首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Murad  Zaryab  Ahmad  Ijaz  Waleed  Muhammad  Hashim  Saima  Bibi  Sobia 《Gesunde Pflanzen》2022,74(1):151-158

A pot experiment was conducted at Institute of Biotechnology and Genetic Engineering (IBGE), University of Agriculture Peshawar, Pakistan. To conduct the experiment, eight kilograms of air-dried soil were taken in each pot and the amendment biochar was added and mixed properly at different levels like 0%, 1%, 2% and 4% (w/w), respectively. All pots were spiked with Cd solution at the concentration of 10?mg kg?1. The treatments were arranged in completely randomized design (CRD). Fourteen days old nursery plants of rice Oryza sativa L. were transplanted into pots. Five rice plants were grown in each pot. After transplantation of rice plant, the nitrogenous and phosphatic fertilizers (Urea and DAP) were incorporated at the standard rate. Standing water condition was kept for rice grown in pots. Rice plants were harvested after 70 days germination. Soil samples were collected from each pot after plant harvesting. After soil analysis, the given data elaborated that the concentration of Cd in soil was stabilized by the amendment from 8.7?mg kg?1 (0%) to 4.2?mg kg?1 (4%). Among the other soil parameters the minimum soil pH (7.31), EC (0.151?dSm?1), soil organic matter (0.63%), N (0.13%), P (4.72?mg kg?1) and K (55.6?mg kg?1) were noted at 0% biochar application, while maximum pH (8.23), EC (0.231?dSm?1), soil organic matter (1.67%), N (0.25%), P (8.96?mg kg?1) and K (93?mg kg?1) were found in the pot treated with 4% biochar. Hence, it was concluded that Cd was significantly immobilized with 4% biochar application.

  相似文献   

2.
The long-term fate of the acaricide, fenbutatin oxide, in soil has been investigated. Residues of the compound and its two principal metabolites have been determined in soil samples obtained from citrus orchards in Italy and Spain where the product had been applied commercially over a period of 6–10 years. The average fenbutatin oxide content in the upper 0–15 cm soil layer ranged from ? 1 mg kg?1 to 5 mg kg?1 in sites receiving single and double applications per year. The residues were located primarily (> 95%) in the top 0–30 cm layer and there was virtually no movement of the compound through the soil to lower depths. Below 0.5 m depths, the sites contained average concentrations of ? 0.01 mg kg?1, the limit of determination. No significant build-up of residues was observed and the data indicate an approximate half-life in soil of just less than one year. Residues of the two metabolites, dihydroxy-bis(2-methyl-2-phenylpropyl)stan-nane and 2-methyl-2-phenylpropyl stannonic acid, were on average 11% and 16% of the fenbutatin oxide concentration, respectively. As with fenbutatin oxide, there was no significant movement through the soil to lower levels.  相似文献   

3.
The study was conducted in Taftan rangeland in Sistan and Baluchestan, Iran, to study the effects of grazing exclusion on reclamation of vegetation cover and soil properties. After a comprehensive assessment of the vegetation types, plant sampling was carried out in sampling stands (50?×?50?m). In each stand, vegetation properties were measured using simple transect lines (50?m) method within quadrats (5?×?5?m), with a systematically randomized method. Soil sampling (75 samples) was performed along transects from the surface layer (0–30?cm). Results showed that livestock exclusion significantly affected community characteristics. The species richness (14.32), diversity (2.97), and plant cover (65.14%) showed their maximum level in the 15-year exclusion. The soil nutrient content increased during exclusion. Organic carbon (4.20%), total nitrogen (1.12%), available potassium (393.33?mg?kg?1), and available phosphorus content (17.13?mg?kg?1) attained significantly greater values under the long-term exclusion. The soil pH level (8.93) was significantly higher in the overgrazed site compared to the grazing exclusion sites. The soil electrical conductivity was statistically similar under the three treatments. The amounts of silt (63.40%) and clay (14%) were greater in the long-term exclusion compared with overgrazed rangeland. The long-term exclusion showed the lowest amount of sand (22.50%). These results imply that livestock exclusion plays an important role in vegetation restoration and soil conservation of degraded ecosystems in arid regions. We suggest that more studies are required to investigate the effect of livestock exclusion on ecosystem process in the arid rangeland regeneration.  相似文献   

4.
The study deals with the effect of common, annually-used pesticides on soil microorganisms, pesticide residues in soil, and carrot (Daucus carota) yields in Central Finland. Linuron residues in carrot roots were also analysed. Thiram+lindane and dimethoate were applied from 1973–1981 at the commercially recommended doses on experimental plots of carrots, linuron was applied at twice the recommended rate from 1973–1979 and at the normal rate thereafter and in addition TCA was applied in 1978. Maleic hydrazide was used in the years 1973–1976, and glyphosate after 1977. The numbers of different soil microorganisms, their activities and the pesticide residues were studied from autumn 1978 to 1981. The pesticide treatments reduced the growth of soil algae but increased the total number of microorganisms and the number of aerobic spore-forming bacteria. Linuron residues in the soil were 0.9–2.8 mg kg?1 in the growing season and 1.2–1.7 mg kg?1 in the autumn, 3 months after application. The residues of glyphosate in the soil were 0.7 mg kg?1 in the autumn, 41 days after the treatment, and had declined to a level of about 0.2 mg kg?1 by the following summer. In the pesticide-treated plots the carrot yield was only 20–60% of the yield in the hand-weeded plots. The herbicide programme controlled most of the annual weeds but not couchgrass Elymus repens and milk sow-thistle Sonchus arvensis.  相似文献   

5.
Residues of iprodione and vinclozolin were measured following repeated application of the fungicides to a sandy loam soil in the laboratory. There was a progressive increase in rates of degradation with successive treatments. With iprodione, for example, the times for 50% loss of the first and second applications were about 23 and 5 days respectively. When treated for the third time, less than 10% of the applied dose remained in the soil after just 2 days. Similar results were obtained with vinclozolin in the same soil, and with both compounds in a second soil. In a third soil, which had relatively low pH, degradation of both compounds occurred only slowly and the rate of degradation of a second application was the same as that of the first. Degradation rates in this soil were increased by addition of 100 g kg?1 of a soil in which degradation occurred more readily, and they were markedly increased by addition of 100 g kg?1 of a soil in which enhanced degradation had been previously induced. Residues of both fungicides were also measured following repeated application in the field. When iprodione was applied to previously untreated plots, about 3% of the initial dose remained in the soil after 77 days. When applied to plots treated once before, less than 1% remained after 18 days, and when applied to plots treated twice previously less than 1% remained after 10 days. Similar results were obtained with vinclozolin. Enhanced degradation of subsequent soil treatments was also observed following a sequence of low-dosage sprays in the field.  相似文献   

6.
In order to obtain residue data from the application of the algicide endothal in Italian rice paddy fields, two experiments were carried out using a 50 g kg?1 granular formulation in a small pond and the same granular and two liquid formulations in actual paddy fields of the Italian rice growing area. Endothal decay in the pond water was very rapid, reaching residue levels of 0·01-1·02 mg litre?1 in two days and 0·004-0·01 mg litre?1 at the third day. The muddy soil of the pond was free from measurable endothal residues( <0·02 mg kg?1). In the paddy-field waters, the endothal decay was slower, with an average half-life time of 3·3 days, independently of the type of formulation. The actual residues in water after 6 days ranged from 0·3 to 1·3 mg litre?1 according to the initial amount of product applied, and, consequently, to the initial concentration in water. Rice samples collected at the normal harvest time from the two paddy fields, treated with three different formulations, showed no endothal residue at the minimum detectable level of 0·01 mg kg?1.  相似文献   

7.
Batch adsorption Koc values of fluroxypyr-methylheptyl ester (20000 1kg?1) and fluroxypyr (74 1kg?1) indicate increased mobility after hydrolysis of the ester to fluroxypyr. After 1 to 2 weeks incubation time in four soils, desorption Koc values of fluroxypyr were 100-200 1kg?1 but increased to 400-700 1kg?1 after 8 weeks. The increase in desorption Koc was related to incubation time and not to concentration, and it was interpreted as an entrapment of the fluroxypyr within the soil organic matter. Similar increases in desorption Koc with incubation time were noticed for pyridinol and methoxypyridine metabolites of fluroxypyr. Koc values also increased along the metabolic sequence fluroxypyr/pyridinol/methoxypyridine, with maximum Koc values of 3000-4000 1 kg?1 for the methoxypyridine metabolite. Hence mobility of the fluroxypyr aromatic ring strongly decreases with increased residence time in the soil.  相似文献   

8.
Determination of sugarbeet herbicides such as chloridazon, metamitron and phenmedipham in soil samples is described. After extraction with acetone, pesticides were determined by HPLC on an RP-18 column using methanol/water as mobile phase. Average recoveries were 82% for chloridazon, 93% for metamitron and 77% for phenmedipham. Quantification limits were 3·5 μg kg?1 for chloridazon, 6·3 μg kg?1 for metamitron and 3·6 μg kg?1 for phenmedipham.  相似文献   

9.
A. HELWEG 《Weed Research》1987,27(4):287-296
MCPA was weakly absorbed in soils with 2.4, 3.0 and 2.9% humus. Kd-values were 0.7, 0.9 and 1.0, respectively. In soil, not previously treated with MCPA, the degradation of 0.05 mg kg?114C-MCPA followed first-order reaction kinetics whereas degradation of 5 mg kg?1 was only first-order for 2 weeks; exponentially increasing degradation rates followed indicating enrichment of the soil with MCPA decomposers. Degradation was monitored by evolution of 14CO2. The influence of temperature on degradation of MCPA (4 mg kg?1) could initially be described by Q10 values or by the Arrhenius equation. After 1 day of incubation in two field soils Q10 values were 3.3 and 2.9, respectively, between 0°C and 29°C; the activation energies were 87 and 76 kj mol?1. Exponentially increasing degradation rates followed with doubling times of about 4.0, 1.8, 1.2 and 0.6 days at 6,10, 15 and 21°C, respectively. After 51 days of incubation, at temperatures between 6°C and 29°C, about 60%14C was evolved in CO2 and only traces of MCPA were left in the soil. At 0°C and at 40°C only 1% and 10%14C, respectively, were evolved as CO2 after 51 days. 14C-MCPA (4 mg kg?1) was incubated at moisture contents from that in air-dried soil to 2.3 times field capacity. Optimum for degradation was from 0.6 to 1.2. field capacity. Degradation was very slow where water contents were below the level of wilting point and was nil in air-dried soil. In wet soil degradation was delayed, but even in water-logged soil (2.3 times field capacity) MCPA was decomposed after 4 to 5 weeks at 10°C.  相似文献   

10.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

11.
BACKGROUND: Sorption largely controls pesticide fate in soils because it influences its availability for biodegradation or transport in the soil water. In this study, variability of sorption and desorption of isoxaflutole (IFT) and its active metabolite diketonitrile (DKN) was investigated under conventional and conservation tillage. RESULTS: According to soil samples, IFT KD values ranged from 1.4 to 3.2 L kg?1 and DKN KD values ranged from 0.02 to 0.17 L kg?1. Positive correlations were found between organic carbon content and IFT and DKN sorption. IFT and DKN sorption was higher under conservation than under conventional tillage owing to higher organic carbon content. Under conservation tillage, measurements on maize and oat residues collected from the soil surface showed a greater sorption of IFT on plant residues than on soil samples, with the highest sorbed quantities measured on maize residues (KD ≈ 45 L kg?1). Desorption of IFT was hysteretic, and, after five consecutive desorptions, between 72 and 89% of the sorbed IFT was desorbed from soil samples. For maize residues, desorption was weak (<50% of the sorbed IFT), but, after two complementary desorptions allowing for IFT hydrolysis, DKN was released from maize residues. CONCLUSION: Owing to an increase in organic carbon in topsoil layers, sorption of IFT and DKN was enhanced under conservation tillage. Greater sorption capacities under conservation tillage could help in decreasing DKN leaching to groundwater. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
Zinc (Zn) is an essential micronutrient for crop growth. This metal can be found in chemical forms or fractions in the soil. The objective of this study was to investigate the distribution of Zn in special chemical forms using the sequential extraction method after treating eight calcareous soils by zinc sulfate and municipal solid waste (MSW) compost. Zn was separated in seven defined forms as exchangeable (Ex), carbonate (Car), organic (Om), manganese oxide bound (MnOX), amorphous iron oxide bound (FeAOX), crystalline iron oxide bound (FeCOX), and residual (Res). According to the results, the mean concentrations of Zn in chemical forms in untreated soils from higher to lower were 31.84, 8.13, 2.64, 2.57, 0.45, 0.39, and 0.16?mg?kg?1 for the Res, FeCOX, Car, FeAOX, Om, MnOX, and Ex forms, respectively. The total applied Zn to the studied soils from both the sources of zinc sulfate and MSW compost after incubation for 30 days was converted to chemical forms in the following order: Car?>?Res?>?FeCOX?>?Om?>?FeAOX?>?MnOX?>?Ex. On average, 30.3% of total Zn from zinc sulfate and 28.8% of total Zn in the MSW compost were converted into the Car form. The high content of calcium carbonate (CaCO3) in the studied soils is an important factor affecting the conversion of Zn forms, mostly in the Car form through the application of both the inorganic and the organic sources of Zn.  相似文献   

13.
Following experimental and commercial applications to soil of a granular formulalation of phorate (O,O-diethyl S-ethylthiomethyl phosphorodithioate), residues in the soil and in lettuce were determined by gas-liquid chromatography. When applied by the bow-wave method as a continuous logarithmically-changing dose ranging from approximately 0.9 to 16.0 kg a.i. ha?1, the proportional rate of oxidation in soil of phorate sulphoxide to phorate sulphone was inversely related to dose. Ten weeks after application, total phorate residues in the soil had declined by about 35% at all dose levels. Residues in mature lettuce, from the 1-5 kg ha?1 dose-range, comprised the parent and oxygen analogue sulphoxides and sulphones; the relative proportions of the individual metabolites were independent of dose. Over this dose-range, total residue concentrations in the crop became proportionally slightly greater with increasing dose. When single doses of 1.1, 2.0 or 2.2 kg a.i. ha?1 were applied at drilling, the total residue concentrations in the lettuce declined from 5 mg kg?1 in seedlings from some treatments to <0.05 mg kg?1 at harvest. In plants raised in peat blocks containing 10 or 20 mg a.i. per block, however, residues in seedlings totalled 45-47 mg kg?1 and declined to only 0.7 mg kg?1 at harvest. It was concluded that bowwave applications of phorate when field-sowing lettuce were unlikely to lead to unacceptable residues in the harvested crop, but that residues in lettuce raised in phorate-treated peat blocks may be unacceptably high.  相似文献   

14.
A study has been made of the influence of pesticides used annually on soil microorganisms and crop yields. The persistence of these pesticides in the soil was also investigated. The herbicides MCPA, glyphosate, maleic hydrazide and tri-allate, and the insecticide parathion, were applied on experimental plots on which barley was grown during the years 1973-1981. The fungicide 2-methoxyethylmercury chloride was used every year for dressing the seeds grown in pesticide-treated plots. The pesticide treatments did not affect significantly the numbers of several groups of soil microorganisms. A slight increase was, however, observed in the nitrification activity in the soil. The barley yields were on average higher on pesticide-treated plots than on controls because of successful weed control. Pesticide residues in the soil were generally very low; for example, for parathion they were below 0.02 mg kg?1 within 11 days, and for MCPA 0.06 mg kg?1 within 7 days. However, the glyphosate residue was 1.6 mg kg?1 in the autumn 2 days after the treatment, and the residue settled to a level of 0.2 mg kg?1 during the following summer. No clear dependence was observed between the residue level and the time between treatment and sampling.  相似文献   

15.
施用纳米氧化锌对小麦籽粒锌含量和锌利用率的影响   总被引:1,自引:0,他引:1  
采用田间小区试验,设置不施锌、土施硫酸锌、喷施硫酸锌、土喷结合硫酸锌以及土施纳米氧化锌、喷施纳米氧化锌和土喷结合纳米氧化锌7个处理,研究了不同锌肥施用方式对小麦产量、锌等微量元素含量和累积量以及锌利用率的影响。结果表明,各施锌处理对小麦籽粒产量均没有显著影响,而施用纳米氧化锌则显著增加籽粒锌含量,单独土施使锌含量从对照的18.9 mg·kg~(-1)增加至24.6 mg·kg~(-1),增幅达30%;单独喷施籽粒锌含量增加至28.4 mg·kg~(-1),增幅达50%;土喷结合处理籽粒锌含量增加至30.2 mg·kg~(-1),增幅达60%。单独喷施纳米氧化锌处理较硫酸锌处理提高籽粒锌强化指数近3倍,达到9.7 mg·kg~(-1);籽粒铁含量较喷施硫酸锌提高近2.5倍,达到58.9mg·kg~(-1)。同时,单独喷施纳米氧化锌显著增加了叶片锌累积量,使得地上部锌利用率达到35%,较硫酸锌处理增加近4倍,差异达到显著水平。由此可见,喷施纳米氧化锌较硫酸锌对提高小麦籽粒锌铁含量有更好的效果,可能由于纳米颗粒的小尺寸效应降低了叶片上锌的脱落。  相似文献   

16.
The dissipation of mecoprop in wheat (Triticum aestivum L.) and oat (Avena sativa L.) was monitored over a growing season following post-emergence application of the dimethylamine salt of mecoprop to each crop at 1·1 kg ha?1. Residues of mecoprop, as its methyl ester, were determined gas chromatographically using electrolytic conductivity detection. Initial residues in wheat (119 (±20) mg kg?1) and oat (95·3 (± 10·0) mg kg?1) on the day of application (four-leaf stage of wheat and four- to five-leaf stage of oat) decreased to 0·1 to 0·2 mg kg?1, respectively, within six weeks. Residues were non-detectable in the mature seed of both crops. Recoveries of mecoprop were in the order of 90% from the green tissue and seed of both crops fortified at 0·05 mg kg?1.  相似文献   

17.
18.
Carbofuran was incubated in top‐soil and sub‐soil samples from a pesticide‐free site at a range of initial concentrations from 0.1 to 10 mg kg−1. Amounts of the incubated soils were removed at intervals over the subsequent 12 months, and the rate of degradation of a second carbofuran dose at 10 mg kg−1 was assessed. An applied concentration as low as 0.1 mg kg−1 to top‐soil resulted in more rapid degradation of the fresh addition of carbofuran for at least 12 months. The degree of enhancement was generally more pronounced with the higher initial concentrations. When the same study was conducted in sub‐soil samples from the same site, an initial dose of carbofuran at 0.1 mg kg−1 resulted in only small increases in rates of degradation of a second carbofuran dose. However, degradation rates in the sub‐soil samples were, in many instances, considerably greater than in the corresponding top‐soil samples, irrespective of pre‐treatment concentration or pre‐incubation period. Initial doses of 0.5 mg kg−1 and higher applied to sub‐soil successfully activated the sub‐soil microflora. Application of the VARLEACH model to simulate carbofuran movement through the soil profile indicated that approximately 0.01 mg kg−1 of carbofuran may reach a depth of 70 cm 400 days after a standard field application. The results therefore imply that adaptation of the sub‐soil microflora (c 1 m depth) by normal field rate applications of carbofuran is unlikely to occur. In experiments to investigate this in soils exposed to carbofuran in the field, there was no apparent relationship between top‐soil exposure and degradation rates in the corresponding sub‐soils. The results further confirmed that some sub‐soil samples have an inherent capacity for rapid biodegradation of carbofuran. The high levels of variability observed between replicates in some of the sub‐soil samples were attributed to the uneven distribution of a low population of carbofuran‐degrading micro‐organisms in sub‐surface soil. There was no apparent relationship between soil microbial biomass and degradation rates within or between top‐soil and sub‐soil samples. © 2001 Society of Chemical Industry  相似文献   

19.
A 5-year field study was conducted on the effect of plant residue management on soil erosion, runoff, bulk density, penetration resistance, and organic carbon. There were three treatments: burning residues on field (BR), returning residues unto the soil surface after harvesting (TR), and removing residues from soil surface (RR) (control treatment). At the end of the 5-year treatment, a rainfall simulation at 90?mm?h?1 was applied to each plot. After rainfall simulation started, the runoff volume and soil loss amount in samples were collected at four sampling times. The results showed that the runoff volume for BR (from 145.5?±?12.2 to 190.0?±?11.8?mL) differed significantly (p?≤?0.01) from that of RR (from 32.3?±?5.5 to 67.5?±?11.1?mL) and TR (from 10.0?±?0.7 to 16.7?±?3.3?mL). A significant difference (p?≤?0.01) was also observed between RR and TR regarding runoff volume and soil loss amount in different sampling times, except for the first sampling time (2–4?min). The runoff volume in BR and TR was 215% higher and 294% lower than that of the control (RR), respectively. As compared to the control (RR), soil loss decreased by 96.5% in TR but increased by 192% in BR. The BR increased soil bulk density and penetration resistance by 4.9% and 12.4%, whereas TR reduced them by 2.1% and 15.8%, respectively, as compared to the control (RR). The results indicated that the highest (0.35) and lowest (0.03) runoff coefficients were obtained for BR and TR treatments, respectively. It is concluded that returning plant residues to soil is the best residue management practice in decreasing soil runoff volume and controlling soil erosion in semi-arid regions.  相似文献   

20.
Field trials with various pesticide combinations were carried out on bulk wheat in commercial silos in Queensland, South Australia and Western Australia. Laboratory bioassays on samples of treated grain at intervals over 8 months using malathion-susceptible and malathion-resistant strains established the following orders of efficacy: against Sitophilus oryzae (L.), chlorpyrifos-methyl 10 mg kg?1 + bioresmethrin 1 mg kg?1 = methacrifos 15 mg kg?1 in aerated storage > pirimiphos-methyl 4 or 6 mg kg?1 + bioresmethrin 1 mg kg?1 = bioresmethrin 4 mg kg?1 + piperonyl butoxide 16 mg kg?1; against Rhyzopertha dominica (F.), bioresmethrin 4 mg kg?1 + piperonyl butoxide 16 mg kg?1 > methacrifos 15 mg kg?1 > chlorpyrifos-methyl 10 mg kg?1 + bioresmethrin 1 mg kg?1 = pirimiphos-methyl 4 or 6 mg kg?1 + bioresmethrin 1 mg kg?1. All treatments completely prevented production of progeny in Sitophilus granarius (L.), Tribolium castaneum (Herbst), T. confusum Jackquelin du Val and Oryzaephilus surinamensis (L.). The biological efficacy of methacrifos was greater and the rate of degradation lower in aerated than in non-aerated storage. Residue levels of all compounds were determined chemically and were below proposed international residue levels to be considered by the Codex Alimentarius Commission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号