首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Static headspace (SHS), headspace solid phase microextraction (HS-SPME), headspace sorptive extraction (HSSE), and direct thermal desorption (DTD) were applied to the analysis of four French virgin olive oils from Corsica. More than 60 compounds were isolated and characterized by GC-RI and GC-MS. SHS was not suited to the characterization of olive oil volatile compounds because of low sensitivity. The SPME and HSSE techniques were successfully applied to olive oil headspace analysis. Both methods allow the characterization of volatile compounds (mainly C(6) aldehydes and alcohols), which contribute significantly to the "green" flavor note of virgin olive oils. The PDMS stir bar showed a higher concentration capacity than a DVB/CAR/PDMS SPME fiber due to the higher volume of polymeric coating. DTD was a very good tool for extracting volatile and especially semivolatile compounds, such as sesquiterpenes, but requires a significant investment like that for HSSE. Finally, SPME may be a more appropriate technique for routine quality control due to its operational simplicity, repeatability, and low cost.  相似文献   

2.
Changes in the volatility of selected flavor compounds in the presence of nonvolatile food matrix components were studied using headspace solid-phase microextraction (HS-SPME) combined with GC-MS quantification. Time-dependent adsorption profiles to the SPME fiber and the partition coefficients between different phases were obtained for several individual volatiles, showing that HS-SPME analysis with a short sampling time can be used to determine the "true" headspace concentration at equilibrium between the headspace and a sample matrix. Equilibrium dialysis followed by HS-SPME/GC-MS was carried out to confirm the ability of HS-SPME extraction for monitoring the free volatile compounds in the presence of proteins. In particular, a short sampling time (1 min) avoided additional extraction of volatiles bound to the protein. Interactions between several selected flavor compounds and nonvolatile food matrix components [beta-lactoglobulin or (+)-catechin] were also studied by means of HS-SPME/GC-MS analysis. The volatility of ethyl hexanoate, heptanone, and hexanal was significantly decreased by the addition of beta-lactoglobulin compared to that of isoamyl acetate. Catechin decreased the volatility of ethyl hexanoate and hexanal by 10-20% and increased that of 2-heptanone by approximately 15%. This study indicates that HS-SPME can be a useful tool for the study of the interactions between volatile compounds and nonvolatile matrix components provided the kinetic and thermodynamic behavior of the volatiles in relation to the fiber chosen for the studies is carefully considered.  相似文献   

3.
Headspace solid-phase microextraction (HS-SPME) -gas chromatography using flame ionization detection and multivariate analysis were applied to the study of the specificity of protected designation of origin (PDO) virgin olive oils produced in a southern French region (Alpes-Maritimes) based on their volatile compounds. A total of 35 PDO olive oils from Nice, 6 commercial oils, and 12 other French PDO olive oils were analyzed. Recorded data were subjected to principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The method developed here was able to perfectly distinguish different qualities of olive oils. Representative samples from each class obtained by chemometric treatment were analyzed by HS-SPME and GC-MS. PCA and SIMCA of chromatographic data were related to sensory analysis and led to a better understanding of the chemical features and observed sensory effects of olive oils.  相似文献   

4.
Modifications of virgin olive oil subjected to accelerated storage were evaluated by HS-SPME analysis. To find a suitable marker of oxidative degradation, the volatile compounds showing variable concentration during the oxidative process have been identified and quantified by SPME coupled to GC-MS and GC-FID, respectively. The SPME analysis results were then compared with the parameters usually applied to assess the oxidative status of lipids, such as peroxide value, spectrophotometric absorbance, and loss of unsaturated fatty acids. Finally, the assessment of nonanal has been suggested as a marker of oxidative degradation. This rapid, inexpensive, and reliable method may allow screening of oils prior to testing by a panel of assessors.  相似文献   

5.
Nondialyzable and water-insoluble melanoidins, isolated from a glucose/glycine model reaction mixture, which was prepared in a standardized way according to the guidelines of the COST Action 919, were heated at different temperatures ranging from 100 to 300 degrees C. Among the volatile compounds, which were analyzed by SPME and GC-MS, pyrazines, pyridines, pyrroles, and furans were detected. In general, total amounts of volatile compounds increased with the temperature. When water-insoluble melanoidins were heated, especially at higher temperatures, this resulted in a higher diversity of isolated compounds. For furans, pyrroles, pyrazines, and carbonyl compounds a maximum was observed in the case of high molecular weight melanoidins around 200-220 degrees C. Pyridines and total oxazoles, however, were generated in higher yields with increasing temperatures. These results demonstrate the possibility of producing some flavor-significant volatiles from heated standard melanoidins at temperatures relevant to food preparation and contribute to the flavor aspects originating from melanoidins.  相似文献   

6.
The effects of high hydrostatic pressure on volatile generation in milk were investigated in this study. Raw milk samples were treated under different pressures (482, 586, and 620 MPa), temperatures (25 and 60 degrees C), and holding times (1, 3, and 5 min). Samples submitted to heat treatments alone (25, 60, and 80 degrees C for 1, 3, and 5 min) were used for comparison. Trace volatile sulfur compounds were analyzed using solid-phase microextraction (SPME) and gas chromatography (GC) with pulsed-flame photometric detection (PFPD), whereas the rest of the volatile compounds were analyzed using SPME-GC with flame ionization detection (FID). Multivariate analysis of variance (MANOVA) and principal component analysis (PCA) were used to study the effect of pressure, temperature, and time on volatile generation. Relative concentration increases of 27 selected volatile compounds were compared to an untreated sample. It was found that pressure, temperature, and time, as well as their interactions, all had significant effects (P < 0.001) on volatile generation in milk. Pressure and time effects were significant at 60 degrees C, whereas their effects were almost negligible at 25 degrees C. The PCA plot indicated that the volatile generation of pressure-heated samples at 60 degrees C was different from that of heated-alone samples. Heat treatment tended to promote the formation of methanethiol, hydrogen sulfide, methyl ketones, and aldehydes, whereas high-pressure treatment favored the formation of hydrogen sulfide and aldehydes.  相似文献   

7.
The effect of different drying treatments on the volatiles in bay leaf (Laurus nobilis L.) was studied. Simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) were compared by gas chromatography-mass spectrometry (GC-MS) of the volatile components in bay leaves. SDE yielded better quantitative analysis results. Four drying treatments were employed: air-drying at ambient temperature, oven-drying at 45 degrees C, freezing, and freeze-drying. Oven drying at 45 degrees C and air-drying at ambient temperature produced quite similar results and caused hardly any loss in volatiles as compared to the fresh herb, whereas freezing and freeze-drying brought about substantial losses in bay leaf aroma and led to increases in the concentration levels of certain components, e.g., eugenol, elemicin, spathulenol, and beta-eudesmol.  相似文献   

8.
Laboratory-prepared muesli-type breakfast cereal (mixture of oat flakes, wheat flakes, corn flakes, hazelnuts, raisins, sunflower seeds, and flax seeds) was subjected to accelerated storage test at 60 degrees C with or without the addition of red raspberry seed extract. The oxidative changes in muesli resulting in the formation of secondary oxidation products were evaluated using solid phase microextraction (HS-SPME) and solvent-assisted flavor evaporation (SAFE) to isolate volatiles and GC-MS and chromatography-olfactometry to quantify them and determine the key odorants. During 14 days of storage the total amount of volatile compounds changed from 1.0 mg/kg, in freshly prepared muesli, to 32 mg/kg after storage. The predominant compound was hexanal; its content during storage increased 20-fold, reaching 17 mg/kg. Red raspberry seed extract addition limited the rate of lipid oxidation, and the total amount of volatiles was estimated at 11 mg/kg and that of hexanal at almost 5 mg/kg. An elevated temperature of the storage test also influenced the crucial flavor compounds determined using aroma extract dilution analysis (AEDA). The flavor dilution factor (FD) values for volatile lipid oxidation products were lower in samples with red raspberry seed extract added.  相似文献   

9.
Light-induced volatile compounds in goat cheese were studied by a combination of solid phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS), headspace oxygen depletion, and sensory evaluation. Samples stored under fluorescent light for 2 days at 30 degrees C had 90% more volatile compounds and 4 times more headspace oxygen depletion than samples stored in the dark at 30 degrees C. The volatiles 1-heptanol, heptanal, nonanal, and 2-decenal were formed and increased only in the light-stored samples, which may be formed from singlet oxygen oxidation of unsaturated fatty acids. Sensory evaluation showed that samples stored under light had significantly more off-flavor than samples stored in the dark at 30 degrees C (P < 0.05), and 1-heptanol, heptanal, nonanal, and 2-decenal increased the goat cheese off-flavor significantly (P < 0.05).  相似文献   

10.
为了对毛霉型豆豉发酵过程中风味进行综合评价,本试验采用顶空固相微萃取/气相色谱-质谱法(HS-SPME/GC-MS)结合电子鼻、电子舌对其发酵过程进行研究。结果表明,毛霉型豆豉不同发酵时期的11个样品共鉴定出68种挥发性风味成分,其中包括酯类18种、醛类7种、酸类3种、醇类26种、酮类4种、其他类10种。挥发性风味成分的种类由前发酵的15种上升至豆豉发酵成熟时(35~42 d)的31种,含量由前发酵1.69 μg·g-1上升至发酵终点44.20 μg·g-1,呈递增趋势,至发酵成熟期稳定,与电子鼻测定结果一致。电子舌测定结果显示,后发酵35 d时,成品的涩味、苦味及苦味回味降到适宜程度,鲜味和丰富性较高,而此时的挥发性风味成分种类丰富、含量高、香味浓郁、丰富性好,滋味和气味俱佳。因此,HS-SPME/GC-MS结合电子感官技术对毛霉型豆豉产品品质的判别具有可行性,可为生产条件的优化提供理论依据。  相似文献   

11.
Volatile compounds were obtained from whole and ground grain samples by two methods. In the supercritical fluid extraction (SFE) method, volatiles were extracted from the grain with supercritical carbon dioxide, trapped at -78 degrees C, and then transferred via a purge-and-trap instrument to a gas chromatograph with mass and infrared detectors (GC-MS/IR) for separation and identification. In the direct-helium-purge method (DHP), volatiles were purged directly from the grain into the purge-and-trap instrument for subsequent transfer to the GC-MS/IR system. With SFE, extraction of volatiles was favored by ground grain, low pressures (相似文献   

12.
Volatiles generated from lipoxygenase (LOX) normal and LOX deficient soybean (Glycine max) varieties with and without added lipase inhibited Aspergillus flavus mycelial growth and aflatoxin production. Soybean volatiles were analyzed using a solid phase microextraction (SPME) method combined with gas chromatography-mass spectrometry (GC-MS). Twenty-one compounds, including 11 aldehydes, three alcohols, four ketones, one furan, one alkane, and one alkene were detected in the LOX normal soybean line. However, only nine volatile compounds were observed in the LOX deficient soybean variety. The antifungal aldehydes hexanal and (E)-2-hexenal were observed in both LOX normal and LOX deficient lines and were detected at significantly higher amounts in soybean homogenate with added lipase. These aldehydes may be formed through alternate pathways, other than the LOX pathway, and may account for the inhibition of A. flavus growth observed. Other volatiles detected, particularly the ketones and alcohols, may contribute to the antifungal activity observed in both LOX normal and LOX deficient soybean lines. These results suggest that other factors, other than LOX activity, may better explain why soybeans are generally not as severely affected by A. flavus and aflatoxin contamination as other oilseed crops.  相似文献   

13.
Soybean (Glycine max) seed volatiles were analyzed using a solid phase microextraction (SPME) method combined with gas chromatography-mass spectrometry (GC-MS). Thirty volatile compounds already reported for soybean were recovered, and an additional 19 compounds not previously reported were identified or tentatively identified. The SPME method was utilized to compare the volatile profile of soybean seed at three distinct stages of development. Most of the newly reported compounds in soybean seed were aldehydes and ketones. During early periods of development at maturity stage R6, several volatiles were present at relatively high concentrations, including 3-hexanone, (E)-2-hexenal, 1-hexanol, and 3-octanone. At maturity stage R7 and R8, decreased amounts of 3-hexanone, (E)-2-hexenal, 1-hexanol, and 3-octanone were observed. At maturity stage R8 hexanal, (E)-2-heptenal, (E)-2-octenal, ethanol, 1-hexanol, and 1-octen-3-ol were detected at relatively high concentrations. SPME offers the ability to differentiate between the three soybean developmental stages that yield both fundamental and practical information.  相似文献   

14.
SPME was employed to characterize the volatile profile of virgin olive oils produced in two geographical areas of northern Italy: the region of the Gulf of Trieste and the area near Lake Garda. There are as yet no data on the headspace composition of virgin olive oils from these regions, characterized by particular conditions of growth for Olea europaea. Using the SPME technique coupled to GC-MS and GC-FID, the volatile components of 42 industrially produced virgin olive oil samples were identified and the principal compounds quantitatively analyzed. Significant differences in the proportion of volatile constituents from oils of different varieties and geographical origins were detected. The results suggest that besides the genetic factor, environmental conditions influence the volatile formation.  相似文献   

15.
Equilibration time and temperature were the factors studied to choose the best conditions for analyzing volatiles in roasted ground Arabica coffee by a static headspace sampling extraction method. Three temperatures of equilibration were studied: 60, 80, and 90 degrees C. A larger quantity of volatile compounds was extracted at 90 degrees C than at 80 or 60 degrees C, although the same qualitative profile was found for each. The extraction of the volatile compounds was studied at seven different equilibration times: 30, 45, 60, 80, 100, 120, and 150 min. The best time of equilibration for headspace analysis of roasted ground Arabica coffee should be selected depending on the chemical class or compound studied. One hundred and twenty-two volatile compounds were identified, including 26 furans, 20 ketones, 20 pyrazines, 9 alcohols, 9 aldehydes, 8 esters, 6 pyrroles, 6 thiophenes, 4 sulfur compounds, 3 benzenic compounds, 2 phenolic compounds, 2 pyridines, 2 thiazoles, 1 oxazole, 1 lactone, 1 alkane, 1 alkene, and 1 acid.  相似文献   

16.
Using an automated rapid headspace solid phase microextraction (SPME) method for volatile extraction in cantaloupes, 86 compounds already reported for muskmelons were recovered and an additional 53 compounds not previously reported were identified or tentatively identified. The SPME method extracted a copious number of volatiles that can be analyzed to clearly differentiate between variety, growth stage, and stage of harvest ripeness. Most of the newly reported compounds in cantaloupe were esters and aldehydes that have already been demonstrated as flavor-related compounds in other products. All esters believed to have flavor impact increased progressively after pollination, and this trend continued with increasing harvest maturity. However, compound recovery often decreased when fruits were harvested over-ripe. Most aldehydes increased during early growth stages and then tapered off with increasing harvest maturity. The SPME method suitably recovered most compounds reported to impart characteristic flavor/aroma in muskmelons. SPME offers experimental flexibility and the ability to discover more compounds and address flavor quality changes in fresh-cut cantaloupe.  相似文献   

17.
In this study, the optimization and comparison of an internally cooled fiber [cold fiber with polydimethylsiloxane (PDMS) loading] and several commercial solid-phase microextraction (SPME) fibers for the extraction of volatile compounds from tropical fruits were performed. Automated headspace solid-phase microextraction (HS-SPME) using commercial fibers and an internally cooled SPME fiber device coupled to gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile compounds of five tropical fruits. Pulps of yellow passion fruit (Passiflora edulis), cashew (Anacardium occidentale), tamarind (Tamarindus indica L.), acerola (Malphigia glabra L.), and guava (Psidium guajava L.) were sampled. The extraction conditions were optimized using two experimental designs (full factorial design and Doehlert matrix) to analyze the main and secondary effects. The volatile compounds tentatively identified included alcohols, esters, carbonyl compounds, and terpernes. It was found that the cold fiber was the most appropriate fiber for the purpose of extracting volatile compounds from the five fruit pulps studied.  相似文献   

18.
The volatile constituents of 10 clones (4 parents with different flavors and 6 hybrids from selected crossings among these parents) of pepino fruit (Solanum muricatum) were isolated by simultaneous distillation-extraction and analyzed by gas chromatography-mass spectrometry (GC-MS). Odor-contributing volatiles (OCVs) were detected by GC-olfactometry-MS analyses and included 24 esters (acetates, 3-methylbutanoates, and 3-methylbut-2-enoates), 7 aldehydes (especially hexenals and nonenals), 6 ketones, 9 alcohols, 3 lactones, 2 terpenes, beta-damascenone, and mesifurane. Among these compounds, 17, of which 5 had not been reported previously in pepino, were found to contribute significantly to pepino aroma. OCVs can be assigned to three groups according to their odor quality: fruity fresh (acetates and prenol), green vegetable (C6 and C9 aldehydes), and exotic (lactones, mesifuran, and beta-damascenone). Quantitative and qualitative differences between clones for these compounds are clearly related to differences in their overall flavor impression. The positive value found for the hybrid-midparent regression coefficient for volatile composition indicates that an important fraction of the variation observed is inheritable, which has important implications in breeding for improving aroma. Significant and positive correlations were found between OCVs having common precursors or related pathways.  相似文献   

19.
Analysis of biogenic volatile organic compounds (BVOC) of 14 Eucalyptus clones has been performed using an automated headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography (GC)/ion trap mass spectrometry (ITMS) method. Correlations between pulp properties of Eucalyptus clones and the BVOC of their leaf headspaces were studied. The compounds alpha-terpineol and the sesquiterpene beta-eudesmol were positively correlated with S5, a property related to the hemicelluose content in the pulp. Qualitative results obtained with automated HS-SPME were sufficient to group together the same species and related hybrids through cluster analysis and were confirmed through principal component analysis. A preliminary separation of the essential oils of Eucalyptus dunnii through comprehensive two-dimensional gas chromatography (GC x GC) showed approximately 580 peaks compared to approximately 60 in a typical GC/ITMS first-dimension chromatogram. The potential of HS-SPME coupled to GC x GC to improve the separation of Eucalyptus volatiles and other plant essential oils looks extremely promising for new applications of unsupervised learning methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号