis. The water-use efficiency was enhanced by raising the CO2 concentration. A decrease in the CO2 concentration from 700 to 350 μmol mol?1after six days at high CO2 first significantly decreased the photosynthesis, but three days later it reached the same level as that at high CO2.  相似文献   

8.
Abstract

Pot studies were conducted to study effect of the boron (B) levels (0, 0.12, 0.25, 0.50, 0.75, 1.0, 2.0 3.0, 4.0, 5.0 and 10?mg?B?kg?1) and calcium carbonate (CaCO3) (0, 1.25, 2.5 and 5.0%) on cotton and wheat crops in cropping system. In absence of CaCO3, reduced growth of cotton and wheat were observed when B was applied @ 2.0?mg?kg?1 soil. Necrosis of leaves in cotton and purple coloration of plumule in wheat was observed @ 10.0?mg?B?kg?1. Irrespective of CaCO3, 0.57 and 7.67?mg?kg?1 Hot Water Soluble B (HWS-B), 62 and 940?mg?kg?1 B dry matter (DM) of leaves, 45 and 210?mg?B?kg?1 DM of petioles and 20 and 51?mg?B?kg?1 DM of sticks, produced 90 and 50%of the maximum dry matter yield (DMY) of cotton, respectively. The values for wheat were 0.66 and 6.71?mg HWS-B kg?1, 7.94 and 27.0?mg?B?kg?1 grain and 15.3 and 170?mg?B?kg?1 straw, respectively.  相似文献   

9.
《Applied soil ecology》2005,28(3):247-257
Carbon dioxide emissions from soils beneath canopies of two Mediterranean plants, Artemisia absinthium L. and Festuca pratensis Huds. cv. Demeter, were monitored over a 7-day period that included an artificial precipitation event of 4 cm. The experiments were conducted using 0.2 m3 soil microcosms inside greenhouses with CO2 concentrations of either 360 or 500 μmol mol−1. Carbon dioxide flux from the soil surface, as calculated using a diffusive transport model agreed well with CO2 flux measurements made using a dynamic flow system. Soil CO2 emissions did not differ significantly between the 360 and 500 μmol mol−1 CO2 treatments when soils were dry (volumetric soil moisture content ≤9%). A simulated precipitation event caused an immediate exhalation of CO2 from soil, after which CO2 emissions declined slightly and remained constant for approximately 36 h. CO2 emissions from soil microcosms with F. pratensis plants growing in 500 μmol mol−1 CO2 then rose to levels that were significantly greater than CO2 emissions from soils in the microcosms exposed to 360 μmol mol−1 CO2. For A. absinthium growing in 500 μmol mol−1 CO2, the rise in soil CO2 emissions following the wetting event was not significantly greater than emissions from soils with A. absinthium growing under 360 μmol mol−1 CO2. A. absinthium above ground biomass increased by 46.1 ± 17.9% (mean ± S.E., n = 4, P ≤ 0.05). Above ground biomass did not significantly increase for F. pratensis (14.4 ± 6.5%, P ≥ 0.10). Root biomass, on the other hand, increased for both species; by 50.6 ± 17.9% (P ≤ 0.05) for A. absinthium and by 55.9 ± 12.7% (P ≤ 0.05) for F. pratensis. Our results demonstrate two events following precipitation onto dry soils, an immediate release of CO2 followed by a gradual increase from enhanced biological activity The gradual increase was greater for the herbaceous ruderal perennial F. pratensis under elevated CO2.  相似文献   

10.
Abstract

Growth response of a halophyte species, Suaeda salsa (L.) Pall, to graded NaCl concentrations was examined under water culture conditions. Growth increased with increasing NaCl concentration from 2 to 200 mol m?3, but decreased at NaCl concentrations above 200 mol m?3. Maximum growth was attained at 50 to 200 mol m?3. The role of Na and Cl in the growth stimulation by NaCl was examined by growing S. salsa in nutrient solutions with or without Na and Cl separately at 5 and 50 mol m?3. The growth stimulation induced by Cl was greater than that induced by Na, and Na did not significantly induce growth stimulation. The effect of Na or Cl on O2 evolution from leaves was examined under 5 and 50 mol m?3 concentrations using an oxygen electrode. Oxygen evolution from leaves in –Cl treatments was smaller than that in +Cl treatments both at 5 and 50 mol m?3. The O2 evolution in Na treatments with Cl was similar to that at NaCl. These results indicated that the mechanism of growth stimulation induced by Cl was mainly an increased photosystem II of photosynthesis in leaves. The contribution of Na on the growth stimulation of S. salsa by NaCl was smaller than Cl.  相似文献   

11.
Abstract

This study was carried out to evaluate the effect of long-term natural aging on germinability and several biochemical characteristics regarding antioxidative response of both dry and germinating two different clover (Trifolium repens and Trifolium pratense) seeds stored for 40 years. The percent germination of the seeds was monitored for 7 days. The activities of catalase, peroxidase, superoxide dismutase, lipid peroxidation, H2O2 levels, and phenolic matter content were tested on 0, 1st, 3rd, and 7th days of germination. On the 7th day of germination, the germination ratios of the old T. repens and T. pratense seeds were 32 and 17%, while freshly harvested seeds showed 99 and 96% germination on the 4th day, respectively. The long-term aging caused an important increase in lipid peroxidation levels of the old dry seeds. Total phenolic content was high in the old dry seeds of T. repens compared with those of T. pratense. Remarkably, the long-term aging caused an important decrease in H2O2 content and the activities of catalase and peroxidase enzymes, but an increase in activity of superoxide dismutase in both the old dry seeds. The decreases in germinability of the old legume seeds were well correlated with the increasing level of lipid peroxidation and the decreasing activities of peroxidase and catalase. During the germination of the legume seeds, a noticeable increase was determined only in peroxidase activity in two types of the old seeds, while catalase activity decreased. However, the other biochemical parameters studied did not significantly change between the germinating old seeds and their freshly harvested controls.  相似文献   

12.
Abstract

The root parasitic plants Orobanche spp. (broomrapes) seriously affect agricultural production. A visualization and quantitative analytical method for the interception of nutrients was established using a positron-emitting tracer imaging system and 13NO? 3. By using this analytical method that involves volume normalization with 18F? images, the nitrogen nutrient interception ratio of the Orobanche spp. was calculated to be 73.6 ± 3.9% in a host–parasite system of red clover (Trifolium pratense L.).  相似文献   

13.
A two-year irrigated field study was conducted to determine the effects of plant growth-promoting rhizobacteria (PGPR; Bacillus subtilis OSU-142 and Bacillus megaterium M3) as biofertilizer, and in combination with a chemical nitrogen (N) fertilizer, on turf color and clipping yield, and interaction of biofertilizer and chemical N fertilizers in perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea L. Schreb.), and Kentucky bluegrass (Poa pratensis L.). The three turf species were tested separately in split-plot design experiments with three replications. Three fertilizer sources (ammonium nitrate only, ammonium nitrate + B. megaterium M3, and ammonium nitrate + B. subtilis OSU-142) were the main plots. N applications with monthly applications of 0.0, 2.5, 5.0, and 7.5 g N/m2 were the subplots. Color ratings and clipping yields increased with increasing chemical N fertilizers in all species. Both Bacillus sp. significantly increased color ratings and clipping yields in perennial ryegrass and tall fescue. However, there were no significant differences among the three fertilizer sources in color and clipping yield of Kentucky bluegrass. The experiments showed that there is a small but significant benefit from applying biofertilizers for turf color, and that N fertilization may be reduced in some turf species when biofertilization are made for this purpose.  相似文献   

14.
Abstract

An open‐top field chamber experiment was conducted to evaluate the impact of Molybdenum (Mo) addition to soil on the physiological changes in soybean (Glycine max L. Merrill) exposed to ozone (O3). Plants grown with Mo (0, 1.0, or 2.0 mg kg"1 soil dry weight) were exposed to O3 (O, 0.06, or 0.12 μmol mol‐1) in open‐top field chambers for 12 h d‐1 for 21 d with a N‐free fertilizer, during the sensitive growth stage (R2). The rate of photosynthesis (PN), specific root nodule nitrogenase activity (SNA), leaf nitrogen (N), chlorophyll (chl‐a, chl‐b) and biomass of soybean were measured. The increase in O3 levels significantly reduced PN, SNA, leaf‐N, chl‐a, chl‐b, and biomass. Addition of Mo increased leaf‐N, shoot, root, and nodule dry weights but did not change PN, SNA, or chlorophyll. The addition of Mo (2 mg kg ‐1) helped in significantly increasing PN and chlorophyll in the presence of 0.06 umol mol‐1 O3 but no change was observed in the presence of 0.12 μmol mol‐1 O3.  相似文献   

15.

The applicability of an expolinear growth equation for describing dry matter yield was investigated in seven field experiments for spring growth of timothy (Phleum pratense L.) and meadow fescue (Festuca pratensis Huds.) under two levels of N application. The equation was expanded by a growth index (GI) correcting for variations in radiation, temperature and plant-available soil moisture, and an ageing function describing the decrease in growth rate caused by advance in phenological development. The field sites covered a wide range of climatic conditions and the yield was recorded at five phenological stages from leaf stage to anthesis. The expansion of the equation appeared to be adequate for a combined analysis of the dry matter yield in meadow fescue and timothy. The estimated maximum growth rate during the linear phase (C m) did not differ significantly between species. C m increased with higher N application. It was concluded that C m of the expanded model represented a potential rate, whereas the relative growth rate of the exponential phase (R m) could not be considered as a potential rate. It varied more among locations and years, e.g. it was strongly affected by the length of the period from growth onset to the start of the linear phase.  相似文献   

16.
The effects of ozone (O3) and excess soil nitrogen (N), singly and in combination, on growth, needle gas exchange rates and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) contents of Pinus densiflora seedlings were investigated. One-year-old seedlings were grown in 1.5-L pots filled with brown forest soil with 3 levels of N supply (0, 100 or 300 mg N·L?1 fresh soil volume). The seedlings were exposed to charcoal-filtered air or 60±5 nL·L?1 O3 (8 hours a day) in naturally-lit phytotrons for 173 days from 22 May to 11 November. The exposure to O3 or high N supply to the soil caused a significant reduction in the dry weights of the seedlings. Although no significant interactive effects of O3 and excess soil N were detected on the dry weight growth of the seedlings, the whole-plant dry weight of the O3-exposed seedlings grown in the soil treated with 300 mg N·L?1 was greatly reduced compared with the control value. Ozone reduced net photosynthetic rate at 350 µmol·mol?1 CO2 (A 350 ), carboxylation efficiency (CE) of photosynthesis and Rubisco content without a significant change in the gaseous phase diffusive conductance to CO2 (gs) of the needles. The excess soil N reduced the A 350 , CE, gs and Rubisco content of the needles. These results suggest that the reduction in the dry weight growth of Pinus densiflora seedlings induced by the exposure to O3 and/or excess soil N was caused by reduction in the net photosynthetic rate mainly due to the decrease of Rubisco quantity in the chloroplasts.  相似文献   

17.
This study evaluated how zinc (Zn) concentration of rice (Oryza sativa L.) seed may be increased and subsequent seedling growth improved by foliar Zn application. Eight foliar Zn treatments of 0.5% zinc sulfate (ZnSO4?·?7H2O) were applied to the rice plant at different growth stages. The resulting seeds were germinated to evaluate effects of seed Zn on seedling growth. Foliar Zn increased paddy Zn concentration only when applied after flowering, with larger increases when applications were repeated. The largest increases of up to ten-fold were in the husk, and smaller increases in brown rice Zn. In the first few days of germination, seedlings from seeds with 42 to 67?mg Zn?kg?1 had longer roots and coleoptiles than those from seeds with 18?mg Zn?kg?1, but this effect disappeared later. The benefit of high seed Zn in seedling growth is also indicated by a positive correlation between Zn concentration in germinating seeds and the combined roots and shoot dry weight (r?=?0.55, p?相似文献   

18.
Abstract

Tomato plants were grown in sand culture with NH+ 4, and NO? 3, forms of N and three levels of light. Plants supplied with NH+ 4, nutrition under high light intensity had symptoms of stunting, leaf roll, wilting, interveinal chlorosis of the older leaves, and one third the dry weight of N03‐fed plants. In contrast, growth of plants receiving NH+ 4, nutrition under shade appeared normal although dry weight was reduced. NH4‐N nutrition suppressed K, Ca and Mg accumulation in tissues and increased P contents as compared to NO3‐N nutrition.  相似文献   

19.
Abstract

Successful implementation of vegetative buffers requires inclusion of plant species that facilitate rapid dissipation of deposited contaminants before they have a chance to be transported in surface runoff or to shallow groundwater. Thirty‐six field lysimeters with six different ground covers [bare ground, orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), smooth bromegrass (Bromus inermis Leyss.), timothy (Phleum pratense L.), and switchgrass (Panicum virgatum L.)] were established to evaluate the ability of grasses to reduce nutrient levels in soils and shallow groundwater. Nitrate (NO3 ?) and orthophosphate (PO4 3?) were uniformly applied to each lysimeter. In addition, half of the lysimeters received an application of atrazine, and the other half received isoxaflutole (Balance?) at levels indicative of surface runoff from cropland. The leachate from each lysimeter was collected after major rainfall events during a 25‐day period, and soil was collected from each lysimeter at the end of the 25‐day period. Water samples were analyzed for NO3‐N and PO4‐P, and soil samples were analyzed for NO3‐N. Grass treatments reduced NO3‐N levels in leachate by 74.5 to 99.7% compared to the bare ground control, but timothy was significantly less effective at reducing NO3‐N leaching than the other grasses. Grass treatments reduced residual soil NO3‐N levels by 40.9 to 91.2% compared to the control, with tall fescue, smooth bromegrass, and switchgrass having the lowest residual levels. Switchgrass decreased PO4‐P leaching to the greatest extent, reducing it by 60.0 to 74.2% compared to the control. The ability of the forage grasses to reduce nutrient levels in soil or shallow groundwater were not significant between herbicide treatments. Quantification of microbial NO3 ? dissipation rates in soil suggested that denitrification was greatest in switchgrass, smooth bromegrass, and tall fescue treatments. The overall performance of these three grasses indicated that they are the most suitable for use in vegetative buffers because of their superior ability to dissipate soil NO3 ? and reduce nutrient transport to shallow groundwater.  相似文献   

20.
《Journal of plant nutrition》2013,36(10):2161-2171
ABSTRACT

Boston Fern (Nephrolepis exaltata Schott. “Rooseveltii”) is often propagated in vitro. Microcuttings grow slowly after transfer from in vitro to ex vitro conditions. The aim of this study was to accelerate growth and to improve quality of plantlets by optimization of mineral nutrition, irradiance and CO2 concentration. Two irradiance levels (50 and 150 μmol m?2 s?1), two concentrations of CO2 (350 and 1200 μmol mol?1), and five concentrations of nutrient solution (electrical conductivity: EC 0.3, 0.7, 1.4, 2.1, and 2.8 mS cm?1) were tested. Microcuttings grown at higher irradiance accumulated more leaf fresh and dry weights than microcuttings grown at low irradiance. The higher irradiance level enhanced leaf nitrogen (N), phosphorus (P), and potassium (K) content. Carbon dioxide enrichment enhanced dry weight accumulation and plant height, decreased N and increased K content of leaves. The highest fresh and dry weight of leaves was measured at EC 2.1–2.8 mS cm?1. Leaf N, P, and K content increased with increasing concentration of nutrient solution, leaf calcium (Ca) and magnesium (Mg) concentrations decreased with increasing concentration of nutrient solution. Microcuttings grown under high level of irradiance and high EC had higher chlorophyll fluorescence (F m , F v /F m , S c ) values than those grown under low light and low EC. Quality of propagation material of Boston fern can be significantly enhanced with the best combination of PPFD, mineral nutrition and CO2 enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号