首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the assessment of the relation among constructional properties, fractional reflectances and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of the relation between fractional reflectance and fabric cover factor was proposed and the usage of the equation was assessed by reflectance measurements. 48 polyester fabrics having different constructional parameters were used and the fabrics differed from each other by their cover factors. The warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in the experimental sub-groups. The reflectance measurements were conducted on the pretreated but undyed fabric samples as well as on the individual yarn systems of the same fabrics. Fabrics with the same cover factors exhibited different fractional reflectances. Reflectances were found to be dependent on the cover factor as well as on yarn fiber fineness, yarn count, yarn density and fabric weave. The changes in crimp of the yarns according to different construction parameters also governed the changes in fractional reflectances of fabric surfaces. The proposed equation was tested according to different fabric construction parameters and it was concluded that fiber fineness and weave pattern were among the most important parameters which govern the total light reflectances from the fabric surfaces, although they are not incorporated in the calculation of the fabric cover factors. The proposed equation was used to explain the effects of these components on the reflectance behavior of the fabric surfaces and on fabric cover.  相似文献   

2.
The effects of fabric balance and fabric cover on surface roughness values of textured polyester woven fabrics with different constructional parameters were investigated. The warp yarn properties (type, count and warp density) were kept constant while the effect of variation in weft yarn density and weave pattern were studied. Measurements were conducted on pre-treated white fabric samples and the results assessed in relation to their constructional properties. A general overview of the results showed that surface roughness values of polyester fabrics affected by fabric balance and fabric cover and the effects were related to fabric thickness, yarn densities, yarn crimp, positioning of yarns in fabric structure. A change in weave pattern from sateen to plain increased the fabric balance and fabric cover, but decreased the surface roughness. Similarly, an increase in weft density increased the fabric balance and fabric cover, but decreased surface roughness. In order to produce fabrics with smooth surface properties yarn density should be increased, yarn float lengths decreased, cover of fabrics increased and fabric balance improved.  相似文献   

3.
A detailed study of electromagnetic shielding effectiveness (EMSE) of woven fabrics made of polyester and stainless steel/polyester blended conductive yarn was presented in this research work. Fabrics with different structures were analyzed and their shielding behavior was reported under different frequencies. Shielding efficiency of fabric was analyzed by vector network analyzer in the frequency range of 300 kHz to 1.5 GHz using coaxial transmission line holder. The effects of different fabric parameters such as weft density, proportion of conductive weft yarn, proportion of stainless steel content, grid openness, weave pattern and number of fabric layers on EMSE of fabrics were studied. The EMSE of fabric was found to be increased with increase in proportion of conductive yarn in the weft way. With increase in overall stainless-steel content in the fabric, the EMSE of fabric was increased. As such weave is considered, it did not have significant effect on EMSE of fabrics. But fabric with lower openness and aperture ratio showed better conducting network, hence better shielding. With increase in number of layers of fabric and ply yarns, EMSE of fabric was increased.  相似文献   

4.
This study surveys the basic procedure of data base system of the fabric structural design which can be linked with existing pattern design and garment design CAD systems. For this purpose, the theoretical and empirical equations related to the fabric structural design are analyzed and discussed with various fabric specimens. The fabric structural parameters such as weave density coefficient, cover factor and yarn density coefficient of various kinds of fabrics are calculated using the empirical equations. These calculated fabric structural parameters of many kinds of polyester and nylon fabrics are compared and discussed with weave pattern, and materials such as polyester and nylon. Furthermore the difference between fabric structural parameters calculated by empirical equations are analyzed with polyester and nylon fabrics as a basic study for data base system of the fabric structural design. Finally, the weave density coefficients of polyester and nylon fabrics were analysed and discussed with shrinkages of dyeing and finishing processes, and also surveyed according to the weaving company and weave structural parameters such as weave pattern and denier.  相似文献   

5.
The aim of this study was to understand the effects of fabric sample dimensions on pull-out properties of fabric weaves. Polyester woven fabrics were used to conduct the pull-out tests. A yarn pull-out fixture was developed and data generated from this research. Yarn pull-out forces depend on sample dimensions, fabric density, fabric weave, and number of pulled ends in the fabric. Results showed that multiple and single yarn pull-out forces of long samples were higher than those of short samples, and the multiple yarn pull-out force was higher than that of the single yarn pull-out force, and dense fabric has high pull-out force. Plain fabric weave showed high single and multiple pull-out forces compared to ribs and satin fabric weaves. The regression model could be used in this study as a viable and reliable tool. This research could be valuable for development of multifunctional fabrics in technical textile applications.  相似文献   

6.
The creasing characteristic of fabrics is affected by many factors like yarn twist, fabric density, fabric constructions, fabric thickness apart from the fiber type. In the first part of this study, the effect of yarn fineness, yarn twist, fabric tightness and weave construction factors on crease recovery was studied. In the second part of the study, in order to improve the creasing recovery of the fabrics, shape memory alloy (SMA) wires were used and the effect of shape memory alloy (SMA) wire on the crease recovery of cotton fabrics produced with different types of weave constructions were determined. Due to the high cost of SMA wire and the weaving operation adversity the two experimental plans were designed according to Taguchi design of experiment (TDOE). From the analysis of the first part, it was found that the yarn linear density had the greatest effect on fabric crease recovery compare to others. Twist coefficient was the second, weft density was third and the weave construction had the least significant effect on the crease recovery. The fabrics produced with coarser and low twisted yarns with high tightness and longer floats in the weave construction have higher crease recovery property. In the second part of the study, the application of the SMA wire significantly increased the crease recovery angle of the fabrics. The thickness of the SMA wire is very important and the effect depends on the wire thickness. The increase of the SMA wire thickness increases the crease recovery significantly. However it must be appropriate with the yarn and fabric properties. The distance between the SMA wire distances was expected to increase the crease recovery however the effect was found not significant. The fabrics produced with coarser yarns with longer floats in the weave construction have higher crease recovery property. However, statistically the effects of these parameters were found not significant due to the dominant effect of the wire thickness.  相似文献   

7.
This paper assesses the color difference and color strength values (K/S) obtained for eight disperse-dyed polyester fabric samples with different fabric construction parameters (weft yarn type, weft yarn count, weft density and fabric weave) after four sets of abrasion cycles. Warp yarn type and count, warp density, and warp yarn twist are the same for all fabrics. Fabric samples are dyed in a commercial red disperse dye (C.I. Disperse Red 74:1) and four different abrasion cycles (2500, 5000, 7500, 10000) are used. TheK/S values of the abraided fabrics and color difference values between the control fabric (dyed but not abraided) and abraded fabrics are calculated. The main differences in theK/S and color difference values are observed between 0–2500 abrasion cycles. The high tenacity of the polyester fibers and continuous polyester yarns causes some fuzz but no pilling formation on the fabric surface that lead to increasedK/S values and color differences. Fiber dullness, yarn thickness, yarn density and fabric weave are concluded to have different effects on the appearance after abrasion.  相似文献   

8.
There is a variety of approaches for investigating bending behavior of woven fabrics. Some of them are based on fabric deformation with one edge fixed; the others are based on measurement of force, moment or energy producing bending deformation. In all methods, bending properties is acquired after testing prepared fabric samples. Therefore, in this work an attempt is made by a mechanical model and a novel calculation technique to determine bending characteristics of the plain woven fabrics before sample production. Theoretical data including bending length, bending rigidity and bending modulus were directly determined for supposed fabric samples with a given yarn count and yarn density using Peirce’s structural model for plain woven fabric and a especial code written in Maple12. Besides, fabric samples with the defined characteristics were woven on a Sulzer-Ruti weaving machine. Then, these fabrics were tested for bending behavior using Shirley bending tester. Comparison showed good agreement between predicted and measured bending characteristics of the fabrics. However, theoretical bending rigidities of the samples were more than experimental values.  相似文献   

9.
The aim of this study was to understand the effects of softening treatment on pull-out properties of plain, ribs and satin fabrics. Polyester woven fabrics were used to conduct the pull-out tests. Data generated from these tests included pullout force, crimp extension and fabric displacement. A developed yarn pull-out fixture was used to perform single and multiple pull-out tests on treated and untreated polyester fabrics. Yarn pull-out forces depend on fabric treatments, fabric density, fabric weave, and the number of pulled ends in the fabric. The results of regression model showed that multiple and single yarn pull-out forces of treated fabrics were lower than those of untreated fabrics. The multiple yarn pull-out force was higher than that of the single yarn pull-out force, and that dense fabric had a high pull-out force. Treated and untreated plain fabrics had high single and multiple pull-out forces compared to those of treated and untreated ribs and satin fabrics. Yarn crimp extension depends on directional crimp ratios in the fabric and the number of pulled yarn ends. High directional crimp ratio fabric showed high directional yarn crimp extension. Fabric displacement depends on the number of pulled yarn ends and also fabric treatments. Fabric displacement in multiple pull-out tests showed high fabric displacement compared to that of single pull-out tests. On the other hand, the regression model could be used in this study as a viable and reliable tool.  相似文献   

10.
Hybrid yarn was produced by twisting silk with nylon covered lycra yarn. Silk of 20 D in warp and hybrid yarn in weft was woven to develop lustrous woven stretch fabrics for sari blouse. Silk and hybrid yarn fabrics were produced in three different weaves namely plain, crepe and sateen. An in-depth study was carried out to understand the effect of weave on thermal comfort; low stress mechanical properties, total hand value and stretch properties. Nine blouses (3 samples× 3 figures) were constructed from three different woven stretch materials for fit assessment and objective pressure comfort test. The effect of fabric weave, low stress mechanical properties, total hand value and stretch properties on fit and pressure comfort of silk/hybrid yarn stretch fabrics were analyzed. Sateen weave silk/hybrid yarn stretch fabric shows higher total hand value, stretch properties and better thermal comfort properties. Sateen and crepe weave stretch fabrics provided good fit. Sateen weave fabric exerted lower clothing pressure value in the range of 3-12 mmHg at all body locations in standing position and in different postures.  相似文献   

11.
The aim of this study was to model the air permeability of polyester cotton blended woven fabrics. Fabrics of varying construction parameters i.e. yarn linear densities and thread densities were selected and tested for air permeability, fabric areal density and fabric thickness. A total of 135 different fabric constructions were tested among which 117 were allocated for development of prediction model while the remaining were utilized for its validation. Four variables were selected as input parameters on basis of statistical analysis i.e. warp yarn linear density, weft yarn linear density, ends per 25 mm and picks per 25 mm. Response surface regression was applied on the collected data set in order to develop the prediction model of the selected variables. The model showed satisfactory predictability when applied on unseen data and yielded an absolute average error of 5.1 %. The developed model can be effectively used for prediction of air permeability of the woven fabrics.  相似文献   

12.
In the present study the influence of the deformation mode, of the specimen elongation deformation, of the fabrics?? weave type, of fabrics?? direction and of the position of seam allowances in respect to the stitching line on the seam slippage in the raw plain, twill and combined-twill weave fabrics was investigated. Fabrics were woven with the warp yarn of 20×2 tex 70 % cotton and 30 % PES blended 2-ply spun yarn and the weft yarn of 18 tex 100 % PES folded multifilament yarn using jacquard weaving machine ??Lindaucer DORNER GmbH??. Seam slippage of the investigated woven fabrics was determined using the new simple and compact technical device suitable to test fabrics for seam slippage property within five different deformation modes: an uniaxial tension of seams with opened seam allowances on the surface of metal table; an uniaxial tension of seams with bent to one side allowances in respect to stitching line on the surface of the metal table; an unrestricted uniaxial tension of seams; a bagging of seams with bent to one side allowances in respect to the stitching line using the plastic hollow cylinder; a bagging of seams with opened seam allowances using the plastic hollow cylinder. The results of the research had proved that seam slippage of the investigated woven fabrics was dependent on the deformation mode, on the elongation of sewn specimens, on the location of allowances in respect to the stitching line, on the fabric weave type as well as on the woven fabric direction.  相似文献   

13.
This paper focuses on the reflectance prediction of colored (unicolored) fabrics considering relationship between fractional reflectance values and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of relation between fractional reflectance and cover factor was proposed and usage of the equation was assessed by reflectance measurements. 48 dyed polyester fabrics having different constructional parameters were used and fabrics differed from each other by their cover factors. Warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in experimental sub-groups. The reflectance measurements were conducted on the dyed fabric samples as well as on the individual yarn systems (warp and weft) of the same fabrics. The proposed equation was tested according to different fabric constructional parameters and reasonable results with the experimental data were obtained. The possibilities of general use of derived mathematical relations between theoretical and measured reflectance values were researched. The relation obtained was used to explain the effects of different constructional parameters on reflectance behavior of fabric surfaces.  相似文献   

14.
In this paper, artificial neural network (ANN) model was used for predicting colour properties of 100 % cotton fabrics, including colour yield (in terms of K/S value) and CIE L, a, and b values, under the influence of laser engraving process with various combination of laser processing parameters. Variables examined in the ANN model included fibre composition, fabric density (warp and weft direction), mass of fabric, fabric thickness and linear density of yarn (warp and weft direction). The ANN model was compared with a linear regression model where the ANN model produced superior results in prediction of colour properties of laser engraved 100 % cotton fabrics. The relative importance of the examined factors influencing colour properties was also investigated. The analysis revealed that laser processing parameters played an important role in affecting the colour properties of the treated 100 % cotton fabrics.  相似文献   

15.
In the field of clothing technology, prediction of the fabric properties is very important because the fabric is the basic element of every clothing item. Knowing the fabric properties it is possible to predict fabrics’ behaviour during process of clothing manufacturing (in phase of cutting, sewing and ironing) as well as clothing items’ behaviour during usage. According to the fabrics’ characteristics and model design it is possible to predict appearances of the clothing items and their draping which can be presented with many computer simulations. In this paper extensibility of the fabric which appears during a small forces loading on the fabrics are investigated. Loading of small forces on the fabric appears in each phases of clothing manufacturing processes and during usage of clothing items. Investigations are managed on 50 fabrics which are weaving in twill weave and 100 % wool. The basic characteristics of fabric (density of warp and weft, mass per unit area, thickness) are defined according appropriate standard methods and tensile properties in the warp and weft directions are measured using KES-FB1 measuring system. Using an artificial neural network (ANN) prediction of extensibility properties of the fabrics are done, results are compared with experimental values and deviations are determined. ANN is an adaptive system that changes its structure based on external or internal information that flows through the network during the learning phase. They can be used to model complex relationships between inputs and outputs or to find patterns in data. Based on the implemented investigations, minimal deviations between experimental and predicted values are obtained and can be concluded that ANN can be used for prediction of the fabrics properties.  相似文献   

16.
Peirce’s fabric model has been widely used to predict the structural behavior of various plain woven fabrics. The structure of plain woven fabric can be defined in terms of the warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. The warp and weft yarn diameters are calculated from the warp and weft yarn numbers, and the effective coefficient of the yarn diameter is defined by using this model. We have investigated structural properties, such as the effective coefficient of the yarn diameter, yarn crimp, and fabric thickness for two different fabrics in which the constituent yarns are assumed to be either incompressible or compressible. This model is also applied to various plain fabrics woven from cotton, rayon, wool, linen, nylon, acetate, polyester, and silk yarns.  相似文献   

17.
A geometrical model of weft knitted spacer structures made with mono-filament yarn has been analysed to understand the spacer yarn path. Theoretical models have been created to predict the porosity and the radius of the capillaries of a knitted spacer structure depending on their geometrical parameters, such as course spacing, wale spacing, stitch length, fabric thickness, count of yarn and fibre density. Polyester knitted spacer fabrics were produced with different parameters; their porosity was determined by measuring the weight and compared with the theoretical porosity. The validity of the model was confirmed by experimental results. The porosity of knitted spacer structures made out of mono-filament yarn can be maintained above a certain level by adjusting the fabric parameters such as fabric thickness, course spacing and wale spacing.  相似文献   

18.
Aesthetic properties of fabrics have been considered as the most important fabric attribute for years. However, recently there has been a paradigm shift in the domain of textile material applications and consequently more emphasis is now being given on the mechanical and functional properties of fabrics rather than its aesthetic appeal. Moreover, in certain woven fabrics used for technical applications, strength is a decisive quality parameter. In this work, tensile strength of plain woven fabrics has been predicted by using two empirical modelling methods namely artificial neural network (ANN) and linear regression. Warp yarn strength, warp yarn elongation, ends per inch (EPI), picks per inch (PPI) and weft count (Ne) were used as input parameters. Both the models were able to predict the fabric strength with reasonably good precision although ANN model demonstrated higher prediction accuracy and generalization ability than the regression model. The warp yarn strength and EPI were found to be the two most significant factors influencing fabric strength in warp direction.  相似文献   

19.
Cellulase is useful for bio-polishing cotton fabrics which enhances their aesthetic performance instead of stonewashing process. Torque-free ring spun process is a widely used technique to produce newly low-twist and balanced torque yarns with soft hand. In this paper, denim fabrics woven with torque-free ring spun yarn and conventional ring spun yarn respectively were treated with cellulase under the same condition and their fabric handle, expressed as low stress mechanical properties, such as tensile strength, bending, shearing, compression and surface performance were investigated by Kawabata Evaluation System for Fabric (KES-F). After cellulase treatment, both denim fabrics revealed better flexibility, elasticity recovery, raised shearing stiffness, fluffier and improved smoothness. While torque-free ring spun yarn made denim fabric showed a better fabric handle than conventional ring spun yarn made denim fabric.  相似文献   

20.
Changing porosity of knitted structures by changing tightness   总被引:1,自引:0,他引:1  
A geometrical model of plain knitted structures is discussed in depth to understand the yarn path in a knitted loop. A theoretical model has been created to predict the porosity of a knitted structure depending on the geometrical parameters, such as course spacing, wale spacing, stitch length, fabric thickness, count of yarn and fibre density. Polyester and nylon plain knitted fabrics were produced to different tightness, and porosity was determined by measuring the weight. The validity of the model was confirmed by experimental results, using different plain knit fabrics. The porosity of a knitted structure can be changed by reducing the yarn thickness and the stitch length; however this would influence the courses and wales per unit length in the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号