首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A weed survey conducted in 2004 and 2005 in Aydin province of Turkey showed that Solanum nigrum, Xanthium strumarium, Amaranthus retroflexus, Portulaca oleracea, Sonchus oleraceus and Datura stramonium were the most prevalent weeds in the cotton fields exhibiting Verticillium wilt. Verticillium dahliae Kleb. was recovered from A. retroflexus and X. strumarium in those cotton fields. This is the first report of V. dahliae occurring naturally in A. retroflexus in Turkey. Pathogenicity tests on cotton and weeds showed that the virulence of V. dahliae isolates from weeds was higher on cotton plants than on weeds, with the disease severity ranging from 31.7% to 98.0%. Disease severity of V. dahliae isolates was 54.7–93.9% on eggplant, 23.7–51.6% on cucumber and 11.0–16.4% on tomato, whereas it did not cause any disease symptoms, or only low levels, on pepper and bell pepper. Two vegetative compatibility groups (VCGs) were identified among seven tested weed isolates: VCG2A (two isolates) and VCG2B (three isolates) using international reference strains.  相似文献   

2.
We isolated 629 fungi from 1296 berry seeds of solanaceous plants, including tomato (Lycopersicon esculentum), eggplant (Solanum melongena), bell pepper (Capsicum annuum), and red pepper (Capsicum annuum var. annuum) preserved for long and short terms. The isolates were classified into 22 genera excluding unidentified fungi, and the fungal floras were divided into two types: the tomato–eggplant and pepper groups. The results of cluster analysis with unweighted pair-group method with arithmetic average also supported these groups. Most tomato seeds infested with Geotrichum candidum germinated and grew the same as uninfested seeds. Cladosporium sphaerospermum and Arthrinium sp. isolated from eggplant seeds strongly suppressed germination, and Penicillium variabile suppressed seminal root elongation on eggplant. Alternaria alternata, Botrytis cinerea, and Myrothecium verrucaria detected from red pepper or bell pepper seeds were pathogenic to the fruits and the seedlings after artificial inoculation.  相似文献   

3.
Classification of 32 Verticillium dahliae isolates originating from 19 plant species in eight different botanical families to races and determination of host range pathogenicity were carried out. The physiological races of isolates were identified using the two differential tomato cultivars ??Belladonna?? (susceptible to both races 1 and 2 of V. dahliae) and ??Ace 55VF?? (resistant to race 1, susceptible to race 2 of V. dahliae). Among these isolates, 14 were race 2 (43.8%), 12 race 1 (37.5%) and six nonpathogenic (18.7%) on tomato. The host range pathogenicity of isolates was determined using four differential hosts (eggplant, turnip, tomato (Ve ? ) and sweet pepper). Among isolates, five were pathogenic to both eggplant and turnip (15.6%), 21 to eggplant, turnip and tomato (65.6%), five to eggplant, turnip, tomato and sweet pepper (15.6%) and one was pathogenic to eggplant, turnip and sweet pepper (3.2%). The pathogenicity of isolates on the aforementioned five hosts was investigated on the basis of external symptoms and by calculating the relative areas under disease progress curves (relative AUDPC). Results showed that eggplant was the most susceptible, followed by turnip and tomato cv. Belladonna, while sweet pepper and tomato cv. Ace 55VF were less susceptible to all the isolates used. The pathogenicity of isolates varied from highly to mildly virulent on eggplant and turnip while on Belladonna, Ace 55VF and sweet pepper it varied from highly virulent to nonpathogenic. Belladonna exhibited a similar level of susceptibility to races 1 and 2 of V. dahliae, but was more susceptible than Ace 55VF to race 2. Interestingly, the isolates originating from eggplant were clearly more virulent than those originating from tomato and black nightshade on all solanaceous plants tested.  相似文献   

4.
Japanese isolates of Verticillium dahliae, a causal agent of wilt disease in many plants, are classifiable into pathotypes based on their pathogenicity. Because these pathotypes are morphologically indistinguishable, establishing a rapid identification method is very important for the control of this pathogen in Japan. For cloning DNA fragments that are useful for identification and specific detection of V. dahliae pathotypes, we performed random amplified polymorphic DNA (RAPD) analyses using various isolates. One polymerase chain reaction (PCR) product, E10-U48, was specific to isolates pathogenic to sweet pepper. The other product, B68-TV, was specific to race 1 of isolates pathogenic to tomato. The specificity of these sequences was confirmed by genomic Southern hybridization. Further analyses revealed that the region peripheral to B68-TV obtained from the genomic DNA library includes the sequence specific to all isolates pathogenic to tomato (races 1 and 2). Moreover, sequence tagged site (STS) primers designed from B68-TV and its peripheral region showed race-specific and pathotype-specific amplification in a PCR assay. The probes and primers obtained in this study are likely to be useful tools for the identification and specific detection of pathotypes and races of V. dahliae. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession number AB095266.  相似文献   

5.
ABSTRACT Three hundred forty-nine fungal endophytes were obtained from a total of 1,214 root segments of eggplant, melon, barley, and Chinese cabbage grown as bait plants in a mixed soil made up of samples from different forest soils in Alberta and British Columbia, Canada. Three of the 349 isolates, when inoculated in axenically reared Chinese cabbage seedlings grown in petri dishes, almost completely suppressed the effects of a postinoculated and virulent strain of Verticillium longisporum. Two isolates effective against the pathogen were Phialocephala fortinii, which had been obtained from the roots of eggplant and Chinese cabbage. The third isolate was a dark septate endophytic (DSE) fungus obtained from barley roots. Hyphae of P. fortinii grew along the surface of the root and formed microsclerotia on or in the epidermal layer. Hyphae of the DSE fungus heavily colonized root cells of the cortex. Seedlings grown for 1 week in the presence of the endophytes were then challenged with the Verticillium pathogen. In DSE-treated roots, some of cell walls in the epidermal and cortical layers showed cell wall appositions and thickenings, which appeared to limit the ingress of the pathogen into adjacent cells. Such marked host reactions were not observed in the root cells colonized by P. fortinii. Chinese cabbage preinoculated with the above endophytes and, for comparison, a previously reported disease-suppressive fungal endophyte, Heteroconium chaetospira, were transplanted into the field and disease symptoms were assessed. The DSE could most effectively inhibit the development of Verticillium yellows, with reductions in the percentages of external and internal disease symptoms of 84 and 88%, respectively. The protective values against the disease are extremely high compared with those of other isolates. Most of the DSE-treated plants in the plots achieved marketable quality.  相似文献   

6.
Verticillium dahliae antagonistic endorhizosphere bacteria were selected from root tips of tomato plants grown in solarized soils. Fifty-three out of the 435 selected bacterial isolates were found to be antagonistic against V. dahliae and several other soilborne pathogens in dual cultures. Significant biocontrol activity against V. dahliae in glasshouse trials was demonstrated in three of 18 evaluated antagonistic isolates, provisionally identified as Bacillus sp. Although fluorescent pseudomonads were also isolated from root tips of tomato plants, none of the tested isolates exercised any significant antagonistic activity against V. dahliae in dual cultures. So these isolates were not tested in glasshouse trials in this study. Finally, two of the most effective bacterial isolates, designated as K-165 and 5-127, were shown to be rhizosphere colonizers, very efficient in inhibiting mycelial growth of V. dahliae in dual cultures and successfully controlling Verticillium wilt of solanaceous hosts. In glasshouse experiments, root dipping or soil drenching of eggplants with bacterial suspension of 107cfu ml–1 resulted in reduced disease severity expressed as percentage of diseased leaves (40–70%) compared to the untreated controls under high V. dahliae inoculum level (40 microsclerotia g–1 soil). In heavily Verticillium infested potato fields, experiments with potato seeds dusted with a bacterial talc formulation (108cfu g–1 formulation), showed a significant reduction in symptom development expressed as percentage of diseased potato plants and a 25% increase in yield over the untreated controls. As for their effectiveness in increasing plant height, both bacterial isolates K-165 and 5-127 produced indolebutyric, indolepyruvic and indole propionic acids. Both antagonists are considered as plant growth promoting rhizobacteria bacteria since significantly increased the height of treated plants compared with the untreated controls. Chitinolytic activity test showed that both isolates were able to produce chitinase. Testing rhizospheric and endophytic activity of the antagonists it was shown that although the bacteria are rhizosphere inhabitants they also preferentially colonize the endorhizosphere of tomatoes and eggplants. Fatty acid analysis showed that isolate K-165 could belong to Paenibacillus alvei while 5-127 to Bacillus amiloliquefaciens.  相似文献   

7.
For many soilborne plant pathogens, disease results from multiple root infections. Studying the infection dynamics of single or multiple propagules of these pathogens applied at one site of the root system may be the basis for understanding the development of disease caused by multiple root infections. The effect of single-site inoculations of roots of eggplant seedlings with microsclerotia of the wilt-causing fungusVerticillium dahliae, was studied. Experiments were conducted using specially designed pots which enabled the incorporation and removal of inoculum in the soil. Inoculations were carried out by placing microsclerotia, firmly embedded in small sections of polypropylene screen filter, directly below the growing tip of the main root of young eggplant seedlings. Three to 4 days after inoculation, the root had grown over the screen filter, and the filter was removed. Root platings showed high infection levels at the inoculation site, but also several (discrete) root infections were noted some distance above and below the site of inoculation. Exposure of the root to the lowest number of microsclerotia (26/inoculation site) was sufficient to lead to up to 65% root infections. Number of plants with root infections declined over time, ranging from a maximum of 65–100% 2–4 wk after inoculation, to 10–29% at 6–7 wk after inoculation. Apparently,V. dahliae died in nonsystemic infections after some time.  相似文献   

8.
Verticillium dahliae isolates recovered from a new focus of severe Verticillium wilt of cotton in the northeast of Israel were tested for vegetative compatibility using nitrate non-utilizing (nit) mutants and identified as VCG1, which is a new record in Israel. Other cotton isolates of V. dahliae from the northern and southern parts of the country were assigned to VCG2B and VCG4B, respectively. VCG1 isolates induced severe leaf symptoms, stunting and defoliation of cotton cv. Acala SJ-2, and thus were characterized as the cotton-defoliating (D) pathotype, whereas isolates of VCG2B and VCG4B were confirmed as the earlier described defoliating-like (DL) and non-defoliating (ND) pathotypes, respectively. This is the first record of the D-pathotype in Israel. The host range of representative isolates of each VCG-associated pathotype was investigated using a number of cultivated plants. Overall, the D isolates were more virulent than DL isolates on all tested host plants, but the order of hosts (from highly susceptible to resistant) was the same: okra (Hibiscus esculentus local cultivar), cotton (Gossypium hirsutum cv. Acala SJ2), watermelon (Citrullus lanatus cv. Crimson Sweet), safflower (Carthamus tinctorius cv. PI 251264), sunflower (Helianthus annuum cv. 2053), eggplant (Solanum melongena cv. Black Beauty), and tomato (Lycopersicon esculentum cv. Rehovot 13). The pattern of virulence of ND isolates differed from that of D and DL isolates, so that the former were highly virulent on eggplant but mildly virulent on cotton. Tomato was resistant to all cotton V. dahliae isolates tested. RAPD and specific PCR assays confirmed that the D isolates from Israel were similar to those originating from other countries.  相似文献   

9.
Isolates of Phytophthora from pepper, produced in Tunisia, were characterised according to molecular and pathogenicity criteria. Polymerase chain reaction amplification of the ITS1 region in the ribosomal DNA resulted in different sized fragments. The pepper isolates and P. nicotianae yielded a fragment of 310bp that distinguished it from P. capsici with a fragment of 270bp. The ribosomal RNA gene amplicons of both internal transcribed spacers and the 5.8 S of the pepper Phytophthora and P. nicotianae were digested with 8 endonucleases. The patterns generated, with the 2 enzymes that cut, were identical for both taxa. This molecular analysis corroborated the morphological and biological characteristics and suggests strongly that the isolates of Phytophthora from pepper belong to the species P. nicotianae. Inoculation of pepper, tomato, eggplant and tobacco plants with the isolates of P. nicotianae from pepper showed they were highly pathogenic on pepper but not on tobacco, while their pathogenicity was weak on tomato and eggplant and was associated with atypical symptoms not observed in the field. These pathogenicity tests suggest that pepper isolates of P. nicotianae are particularly adapted to their host and may thus constitute a forma specialis of P. nicotianae.  相似文献   

10.
Verticillium dahliae Kleb. with a complicated genetic diversity is a widely distributed major pathogen resulting in cotton wilt, which causes high economic losses in cotton lint production in the cotton belt of Turkey. A collection of 70 TurkishV. dahliae isolates (68 from wilted cotton plants in 28 districts and two from watermelon plants in two districts) were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants. The mutants were tested against international reference tester isolates and also were paired with one another. Thirty-nine isolates were assigned to vegetative compatibility group (VCG) 2B, 19 to VCG2A and three to VCG4B. One isolate was self-incompatible and eight others could not be assigned to any of the identified VCGs because theirnit mutants showed negative reactions with the tester isolates of four VCGs or theirnit mutants reverted back to the wild type. This is the first report of VCGs inV. dahliae from cotton in Turkey.  相似文献   

11.
Verticillium wilt, caused by Verticillium albo-atrum or V. dahliae, is an important disease of many worldwide crop species. In Europe, V. albo-atrum isolates infecting hop express different levels of virulence, inducing mild or lethal disease syndromes, and it is therefore an attractive model for studying the virulence of this pathogen. In this work, eleven amplified fragment length polymorphism (AFLP) primer combinations were used to analyze genetic variability among 55 V. albo-atrum hop isolates from four European hop growing regions, as well as isolates from other hosts and V. dahliae isolates. Cluster analysis divided V. albo-atrum and V. dahliae isolates into two well-separated groups. Within the V. dahliae cluster, isolates were separated without host specific grouping, although no host adapted isolates were included. In V. albo-atrum, the alfalfa isolates were distinct from isolates of other hosts, where a high association with virulence was observed in hop and tomato isolates. All lethal hop isolates were genetically different from mild hop isolates. The lethal hop isolates from England and Slovenia expressed the same virulence phenotype, although they showed a different AFLP pattern. The mild hop isolates formed two subgroups, to which isolates clustered irrespective of geographical location. These data suggest multiple origins of V. albo-atrum hop isolates, and the possible appearance of new virulent isolates in the future in other hop growing regions.  相似文献   

12.
Effects of crop rotation between rice paddy fields and strawberry nurseries on the control of Verticillium wilt of strawberry were studied. For detecting Verticillium dahliae, the causal agent of Verticillium wilt, in soil, eggplant was used as an indicator plant. We were thus able to detect as low as 1 microsclerotium/g dry soil. In field surveys of Chiba and Hokkaido from 2000 to 2003, V. dahliae was detected in 9 of 10 upland fields but in none of 21 paddy-upland fields. In Hokkaido during 2000–2007, strawberry mother plants were planted, and plantlets were produced in upland and paddy-upland fields to assess V. dahliae infestation. Verticillium wilt of strawberry had never occurred in 72 tested paddy-upland fields, compared to 13.2–73.9% of plantlets infected with V. dahliae in upland fields. In a pot experiment in a greenhouse, two flooding treatments or two paddy rice cultivations suppressed Verticillium wilt symptoms on eggplant. In field experiments, one paddy rice cultivation in Chiba and two in Hokkaido prevented development of Verticillium wilt symptoms on eggplant. Verticillium wilt of strawberry was controlled completely with one paddy rice cultivation in infested fields in Chiba. In these field experiments, the number of microsclerotia of V. dahliae decreased under the flooding conditions for paddy rice cultivation. Based on the reduction in microsclerotia, a crop rotation system with paddy rice for 3 years (three times), green manure for 1 year, and strawberry nursery for 1 year was designed for Hokkaido.  相似文献   

13.
Spread of Verticillium wilt into newly established olive orchards in Andalucía, southern Spain, has caused concern in the olive industry in the region. This spread may result from use of Verticillium dahliae-infected planting material, which can extend distribution of the highly virulent, defoliating (D) pathotype of V. dahliae to new areas. In this study, a molecular diagnostic method for the early in planta detection of D V. dahliae was developed, aimed especially at nursery-produced olive plants. For this purpose, new primers for nested PCR were designed by sequencing a 992-bp RAPD marker of the D pathotype. The use of the specific primers and different nested-PCR protocols allowed the detection of V. dahliae pathotype D DNA in infected root and stem tissues of young olive plants. Detection of the pathogen was effective from the very earliest moments following inoculation of olive plants with a V. dahliae pathotype D conidia suspension as well as in inoculated, though symptomless, plants.  相似文献   

14.
The chromosome number and electrophoretic karyotype of Japanese isolates of Verticillium dahliae were investigated. In a genomic Southern blot analysis of seven isolates probed with a telomere consensus sequence (TTAGGG)5, 12 or 14 bands were observed. Furthermore, pulsed-field gel electrophoresis (PFGE) of these isolates revealed five or six chromosomal bands. A band (approx. 3.5 Mbp) common to all isolates apparently contained more than two chromosomes. From these results, we concluded that each isolate’s chromosome number is six (an eggplant pathotype isolate) or seven (all isolates of tomato and sweet pepper pathotypes). Although the chromosome sizes differed among isolates, karyotypes were similar within tomato and sweet pepper pathotypes. A small chromosome (approx. 1.8 Mbp) was observed only in the sweet pepper pathotype. Subsequent PFGE-Southern hybridization analyses revealed that the three DNA fragments specific to tomato pathotype are located on the same chromosome. These results suggest that the tomato-pathotype-specific DNA sequences might coexist on one chromosome.  相似文献   

15.
Root-colonizing fungi were isolated from a total of 663 root segments of Chinese cabbage plants grown in soils collected from wheat, rape, Chinese cabbage, and napier grass fields. Most of the 322 isolates were from the wheat field soil and comprised 18 genera and two septate fungal groups. Hyaline and dark septate fungi accounted for approximately half the isolates from the wheat field soil. Sixteen isolates almost completely suppressed clubroot in sterile soil. Amongst these 16 isolates, two from Heteroconium chaetospira were also effective in nonsterile soil. Chinese cabbage seedlings from seed treated with these two isolates appeared healthy, and inoculation with one isolate promoted growth. Hyphae of the fungus covered the root surface and extensively colonized the inner cortical tissues.  相似文献   

16.
Mating type genes of Verticillium dahliae, a wilt pathogen affecting many plant species, were identified to examine sexual recombination between Japanese pathotypes. We amplified a DNA sequence encoding high mobility group (HMG) box from V. dahliae using PCR. A cloned genomic DNA fragment included a sequence homologous to MAT1-2-1 gene. Despite that sequence's presence in all V. dahliae isolates we used, MAT1-1-1 (an opposite mating type gene) was never amplified. We concluded that V. dahliae is potentially heterothallic. Furthermore, sexual bias practically obviates sexual recombination between Japanese pathotypes. This report describes, for the first time, a mating type gene of phytopathogenic Verticillium.  相似文献   

17.
During 2005 to 2007, eggplant fields in 19 provinces from three different regions (western, southern and southeastern Anatolia regions) of Turkey were surveyed for Verticillium wilt. Sixty-seven isolates of Verticillium dahliae from wilted eggplants were collected and used for vegetative compatibility analysis using nitrate non-utilizing mutants and reference tester strains of vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B. Among all isolates, 33 (12 from western, 15 from southern and six from southeastern Anatolia) were assigned to VCG2B, 23 (four from western, eight from southern and 11 from southeastern Anatolia) to VCG2A, six (four from southern, one from western, and one from southeastern Anatolia) to VCG4B and five (one from western, one from southern and three from southeastern Anatolia) to VCG1A, whereas VCG3 and VCG4A were not defined among isolates. In order to test if there is a correlation between VCG and pathogenicity in V. dahliae, pathogenicity of 30 isolates, representing the four multimember VCGs, were tested on Solanum melongena cvs. ‘Kemer’ and ‘Aydın Siyahı’ in an unheated greenhouse. All isolates were found to be pathogenic on both cultivars and there was no difference in susceptibility between the two cultivars. VCG4B isolates collectively led to higher vascular discoloration index (VDI) on both cultivars and higher disease severity index (DSI) on ‘Kemer’ compared with other VCGs. Similarly, VCG1A caused lower VDI on both cultivars and lower DSI on ‘Kemer’. Isolates within each of VCGs 1A, 2A and 4B caused similar VDI on both cultivars. Isolates of VCG2B were found to vary in their VDI values on both cultivars. To the best of our knowledge, the present study is the first report of natural infections of eggplant by VCG1A.  相似文献   

18.
Nine isolates of Phtophthora nicotianae were isolated from infected pepper plants. Their pathogenicity was studied in Capsicum annuum in comparison with P. nicotianae isolates from tomato and tobacco. The pathogenicity test showed that pepper isolates of P. nicotianae are adapted to their host. Banding patterns obtained by RAPD analysis with six oligonucleotide primers revealed polymorphism that grouped the isolates independently of the plant host. The polygenic dendrogram showed that pepper isolates were more similar to tomato isolates than to tobacco isolates. The RAPD bands of 1300 and 1500 bp, detected with primers OPD-01 and OPD-10, respectively, appeared specific to the most pathogenic pepper isolates. The OPK-08-1950 seems specific to the isolates of P. nicotianae from tomato. These results suggest that host specified might occur in P. nicotianae and that may be due to interspecific hybridization events resulting in novel pathogenic behavior.  相似文献   

19.
A survey was made to identify the most important soilborne fungal pathogens of asparagus crops in the Netherlands. Ten plants were selected from each of five fields with a young (1–4 y) first planting, five fields with an old (6–13 y) first planting and five fields with a young replanting. The analysis included fungi present in the stem base and the roots of plants with symptoms of foot and root rot or showing growth decline without specific disease symptoms. Isolates of each species were tested for pathogenicity to asparagus on aseptically grown plantlets on Knop's agar. Symptoms were caused byFusarium oxysporum, F. culmorum, Botrytis cinerea, Penicillium verrucosum var.cyclopium, Cylindrocarpon didymum, Phialophora malorum, Phoma terrestris andAcremonium strictum. F. oxysporum was by far the most common species and was isolated from 80% of the plants. Not all of its isolates were pathogenic to asparagus. Symptoms were caused by 67%, 78% and 93% of the isolates obtained from young first plantings, old first plantings and replantings, respectively.F. culmorum was isolated from 31% of the plants. Two other notorious pathogens of asparagus,F. moniliforme andF. proliferatum, did not occur in our samples.Species causing symptoms in the vitro test that were found on more than 5% of the plants were additionally tested for their pathogenicity in pot experiments.F. oxysporum f.sp.asparagi caused severe foot and root rot, significantly reduced root weights and killed most of the plants.F. culmorum caused lesions on the stem base often resulting in death of the plant.P. terrestris, a fungus only once reported as a pathogen of asparagus, caused an extensive root rot, mainly of secondary roots that became reddish. The fungus was isolated in only a few samples and is not to be regarded as an important pathogen in Dutch asparagus crops.P. malorum caused many small brown lesions on the stem base and incidentally also on the upper part of small main roots. This is the first report of its pathogenicity to asparagus. The fungus is one of the organisms inciting spear rust and it reduced crop quality rather than crop yield.P. verrucosum var.cyclopium andC. didymum did not cause symptoms in pot experiments.Because of its predominance on plants with foot and root rot and its high virulence,F. oxysporum f.sp.asparagi was considered to be the main soilborne pathogen of asparagus in the Netherlands.  相似文献   

20.
Complementary auxotrophic nitrate-nonutilizing (nit) mutants were used to investigate vegetative compatibility within 27 strains ofVerticillium dahliae isolated from several hosts originating from Africa, Asia, Europe and the United States. Using about 500nit mutants generated from these strains, three vegetative compatibility groups, 1, 2 and 4, were identified. Simultaneously, virulence of each strain was assessed on cultivars ofGossypium hirsutum, G. barbadense andG. arboreum, based upon Foliar Alteration Index (FAI) and Browning Index (BI) estimation. The strains in VCG1 were of both the cotton-defoliating pathotype and race 3 (on cotton) but were non pathogenic on tomato; those in VCG2 and VCG4 were of the nondefoliating pathotype and belonged to different races on cotton and on tomato. Hyaline mutants deriving from parental wild-type strain showed differences in pathogenicity but were always assigned to the parental VCG. A relationship was established between VCGs and the taxonomic position of host plants. Data fromnit pairings indicated that the sub-populations ofV. dahliae (VCGs) may not be completely isolated genetically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号