首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Three successive crops of winter wheat were grown on a sandy loam to test the residual effect of long‐term annual incorporation of spring barley straw at rates of 0, 4, 8 and 12 t ha?1, and ryegrass catch crops with or without additions of pig slurry. Soil receiving 4, 8 and 12 t ha?1 of straw annually for 18 years contained 12, 21 and 30% more carbon (C), respectively, than soil with straw removal, and soil C and nitrogen (N) contents increased linearly with straw rate. The soil retained 14% of the straw C and 37% of the straw N. Ryegrass catch‐cropping for 10 years also increased soil C and N concentrations, whereas the effect of pig slurry was insignificant. Grain yield in the first wheat crop showed an average dry matter (DM) increase of 0.7 t ha?1 after treatment with 8 and 12 t straw ha?1. In the two subsequent wheat crops, grain yield increased by 0.2–0.3 t DM ha?1 after 8 and 12 t straw ha?1. No grain yield increases were found after 4 t straw ha?1 in any of the three years. Previous ryegrass catch crops increased yields of wheat grain, but effects in the third wheat crop were significant only where ryegrass had been combined with pig slurry. Straw incorporation increased the N offtake in the first wheat crop. In the second crop, only 8 and 12 t straw ha?1 improved wheat N offtake, while the N offtake in the third wheat crop was unaffected. Ryegrass catch crops increased N offtake in the first and second wheat crop. Again, a positive effect in the third crop was seen only when ryegrass was combined with slurry. Long‐term, annual incorporation of straw and ryegrass catch crops provided a clear and relatively persistent increase in soil organic matter levels, whereas the positive effects on the yield of subsequent wheat crops were modest and transient.  相似文献   

2.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

3.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

4.
Four levels of soil organic matter (SOM) had been established on a coarse sandy loam after application of four combinations of mineral fertilizer, animal manure, straw incorporation and catch crops for 12 years. Soil tillage was carried out in a growing spring barley crop (Hordeum vulgare) to examine the potential for improving the synchrony between soil N mineralization and crop N demand. Tillage raised soil nitrate concentrations temporarily but did not influence barley dry matter (DM) yield. At maturity, both grain DM yield and N uptake were largest on soil with the highest OM level. The previous OM applications had a pronounced influence on crop development and N availability, but soil tillage did not significantly improve the synchrony between soil N mineralization and crop N demand.  相似文献   

5.
Two field trials with spring barley (Hordeum vulgare L.) were conducted at two locations in Denmark in order to evaluate the effects of tillage and growth of a catch crop on yield parameters under temperate coastal climate conditions. Ploughing in autumn or spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated on a coarse sand (Orthic Haplohumod) from 1987 to 1992 at three rates of N fertiliser application (60, 90 and 120 kg N ha−1 year−1). Rotovating and direct drilling were also included as additional tillage practices. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. Ploughing in autumn or spring in combination with stubble cultivation and a catch crop, in addition to minimum tillage, was evaluated in a newly established field trial on a sandy loam (Typic Agrudalf) from 1988 to 1992. Yield parameters and N concentrations in grain and straw were determined. On the coarse sand, N uptake in the grain in ploughed plots without a catch crop was significantly greater when spring ploughed as opposed to autumn ploughed, but grain and straw yields did not differ significantly. Grain yield, straw yield and total N uptake did not differ significantly between direct drilled and autumn ploughed plots, but the trend was for grain yield to be lower with direct drilling. After 19 years of catch crop use, yield parameters in ploughed plots were greater than in plots without catch crops. This was most pronounced in the autumn ploughed plots. Rotovating the catch crop in the spring decreased grain yield compared with underploughing the catch crop in autumn or spring. No significant interactions were found between tillage and N rates. On the sandy loam, grain as well as straw yield and total N uptake were not significantly affected by catch crop or time of ploughing. Grain yield was significantly lower with reduced tillage (stubble cultivation in autumn) than in all other treatments.  相似文献   

6.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

7.
Poor quality of sandy loam soils ?is the main reason for low crop yield. Improvement of physicochemical properties of these soils is very challenging. Addition of organic sources may improve the soil properties. Therefore, this study investigated the adequacy of poultry-manure-compost (PMC) and pressmud-compost (PrMC) at 0 (control), 2, 4, 6, 8, and 10 t ha?1 for improving the physicochemical properties of sandy loam soil and maize performance. An increasing trend in most soil and crop traits was seen with increasing compost levels. For 10 t PMC ha?1, soil inorganic-N (512%), organic-carbon (78%), and water-holding capacity (65.36%) improved maximum. This resulted in the maximum mean crop growth rate (43.85%), stover yield (94%), grain protein (21%), and nitrogen use efficiency (30.6 kg kg?1). Contrarily, grain oil (?7%) was lowest at 10 t PMC ha?1. Consequently, 10 t PMC ha?1 could be much effective to improve the physicochemical properties of sandy loam soils and maize performance.  相似文献   

8.
This research aimed to determine the optimum nitrogen fertilization rate on three soils for producing biomass sweet sorghum (Sorghum bicolor cultivar M81E) and corn (Zea mays cultivar P33N58) grain yield and to compare their responses. The research was conducted in Missouri in rotations with soybean, cotton, and corn. Seven rates of nitrogen (N) were applied. Sweet sorghum dry biomass varied between 11 and 27.5 Mg ha?1) depending on year, soil type, and N rate. Nitrogen fertilization on the silt and sandy loam soils had no effect (P > 0.05) on sweet sorghum yield grown after cotton and soybean. However, yield increased in the clay soil. Corn grain yielded from 1.3 to 12.9 Mg ha?1, and 179 to 224 kg N ha?1 was required for maximum yield. Increasing biomass yield required N application on clay but not on silt loam and sandy loam in rotations with soybean or cotton.  相似文献   

9.
Summary Denitrification activities were measured over a 3-year period in a coarse sandy soil and a sandy loam soil. In all years the crops were spring barley in combination with Italian ryegrass as a catch crop. The denitrification loss was measured using the acetylene inhibition technique on soil cores. Furthermore, a simple model was developed, based on daily values of soil moisture and soil temperature, to calculate the denitrification loss. Soil temperatures for the model were measured, whereas soil moisture was derived from a water-balance model. Measurements of denitrification gave an annual loss of 0.6 kg N ha-1, and the model calculated a loss of 1–2 kg N ha-1 in the coarse sandy soil. In the sandy loam soil annual losses were measured as 1.5, 3.0, and 13.0 kg N ha-1 in 1988, 1989, and 1990, respectively. The corresponding values from the model simulation were 14, 9 and 14 kg N ha-1.  相似文献   

10.
The effects of soil incorporation with cereal straw (nil, 2.5, 5 and 10 t straw ha?1) and direct drilling on the proportion and amount of pea N derived from biological N fixation were investigated in three field experiments. Fixed N was determined by15N dilution using barley as a reference plant. The three sites were on acidic, red clay-loams in the cropping zone of southeastern Australia. Seasonal plant available soil N, as determined by the N accumulated in barley, was 31, 56 and 158 kg N ha?1, for the three sites. Incorporated straw reduced soil nitrate at sowing by 10–50 kg N ha?1 (0–30 cm), and 5 or 10 t straw ha?1 reduced barley uptake of N by 10–38 kg N ha?1. However, reducing plant available soil N was generally ineffective for increasing the N fixed by pea. Fixed N increased only at the site with the least plant-available N, and only one-third of the increase could be attributed to lower soil N uptake by pea. There was no evidence that direct drilling pea increased fixed N by decreasing crop uptake of soil N. It is proposed that a lower requirement for soil N by pea as compared to barley, and availability of mineral N beneath the soil layer treated with straw, minimise the effectiveness of straw incorporation for increasing the N fixed by pea.  相似文献   

11.
Abstract

A field experiment was conducted in 2004–2006 to investigate the effect of green manure treatments on the yield of oats and spring barley. In the experiment, different green manure crops with undersowing and pure sowing were compared for amounts of N, C, and organic matter driven into soil and their effect on cereal yield. The spring barley field had a total of 41.7–62.4 kg N ha?1 and 1.75–2.81 Mg C ha?1 added to the soil with straw, weed, and roots, depending on the level of fertilisation; with red clover, and both common and hybrid lucerne undersowing, with barley straw and roots, the values were 3.45–3.96 Mg C ha?1 and 139.9–184.9 kg N ha?1. Pure sowings of these three leguminous green manure crops had total applications of 3.37–4.14 Mg C ha?1 and 219.7–236.8 kg N ha?1. The mixed and pure sowing of bird's-foot trefoil provided considerably less nitrogen and carbon to the soil with the biomass than with the other leguminous crops. Application of biomass with a high C/N ratio reduced the yield of the succeeding spring cereals. Of the green manures, the most effective were red clover and both common and hybrid lucerne, either as undersowing or as pure sowing. Undersowings with barley significantly increased the N supply for the succeeding crop without yield loss of the main crop compared with the unfertilised variant. Compared with ploughing-in of green manure in autumn, spring ploughing gave a 0.2–0.57 Mg ha?1 larger grain yield.  相似文献   

12.
A field experiment was conducted with wetland rice (Oryza sativa cv. IR-36) in a sandy clay loam soil (Entisol) to study the effect of inoculation with a soil-based mixed culture of four diazotrophic cyanobacteria,Aulosira fertilissima, Nostoc muscorum, N. commune andAnabaena spp., on the N-flux in inorganic NH4 ++NO3 ?+ NO2 ?), easily oxidizable, hydrolysable and non-hydrolysable forms of N in soil during vegetative growth periods of the crop. Effects on grain and straw yield and N uptake by the crop were estimated. The effects of applying urea N and N as organic sources, viz.Sesbania aculeata, Neem (Azardirachta indica) cake and FYM, each at the rate of 40 kg N ha?1, to the soil were also evaluated. Inoculation significantly increased the release of inorganic N, evidenced by its increased concentrations either in soil or in soil solution. However, such increases rarely exceeded even 4% of total N gained in different froms in the soil system by inoculation during the vegetative growth stages of the rice plant, when the nutritional requirement of the plants is at a maximum. Most of the N2 fixed by cyanobacteria remained in the soil as the hydrolysable form (about 85%) during this period. Inoculation caused an insignificant increase in grain (8%) and straw (11%) yield, which was, however, accompanied by a significant increase in N uptake by the grain (30%) and an increase in total uptake of 15.3 kg N ha 1. Such beneficial effects of inoculation varied in magnitude with the application of organic sources, with farmyard manure (FYM) being the most effective. Application of urea N, on the other hand, markedly reduced such an effect.  相似文献   

13.
Abstract

The increasing cost and imbalanced use of chemical fertilizers in wheat (Triticum aestivum L.) stressed the need to explore the potential of bioinoculants of Azotobacter and PSB for saving fertilizer N and P. Field experiments conducted for two years in a Mollisol at Pantnagar revealed maximum plant height, grain and straw yields and nutrient uptake by wheat with application of 100% NP. However, soil application of carrier-based biofertilizer at 10?kg?ha?1 and liquid-based biofertilizers at 625 and 1250?mL?ha?1 rates in combination of 75% NP were at par with 100% NP by recording significantly more mean plant height at different intervals, grain yield, by 10.9, 10.5 and 10.8%, and straw yield, by 8.6, 8.2 and 9.1%, over 75% NP, respectively. These treatments also accumulated significantly more N, P and K in plant at different age and; grain and straw. An application of liquid biofertilizer at 1250?mL?ha?1 with 75% NP gave maximum population of Azotobacter and PSB, microbial biomass C and activities of acid and alkaline phosphatase in soil at different crop age. The carrier and liquid formulations of the biofertilizers were comparable in their performance. Irrespective of formulation and doses, application of biofertilizers in soil was found better than seed treatment for different recorded parameters. An application of 625?mL?ha?1 liquid biofertilizers in soil with 75% NP was found optimum for the growth, yield and nutrients uptake and soil biological properties.  相似文献   

14.
Abstract

Results of 240 annual N fertilizer trials in 1991–2007 in spring and winter cereals are presented. On average, spring barley and oat yields increased little beyond 120 kg N ha?1 in fertilizer. Somewhat higher figures were found for spring and winter wheat. Regression equations for yield and N uptakes in grain and straw were derived, related to N fertilizer input and the yield level in individual trials (indicator of yield expectancy). These equations accounted for 90% of the variation in yield and 80% of that in N uptake. Quadratic N responses were significant in all cases, as were interactions between N responses and yield level. They were verified with data from 27 separate trials performed in 2008–2010. The yield equations were used to calculate economically optimum N fertilizer levels with varying ratios of product price to fertilizer cost at contrasting levels of yield. The optimum N fertilizer level for barley and oats was found to increase by 8.3 kg N ha?1 per Mg increase in expected yield. The equivalent figure in wheat was 16.3 kg N ha?1. Optimum N fertilizer levels decreased by 4.1 and 6.7 kg N ha?1, for barley/oats and wheat respectively, per unit increase in the cost/price ratio. The equations for N uptake were used to calculate simple N balances between fertilizer input and removal in crop products. Large N surpluses were indicated at low levels of yield expectancy, but the surplus declined markedly with increasing yield level, despite greater N fertilizer inputs at high yield. Calculations made for national average yield levels in recent years showed N surpluses of 50–60 kg N ha?1 when only grain is removed and 25–40 kg N ha?1 when straw is removed also. Limiting N input to obtain zero balance reduces yields considerably at average levels of yield expectancy.  相似文献   

15.
Catch crop strategy and nitrate leaching following grazed grass-clover   总被引:1,自引:0,他引:1  
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0, 60 or 120 kg of ammonium‐N ha?1 in cattle slurry. In spring 2003, two grass‐clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley/perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley/Italian ryegrass reduced leaching by 163–320 kg N ha?1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg N ha?1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catch crops was reduced compared with the bare soil treatment. It was concluded that the green barley/Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers.  相似文献   

16.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

17.
A field experiment was conducted to evaluate the effects of directly, residually, and cumulatively applied mixed sludge generated by the soft-drink industry on rice and wheat yields, soil fertility, grain heavy-metal uptake, depthwise distribution of micronutrients and heavy-metals after 3 years of application. Crop (rice/wheat) yield (grain/straw) increased significantly with direct sludge application at 10.0 t ha?1 year?1, either alone or jointly with fertilizers, over the absolute control. Interestingly, the effects of sludge application on crop (rice/wheat) yield either applied directly at 10.0 t ha?1 year?1, residually at 30.0 t ha?1 year?1, and/or cumulatively at 15.0 t ha?1 were nonsignificant. Direct sludge application at 5.0/10.0 t ha?1 year?1 resulted in significant increase in heavy-metal uptake over the absolute control. The micronutrient/heavy-metal contents in surface soil were significantly greater with sludge application than those in subsurface layers. The results thus show that sludge application results in significant improvement in yield and soil fertility.  相似文献   

18.
The objectives of this work were to study nitrogen (N) release from a biosolid and a compost of banana wastes. The overwinter N decomposition was evaluated as the uptake by a cereal cover crop and the in situ losses from buried bags in a loamy sand (site 1) and in a calcareous silty clay loam (site 2). Organic materials were applied in two rates as sludge (1, 3.75 Mg ha?1; 2, 7.5 Mg ha?1) and compost (1, 3.29 Mg ha?1; 2, 6.58 Mg ha?1). Immediately after their incorporation in October, barley was planted as a cover crop. Its growth was negatively affected by the slow drainage of the silty clay loam, leading to greater N concentration in site 1 (21.18 g kg?1 of barley versus 14.35 g kg?1 of barley in site 2). Yet only 10% of the added N was intercepted by the cover crop in the fast-draining site 1. The ash-rich compost (N: 21.1 g kg?1; ash: 467 g kg?1) was comparable to the control. Within site 2, the biosolid treatments had a residual effect on a second barley crop, as N uptake was 1.99–2.13 times that of the control. The approach of in situ loss from bags incorporated in bare soil was repeated in two successive seasons. Nitrogen losses (% input) during the fall and winter months were comparable between sites 31.9 % (site 1) and 28.6 % (site 2). When the N fate was studied during the winter months only, the loss decreased slightly, suggesting the presence of a fraction liable to decomposition overwinter in Mediterranean conditions. Soil nitrate was determined 1 month after the incorporation of the cover crop in late spring. In the first season, only the sludge 2 treatment generated more nitrate than the control, whereas 19 months after the application of the organic products both sludge treatments had a positive effect. The soil properties influenced the amounts of N mineralized with site 1, yielding twice that of site 2. In the fast-draining soils, the presence of an active cover crop overwinter is necessary, while the N level of sludge 1 (164 kg N ha?1) was more acceptable.  相似文献   

19.
Inorganic fertilizer-based nutrient management is the maintenance of soil fertility for sustaining increased crop productivity, but often at the cost of degrading soil health. This study was conducted to determine whether incorporation of organics in the conventional inorganic-based nutrient management practice on aromatic rice could sustain both fertility and soil organic carbon status on a silt loam Aeric Haplaquept. Addition of organic manure along with inorganic fertilizer could almost maintain organic carbon status of soil, while the treatment only with inorganic fertilizer registered a substantial decrease (6.58%) from its initial value. Among the treatment combinations, the treatment receiving 1 t ha?1 mustard cake and inorganic fertilizer @ N40P20K20 was the best, which registered the highest grain (3.01 t ha?1) and straw (5.32 t ha?1) yield of rice, highest nutrient uptake, and least decline in available N, P, and K status of soil. However, even the best treatment combination also was proved to be suboptimal in sustaining soil fertility.  相似文献   

20.
Increasing nitrogen (N) fertilizer prices give rise to the question of N benefits from legumes in cropping systems in the Southern Great Plains. This study quantified wheat (Triticum aestivium L.) hay production and N uptake over seven years following six years of alfalfa (Medicago sativa L.), cicer milkvetch (Astragalus cicer L.), or grass (Old World bluestem, Bothriochloa ischaemum L.) production in western Oklahoma. Precipitation over the seven years averaged 550 mm·yr‐1. The major residual N effects were measured within the first five years. On a fine sandy loam soil, wheat hay yields averaged 3,070 kg·ha‐1·yr‐1 over five years following alfalfa, 2,580 kg·ha‐1·yr‐1 following milkvetch, and 950 kg·ha‐1·yr‐1 following grass with N uptake attributed to the residual effect from legumes (calculated by the difference method) averaged 34 kg N ha‐1·yr‐1 from alfalfa and 25 kg·ha‐1·yr‐1 from milkvetch. On a deep loamy sand soil, wheat hay yields averaged 1,290 kg·ha‐1·yr‐1 over five years following alfalfa and 710 kg·ha‐1·yr‐1 following grass with N uptake attributed to the residual effect from alfalfa averaged 8 kg N ha‐1·yr‐1. Thus, the residual N effect attributed to legumes was substantial on the fine sandy loam soil and relatively small on the deep loamy sand soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号