首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cassava F1 population raised from the cross SC6 × Mianbao was used to construct a genetic linkage map. The map incorporated 200 polymorphic amplified fragment length polymorphism, sequence-related amplified polymorphism, simple sequence repeat (SSR), and expressed sequence tag (EST)–SSR markers which fit a 1:1 segregation ratio. It comprised 20 linkage groups (LGs) and spanned a genetic distance of 1645.1 cM with an average marker interval of 8.2 cM. Fifty-seven repeatedly detected QTLs (rd-QTLs) for three phenotypic traits (fresh root yield, root dry matter content, and root starch content) were identified in the F1 population in four trials of year 2003, 2004, 2005, and 2008 by inclusive composite interval mapping. Among the 57 rd-QTLs, 25 rd-QTLs were linked to SSR/EST–SSR markers, which will help to facilitate marker-assisted selective breeding in cassava, and 15 marker intervals on ten LGs showed pleiotropic effects.  相似文献   

2.
Quantitative trait loci (QTL) affecting resistance to south-western corn borer Diatraea grandiosella (SWCB) and sugarcane borer Diatraea saccharalis (SCB) have been identified previously in F2:3 lines and recombinant inbred lines (RILs) of tropical maize using restriction fragment length polymorphism (RFLP) analyses. Our objective was to determine whether QTLs identified in these generations are also expressed in test crosses (TC) of RILs. A population of 166 TC progenies was developed by crossing RILs from the cross CML131 (susceptible) × CML67 (resistant) with the unrelated, susceptible tester line CML216. Resistance to first-generation SWCB, measured as leaf-feeding damage (LFD) under artificial infestation, and other agronomic traits were evaluated in two environments for the TC progenies and three environments for 183 RILs. The correlation between line per se and TC performance was low for LFD and intermediate for most agronomic traits. Estimates of the genotypic variance and heritabilities were smaller in the TC progenies than in the RILs for all traits. Quantitative trait loci were identified using an RFLP linkage map with 136 loci. For LFD, four QTLs were detected in the TC progenies, of which two were in common with nine QTLs previously mapped in the RILs. Few QTLs for agronomic traits were common to the two types of progeny, because of the low consistency of QTL positions for all traits in RIL and TC progenies, the use of TC progenies should be considered in QTL mapping studies as the first step for marker-assisted selection in hybrid breeding.  相似文献   

3.
An SSR-based molecular genetic map of cassava   总被引:7,自引:2,他引:7  
E. Okogbenin  J. Marin  M. Fregene 《Euphytica》2006,147(3):433-440
Summary Microsatellites or simple sequence repeats (SSR) are the markers of choice for molecular genetic mapping and marker-assisted selection in many crop species. A microsatellite-based linkage map of cassava was drawn using SSR markers and a F2 population consisting of 268 individuals. The F2 population was derived from selfing the genotype K150, an early yielding genotype from an F1 progeny from a cross between two non-inbred elite cassava varieties, TMS 30572 and CM 2177-2 from IITA and CIAT respectively. A set of 472 SSR markers, previously developed from cassava genomic and cDNA libraries, were screened for polymorphism in K150 and its parents TMS 30572 and CM 2177-2. One hundred and twenty two polymorphic SSR markers were identified and utilized for linkage analysis. The map has 100 markers spanning 1236.7 cM, distributed on 22 linkage groups with an average marker distance of 17.92 cM. Marker density across the genome was uniform. This is the first SSR based linkage map of cassava and represents an important step towards quantitative trait loci mapping and genetic analysis of complex traits in M. esculenta species in national research program and other institutes with minimal laboratory facilities. SSR markers reduce the time and cost of mapping quantitative trait loci (QTL) controlling traits of agronomic interest, and are of potential use for marker-assisted selection (MAS).  相似文献   

4.
Vitamin A deficiency in humans is a widespread health problem. Quality protein maize (QPM) is a popular food rich in lysine and tryptophan, but poor in provitamin A (proA). Here, we report the improvement of an elite QPM inbred, HKI1128Q for proA using marker‐assisted introgression of crtRB1‐favourable allele. HKI1128 was one of the parental lines of three popular hybrids in India and was converted to QPM in our earlier programme. Severe segregation distortion for crtRB1 was observed in BC1F1, BC2F1 and BC2F2. Background selection by 100 SSRs revealed mean recovery of 91.07% recurrent parent genome varying from 88.78% to 93.88%. Across years, introgressed progenies possessed higher mean β‐carotene (BC: 9.22 µg/g), β‐cryptoxanthin (BCX: 3.05 µg/g) and provitamin A (proA: 10.75 µg/g) compared to HKI1128Q (BC: 2.26 µg/g, BCX: 2.26 µg/g and proA: 3.38 µg/g). High concentration of essential amino acids, viz. lysine (mean: 0.303%) and tryptophan (0.080%) in endosperm, was also retained. Multi‐year evaluation showed that introgressed progenies possessed similar grain yield (1,759–1,879 kg/ha) with HKI1128Q (1,778 kg/ha). Introgressed progenies with higher lysine, tryptophan and proA hold immense potential as donors and parents in developing biofortified hybrids.  相似文献   

5.
Sorghum shoot fly, Atherigona soccata is an important pest of sorghum during the seedling stage, which influences both fodder and grain yield. To understand the nature of inheritance of shoot fly resistance in sorghum, we performed generation mean analysis using two crosses IS 18551 × Swarna and M 35-1 × ICSV 700 during the 2013–2014 cropping seasons. The F1, F2, BC1 and BC2 progenies, along with the parental lines were evaluated for agronomic and morphological traits associated with resistance/susceptibility to sorghum shoot fly, A. soccata. The cross IS 18551 × Swarna exhibited significant differences between the parents for shoot fly deadhearts (%) in the postrainy season. The progenies of this cross exhibited lower shoot fly damage, suggesting that at least one of the parents should have genes for resistance to develop shoot fly-resistant hybrids. Leaf glossiness, leafsheath pigmentation and plant vigor score during the seedling stage exhibited non-allelic gene interactions with dominant gene action, whereas 100 seed weight showed both additive and dominant gene interactions. Presence of awns showed recessive nature of the awned gene. Generation mean analysis suggested that both additive and dominance gene effects were important for most of the traits evaluated in this study, but dominance had a more pronounced effect.  相似文献   

6.
Progress made in the in situ gynogenesis technique since 1990 now allows production of a high number of maize (Zea mays L.) doubled-haploid (DH) lines. The aim of the study was to compare DH lines versus selfing lines for testcross performance. DH and single-seed descent (SSD) lines were produced from random S1 progenies of a broad-base population. For grain yield, kernel moisture, plant height, ear height and leaf length, the three population means were similar. Except for kernel moisture, the genetic variance of DH lines was nearly twice as high as the genetic variance of S1 families, as expected. On the other hand, genetic variance among SSD lines was only 1.5 times higher than the genetic variance of S1 families. This lower variance could be due to a selection bias in the method of production of SSD lines. However, for all traits, heritability of SSD or DH lines was higher than heritability of S1 families. Epistasis effects in DH progenies were not significant. The consequence was a high correlation between S1 testcross progenies and DH or SSD testcross progenies, meaning that the S1 testcross value can be used to select the best families from which DH lines will be extracted. As a whole, the observed variation in DH lines appeared to be more in accordance with the observed variation among S1 families than with the observed variation among SSD lines.  相似文献   

7.
The development of cassava (Manihot esculenta Crantz) with a high yield under water-deficit conditions is one of the goal of the breeding programs. The objective of this study was to evaluate the performance and to select cassava accessions based on drought tolerance indices and productive potential under water stress. Forty-nine accessions were evaluated for five agronomic traits (plant height—PH, root yield—RoY, shoot yield—ShY, harvest index—HI; and dry matter content of roots—DMC) under full irrigation conditions and drought stress (DS). The accessions were selected based on: (i) high yield under drought conditions (HY-DS) and (ii) high drought tolerance (Dr-To) based on six different indices. Overall, water stress dramatically reduced the traits’ means (RoY—72.98%, ShY—54.95%, DMC—26.15%, HI—31.05%, and PH—32.95%). Low coincidence among the top ten accessions was identified based on HY-DS and Dr-To criteria. Therefore, considering only the most important traits (RoY and ShY), five accessions (BGM0815, BGM0598, 9624-09, BGM0818, and BRS Formosa) presented high HY-DS. In contrast, to Dr-To criterion, eight and nine accessions were selected for high yield of the aerial part (ShY and PH) and roots (RoY and DMC), respectively. The mean productivity, geometric mean productivity, and drought tolerance indices were the most promising to identify genotypes with high agronomic attributes, while drought susceptibility index, susceptibility, and yield stability index were suitable to identify the most drought tolerant accessions. This set of selected accessions can be used in breeding programs aimed at high yield and drought tolerance.  相似文献   

8.
E. E. Mahdy 《Plant Breeding》1988,101(3):245-249
The breeding materials used in this study were the F3, F4 and F5-generations of the cross between Giza 158 × Sonora 64 (Triticum aestivum L.). The objective of this study was to compare the relative merits of Smith-Hazel, desired gain selection indices, independent culling levels and single trait selection in improving grain yield, heading date and several agronomic traits. Highly significant differences among F3 families and a satisfactory genotypic coefficient of variability were obtained for all the traits studied. The genotypic correlations were high between yield and each of spike weight, kernels/spike and spikes; plant, intermediate with 1000 kernel weight and very low with heading date, plant height and spike1 length-After two cycles of selection, the results of the gains realized indicated that the most effective method for improving yield was the Smith-Hazel index (SH7) of seven traits followed by the desired gain index of seven traits (DG7), SH5, independent culling levels, DG5 and direct selection (or grain yield/plant. Direct selection for heading date, plant height and spike length was the best method for improving these traits, but undesirable correlated responses in the other traits were obtained.  相似文献   

9.
Summary The effect of a recurrent selection procedure was evaluated in a winter barley (Hordeum vulgare L.) population. Cycle zero (C0) was initiated by crossing six high yielding winter barley cultivars with the short straw cv Onice. The F1's were crossed according to a diallel scheme without reciprocals. A total of 750 S0 plants were derived and evaluated; 329 S0 plants were selected and their progenies (S1 lines) tested. Fifteen S1 lines were chosen and used as parents of cycle 1 (C1), by producing 105 F1 hybrids which simulated a random mating offspring. One hundred and three randomly chosen S1 lines belonging to C0, and 103 S1 lines belonging to C1, were evaluated at two locations.For grain yield a significant difference between cycles was observed. From C0 to C1 the grain yield increased with 307 g/m2. This increase was due to a higher number of seeds per m2. For plant height, heading date and 100-kernel weight no differences between cycles were observed.The positive results obtained in this study indicate the potential usefulness of recurrent selection for developing parents or lines superior for grain yield, with little change in other important agronomic traits.  相似文献   

10.
A plant breeding program is a long-term investment. Therefore, periodic assessment of the effectiveness of a breeding strategy is essential to maximize genetic gains per unit of time and resource invested. In this work, we assessed the effectiveness of the early-generation testing (EGT) approach used in the upland rice (Oryza sativa L.) breeding program at Embrapa (Brazilian Agricultural Research Corporation), Brazil, estimating the genetic progress achieved for three traits in two distinct phases, spanning 15 years. In the first phase (from 2003 to 2010), it was used the bulk method within F3 progenies with prior testing of F2 crosses, while in the second phase (from 2010 to 2017), it was used the bulk method within F2 progenies. The dataset comprised 70 yield trials, involving 1884 F3:5 progenies (phase I) and 925 F2:4 progenies (phase II) from an elite population, and 10 check cultivars, evaluated for grain yield (GY), plant height (PH) and days to flowering (DTF). For estimating the genetic gain, we adapted a generalized linear regression method to compute bi-segmented linear regression coefficients. Desirable genetic gains were achieved only for GY in both phases of the breeding program, with 78.75 kg ha?1 year?1 (2.68%) in the first phase, and 53.78 kg ha?1 year?1 (1.54%) in the second phase. These results show the effectiveness of EGT, especially via bulk method within F3 progenies with prior testing of F2 crosses, applied to upland rice breeding. Some refinements are discussed in the method to make it more cost-effective and more efficient in achieving genetic gains.  相似文献   

11.
The most important breeding objectives in crop improvement are improving grain yield, grain quality, and resistances to various biotic and abiotic stresses. The objectives of our study were to compare two crossing and four selection schemes for grain yield, yield traits, and slow rusting resistance to leaf rust (Puccinia recondita) based on additive genes in wheat (Triticum aestivum), and to identify the most efficient crossing and selection methodologies in terms of genetic gains and cost efficiency. Segregating populations were derived from 18 simple crosses and the same number of top (three-way) crosses. Half of the crosses were derived from Yecora 70 and the other half from Veery #10 as the common leaf rust susceptible parents. The four selection schemes were: pedigree, modified bulk (F2 and F1-top as pedigree, selected lines in F3, F4, F2-top, F3-top as bulk; and pedigree in F5 and F4-top populations), selected bulk (selected plants in F2, F3, F4, F1-top, F2-top and F3-top as bulk; and pedigree in F5 and F4-top populations), and nonselected bulk (bulk in F2, F3, F4, F1-top, F2-top and F3-top; and pedigree in F5 and F4-top populations). A total of 320 progeny lines, parents and checks were tested for grain yield, other agronomic traits and leaf rust resistance during the 1992/93 and 1993/94 seasons in Ciudad Obregon (Sonora State, Mexico) which represents a typical high yielding irrigated site. The influence of the type of cross and the selection scheme on the mean grain yield and other traits of the progenies was minimal. The selection of parents was the most important feature in imparting yield potential and other favourable agronomic traits. Moreover, the highest yielding lines were distributed equally. Progeny lines derived from Veery #10 crosses had significantly higher mean grain yield compared to those derived from the Yecora 70 crosses. Furthermore, a large proportion of the highest yielding lines also originated from Veery #10 crosses. Mean leaf rust severity of the top cross progenies was lower than that of the simple cross progenies possibly because two parents contributed resistance to top cross progenies. Mean leaf rust severity of the nonselected bulk derivatives was twice that of lines derived from the other three schemes. Selected bulk appears to be the most attractive selection scheme in terms of genetic gains and cost efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Tomatoes are the most important vegetable, globally as well as in Germany. Outdoor tomato production is seriously impaired due to increasing infections with evolving late blight (Phytophthora infestans) populations. Within organic agriculture, research is being conducted to develop regionally adapted and open pollinated cultivars of outdoor tomatoes with late blight field resistance. In the present experiment, three crosses, including wild, cocktail, and beefsteak tomatoes, were selected for field resistance against late blight in F2 at one location per cross. The comparison of positive and negative selection in F3 revealed the selection of single F2 plants to be efficient in all three crosses. F2 selection has proved to be a robust and efficient tool for breeding programs. The correlated response to selection in other traits, including yield, fruit weight, days to maturity, harvest period, and plant height, depended on the cross. It was evident that selection for desired traits combined with field resistance against late blight is promising, even in wide crosses. The most undesired attribute of wild tomatoes is the formation of shoots on leaves and in inflorescences. No correlation was observed between field resistance and shoot formation, allowing the selection of genotypes with improved field resistance and yield, but without morphological disadvantages.  相似文献   

13.
Direct and indirect selection for increased grain yield were carried out on a population of 678 F2-derived lines of oats. A selection intensity of 10% was used with direct selection (selection for grain yield itself) and with indirect selection using three criteria, harvest index, vegetative growth rate, and the index of harvest index + vegetative growth rate. Expected gains from 1978 evaluations were compared to actual gains measured in 1980. Actual grain yield increases were 4, 8, 7, and 6% from selection via harvest index, vegetative growth rate, grain yield, and harvest index + vegetative growth rate, respectively. Thus, indirect selection via vegetative growth rate gave a greater increase in grain yield than did direct selection. Heritability values computed via components of variance ranged from 0.50 to0.57 for the three traits, harvest index, vegetative growth rate, and grain yield, whereas regression heritabilities ranged from 0.41 to 0.55. Realized heritabilities were 0.33, 1.00 and 0.89 for the three traits, respectively. Selection via all criteria caused significant changes in nearly all agronomic traits except weight per volume. Vegetative growth rate, which gave the greatest gain in grain yield, caused less drastic changes in days to anthesis, plant height, biological yield, and vegetative yield than did direct selection for grain yield.  相似文献   

14.
Availability of genetic diversity is important in selecting suitable cultivars for crop improvement. Progenies of crosses between 19 farmer-preferred cassava landraces and Cassava Mosaic Disease (CMD)-resistant cultivar TME 11 were evaluated and compared with their maternal parents to assess their genetic variability and genetic gains based on CMD tolerance, some growth variables and root yield. The combined analysis of variance for the traits showed significant genotypic differences amongst the progenies and the parents. Apart from a few instances, the differences in replications and years were also significant. Genetic variability components showed high heritability ranging from 92.3 to 99.6% and moderately high genetic gains of 54.1 to 99.6% for the parental cultivars. Apart from canopy spread and plant height, heritability and genetic gains of the progenies were slightly lower than the parents indicating high variability within families of the progenies. The phenotypic coefficient of variation was slightly greater than genotypic coefficient of variation indicating minimal influence of environment on the genotypes. For most of the characters evaluated, the mean performance of the progenies was higher than their corresponding parental lines. Although the genotypes differed significantly (P < 0.001) for all traits evaluated, cultivars such as Afebankye, Bosome nsia, Cedi bankye, 262 Debor, Kwadaso 25, Nkaakom 57 and Sisipe were found to constitute a pool of germplasm with adequate variability. The negative correlation between CMD incidence and other traits evaluated showed significant progress made in the breeding program.  相似文献   

15.
Degree of the association between line per se performance (LP) and testcross performance (TP) is important in breeding programs and simultaneous improvement of commercial hybrids and their parental lines. This experiment was designed to study genetic variability and genetic correlation for several agronomic traits in two maize (Zea mays L.) broad-based populations (NS12-SG and NS14-SG). Independent trials with 80 entries of S1 progenies as well as their testcrosses were arranged according to an incomplete block design with replicates in sets. Grain yield, stay green, anthesis-silking interval, stalk water content and grain moisture were evaluated in four environments. The anthesis-silking interval had the highest genetic variation, followed by stay green. High heritability estimates (>0.50) for all traits, pointed out that further selection would be possible. Genetic correlations between line per se and testcross performance were lowest for grain yield (0.396** and 0.592**, for NS12-SG and NS14-SG, respectively), and highest for grain moisture (0.937** and 0.821**, respectively). High correlations between line per se and their testcrosses for stay green, anthesis-silking interval, stalk water content and grain moisture indicated that additive gene action might be more important than dominance in controlling the expression of these traits.  相似文献   

16.
Improvement of maize populations for resistance to downy mildew   总被引:1,自引:0,他引:1  
Upgrading levels of disease resistance are a primary objective of maize breeding programmes. Efficacy of S1 recurrent selection in improving levels of resistance to downy mildew (DM) infection was assessed in Nigeria from 1997 to 2000 in six maize populations. Improvement procedures consisted of evaluating S1 progenies under artificial infection with DM spores and in disease‐free environments and using a selection index to combine selection for reduced DM infection with appropriate agronomic characters from more than one environment. Three to four cycles of selection were completed in each of the populations. Products from the different cycles of selection were evaluated and data collected on DM infection parameters and agronomic traits. Result obtained showed 3–4 cycles of selection were adequate to reduce DM infection levels significantly and increase grain yield. Downy mildew infection decreased by between 58 and 100% while grain yield increases ranged from 10 to 98% for the 2‐4 cycles of selection relative to the C0 (original). Selection increased grain yield with acceptable changes in plant height while maintaining maturity in disease‐free environments.  相似文献   

17.
Black shank, a fuagal disease caused by Phytophthora parasitica var. nicotianae, is a major hazard in the production of burley tobacco (Nicotiutta tubacum L.). Moderate levels of resistance have been bred into cultivars, but little success has been achieved in utilizing high levels of resistance found in the cigar line. Beinhart 1000-1. Beinhirt 1000-1 and seven burley cultivars were combined into a synthetic population and three cycles of selection for increased black slunk resistance were conducted. The objectives of this study were (i) t0 estimate genetic variability for agronomic traits in the original base population (Co) and die three selection cycles and (ii) to characterize the effects of selection for black shank resistance on the agronomic traits. Fifty selfed lines From the base population and each of three selection cycles were evaluated in replicated field trials at Lexington and Princeton, KY. Differences among cycle means for six agronomic traits were not statistically significant. Genetic variation for the six traits among lines within cycles was highly significant and did not change during selection. The results indicated that previously assumed associations between black shank resistance in Beinhart 1000-1 and undesirable agronomic traits were due to chromosomal linkages which were apparently broken by intercrossing. The C3 population would be a useful base population for selection to improve agronomic performance in black shank resistant genotypes.  相似文献   

18.
A 5-year selection programme was conducted to obtain an unbranched type of castor plant suitable for efficient mechanical harvesting. Each population (Sn) consisted of several progenies obtained from the selfed main raceme of unbranched plants selected in the previous generation (Sn-1). After self-fertilization of all individuals, selection was conducted in the autumn, at the end of the cycle, so as to have fully developed plants. Unbranched plants were counted in each generation. Comparisons between populations showed significant differences owing to increased recovery of the selected phenotype over the generations. The final population could be useful as a source for the development of improved cultivars in future breeding programmes.  相似文献   

19.
Ten meadow bromegrass genotypes tested as half‐sib (polycross, PX; open‐pollinated, OP) and selfed (S1) progenies were surveyed using random amplified polymorphic DNA. Fourteen primers, which produced 32 markers, were selected to determine the genotypes of 360 individuals from the three progeny tests. Analysis of molecular variance was performed in each progeny test, and genetic distances between genotypes and progeny types were determined. Among genotype genetic variation in half‐sib (PX and OP) progenies was similar. Genetic variation among genotypes for S1 progenies (30.5%) was about twice that found in the half‐sib progenies. Variation between individual S1 progenies ranged from 15.7% to 50.1%, while in the half‐sib progenies, the range was 6.9‐24.1%. Based on average distances between progeny types for a given genotype, OP and PX were closer to each other than to the S1. An analysis of variance of the molecular marker frequency occurrence was performed for 12 plants within each progeny type of each genotype. Marker frequencies, expressed in percentages, ranged from 10.7% to 84.3%. No significant differences were found for genotype and progeny type‐genotype interaction suggesting that all genotypes behave in a similar manner across the different progeny types.  相似文献   

20.
Pseudostems of bunching onion (Allium fistulosum L.) show wide variation in morphological traits and skin color. However, despite being one of the most important agronomic traits, molecular studies of bunching onion pseudostems remain limited. In this study, six morphological traits (plant height, leaf length, pseudostem length, leaf width, pseudostem width and number of leaf sheaths) along with pseudostem pigmentation indices were evaluated in two field trials using an F2:3 population derived from a single F1 cross between a white single pseudostem (non-tillering) and a red tillering bunching onion. Plant height was highly correlated with both leaf length and pseudostem length, but not the number of leaf sheaths. In contrast, the number of leaf sheaths was significantly negatively correlated with both leaf width and pseudostem width. A total of 27 QTLs for the six morphological traits were detected in 16 regions of 11 linkage groups, with a major QTL for the number of leaf sheaths repeatedly detected on Chr. 8. Meanwhile, two QTLs associated with pseudostem pigmentation were repeatedly detected on linkage groups Chr. 4a and Chr. 5a-2. The latter (qPig5a-2) was considered a major QTL, and its location estimated by marker genotyping of the F2 population around the qPig5a-2 region as being within a 7.6 cM interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号