首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Natural regeneration with broadleaved species and reforestation with coniferous trees are two widely practiced forest regeneration strategies after timber harvesting. They lead to different tree species composition and may cause different understory biodiversity, but the effects on ground bryophyte composition and diversity are not well-known.

Aims

We tested whether natural regeneration with broadleaved species and reforestation with spruce induced different diversities of the ground bryophyte populations 20–40 years after old-growth spruce forest clearcutting in the subalpine regions of southwestern China.

Methods

Differences between natural stands and plantations were compared through the analysis of 13 paired stands, with 78 plots, 390 shrub/herb quadrats, and a total of 1,560 bryophyte quadrats.

Results

Naturally regenerated forests were characterized by lower density and cover and lower tree height but higher herbaceous plant height, shrub cover, and bryophyte diversity. They also harbored many more ground bryophytes. The species richness of pleurocarpous mosses and fans, mats, and turfs were significantly higher in naturally regenerated forests. Frequency difference analysis demonstrated that more bryophyte species preferred ground habitats in naturally regenerated forests than in plantations (116 vs. 48 species). The canonical correspondence analysis indicated that stand structure attributes were more important determinants of ground bryophyte diversity and abundance.

Conclusion

Natural regeneration and reforestation resulted in large differences in ground bryophyte populations. A larger diversity was observed in the former case, and natural regeneration practices can be an effective measure for the protection of ground bryophyte diversity after clearcutting.  相似文献   

2.
Competition is a major determinant of plant growth and is often used in studies of tree growth and species coexistence. However, these approaches are usually temporally static, i.e., assessed at a single point or period in time. While constantly changing forest conditions due to natural and human-induced disturbances potentially alter competition among individuals, static approaches cannot qualify the temporal variability of competitive interactions. Here we present a longitudinal analysis of competitive interactions among trees and discuss the implication of our results for ecological interpretation.Spatially-explicit tree growth data were obtained from 18 study plots (0.4 ha each) in sugar maple (Acer saccharum Marsh.) stands in Quebec, Canada. During the studied period (1980-2003), these stands had been disturbed by insect outbreaks (forest tent caterpillar, Malacosoma disstria Hubner) and by commercial partial harvest. We analyzed radial growth rates (outcome of competition) on an annual basis and as a function of tree biology (bole diameter, crown position), competition (above- and belowground competition from neighbours) and environmental conditions (light availability, harvest disturbance).Competitive interactions changed throughout the studied period. Canopy disturbance from partial harvest interacted with defoliators and influenced competition symmetry by favoring smaller trees.Competitive interactions seemed to have switched from below- to above-ground following canopy recovery after harvest. Release from competition due to partial harvest increase neighbourhood size (radius of effective competition) and enhanced the competitive pressure from larger individuals.The temporal variability in parameter estimates may be used for setting confidence intervals on competitive success (growth rates), thereby yielding a more robust basis for ecological interpretation. Our results also show that temporal variability in competitive interactions could contribute to the maintenance of high tree species diversity and structural complexity in some ecosystems by temporally altering species-specific responses to environmental change and disturbance.  相似文献   

3.
Wildfires and timber harvest are two of the most prevalent disturbances in North American forests. To evaluate and compare their impact on small mammals, I conducted meta-analyses on (1) the effect of stand-replacement wildfires and several types of forest harvest (clearcutting followed by burning, clearcutting, and uniform partial harvest) on the abundance of deer mice (Peromyscus maniculatus) and red-backed voles (Myodes gapperi), (2) the impact of clearcutting and partial harvest on a broader array of small mammal species, and (3) the responses of small mammals to recent and older clearcuts (i.e. less than 10 years vs. 10–20 years after harvest). In coniferous and mixed forest, all disturbances except for partial harvest triggered significant increases in the abundance of deer mice and declines in red-backed voles. The increase in deer mice after wildfire was stronger than after clearcutting and marginally stronger than after clearcutting and burning. The abundance of red-backed voles was greatest in undisturbed or partially harvested stands, intermediate after clearcutting, and lowest after wildfire or clearcutting and burning. While the positive effect of clearcutting on deer mice did not persist beyond 10 years after disturbance, the negative effect on red-backed voles was similar between recent and older clearcuts. In deciduous forest, clearcutting did not result in a consistent change in abundance of deer mice and red-backed voles. For other small mammals, recent clearcutting tended to increase the abundance of yellow-pine chipmunks (Tamias amoenus), and meadow and long-tailed voles (Microtus pennsylvanicus and Microtus longicaudus). Woodland jumping mouse (Neozapus insignis), masked shrew (Sorex cinereus), and short-tailed shrew (Blarina brevicauda) did not show consistent response to timber harvest. Overall, the impact of different disturbances on the abundance of small mammals (i.e. positive or negative) appears to be species-specific, but disturbance type may influence the magnitude of this effect. Disturbance types can be ranked from severe to mild in terms of small mammal responses. The effects of forest harvest on small mammals are not equivalent to those of wildfire.  相似文献   

4.
Group selection tree harvest has been proposed as an ecologically sustainable silvicultural technique in mixed conifer forests of the western Bhutan Himalayas. To evaluate this silvicultural technique, we studied the ecological consequences of a group selection tree harvest in mixed conifer forests by assessing 127 circular plots (71 in logged and 56 in unlogged stands) in two forest management units (FMUs). Tree species composition and diversity were similar between logged and unlogged stands. Seedling density and height growth vary by species and were influenced by logging and microsites, with generally taller seedlings found in the logged versus unlogged stands. Early successional shade-intolerant species colonized logged stands. Seedlings growing on bare soil scarified by harvesting had medium vigour while seedlings growing on bryophyte mats showed good vigour in both logged and unlogged stands. Moist sites with a northerly aspect supported profuse conifer seedling regeneration, compared to sites with a dry southerly aspect. Damage to conifer seedlings from herbivore browsing was minimal. Conifer seedling density and height growth was negatively affected by competition from herbaceous vegetation, most notably Salvia officinalis. Group selection tree harvest in southern dry exposures in spruce-dominated stands is silviculturally unsuitable because it alters tree succession.  相似文献   

5.
Small seasonally flooded forest ponds have received increased attention due to a growing recognition of their abundance in many landscapes, their importance as habitat for a variety of organisms, and the contributions they make to species and ecosystem diversity. There also is concern over potential negative effects of forest management in adjacent uplands on seasonal pond ecology. Several studies have examined invertebrate and songbird responses to upland harvest around seasonal ponds. Less attention has been given to examining how seasonal pond plant communities respond to adjacent forest harvesting. We studied the response of seasonal pond plant communities to adjacent upland timber harvests, assessing whether buffers around ponds (15.25 m uncut and partially cut) mitigated changes in species abundance and community composition, relative to changes in ponds that were clearcut to the pond margin. We addressed our objective using an operational-scale experiment in northern Minnesota, which included pre-harvest sampling, replicated treatments, and uncut controls. After treatment, changes in tree basal area and canopy openness in the pond basins reflected reductions in upland basal areas. Specifically, control ponds had significantly higher basal area and lower openness than ponds cut to their margins, while ponds with uncut buffers and partially cut buffers were intermediate. Changes in plant communities were evident in the ground layer and shrub/large regeneration layer. After treatment and over time, the control stands did not change significantly in ground layer structure or shrub/large regeneration layer composition. The three upland harvest treatments displayed increasingly greater deviation from their starting conditions and from the control along a gradient of increasing treatment intensity, from the buffer treatment to the partially cut buffer to the clearcut. The response in the ground layer was largely associated with increased sedge and grass cover, while the response in the shrub/large regeneration layer was associated with increases of Salix sp., Alnus incana, and Populus tremuloides. Our results indicate that adjacent upland timber harvest can lead to altered plant communities within seasonal ponds, at least temporarily. Moreover, uncut forest buffers (∼15.25 m) surrounding seasonal ponds can mitigate plant community changes to some degree. If seasonal ponds are an important resource on the management landscape and a high percentage of upland forest is in a recently cut condition at any given time, than use of harvest buffers around seasonal ponds may be an appropriate approach for mitigating short term alteration of pond plant communities.  相似文献   

6.
The effects of partial cutting on species composition, new and residual-tree cohorts, tree size distribution, and tree growth was evaluated on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12–96 years ago, when 16–96% of the former stand basal area was removed.Partial cutting maintained stand structures similar to uncut old-growth stands, and the cutting had no significant effects on tree species composition. The establishment of new-tree cohorts was positively related to the proportion of basal-area cut. The current stand basal area, tree species composition, and stand growth were significantly related to trees left after harvest (p<0.001). Trees that were 20–80 cm dbh at the time of cutting had the greatest tree-diameter and basal-area growth and contributed the most to stand growth. Diameter growth of Sitka spruce and western hemlock was similar, and the proportion of stand basal-area growth between species was consistent for different cutting intensities.Concerns about changing tree species composition, lack of spruce regeneration, and greatly reduced stand growth and vigor with partial cuts were largely unsubstantiated. Silvicultural systems based on partial cutting can provide rapidly growing trees for timber production while maintaining complex stand structures with mixtures of spruce and hemlock trees similar to old-growth stands.  相似文献   

7.
We investigated the responses of forest birds to habitat changes following timber harvest by selection cutting in three northern tolerant hardwood forest stands using a before–after control-impact (BACI) type of experimental design. We observed only minor effects on the bird community associated with mature forests. Ovenbird (Seiurus aurocapilla) abundances declined by about 80–90% in two of the three harvested blocks. Black-throated blue warblers (Dendroica caerulescens) declined in abundance by about 70% on a single block 2 and 3 years post-harvest. Mechanical disturbance of the shrub layer [primarily Canada yew (Taxus canadensis)] was coincident to this decline. Several bird species that prefer early successional or shrubby habitats, such as veery (Catharus fuscescens), cedar waxwing (Bombycilla cedrorum), chestnut-sided warbler (Dendroica pensylvanica), magnolia warbler (Dendroica magnolia), American redstart (Setophaga ruticilla), mourning warbler (Oporornis philadelphia) and white-throated sparrow (Zonotrichia albicollis), benefited from selection cutting, with the timing of individual species’ responses related to changes in habitat structure and composition. Effects in one block were still evident 7 years after harvest. Guidelines that support a residual stocking target of 20 m2/ha should promote the retention of mature forest bird communities, including ovenbird, while still providing habitat for early successional bird species.  相似文献   

8.
In the Euro-Mediterranean region, mechanical fuel reduction is increasingly used in response to the mounting occurrence of catastrophic wildfires, yet their long-term ecological effects are poorly understood. Although Mediterranean vegetation is resilient to a range of disturbances, it is possible that widespread fuel management at short intervals may threaten forest structural complexity and the persistence of some plant species and functional types, with overall negative consequences for biodiversity. We used a chronosequence approach to infer woody vegetation changes in the first 70 years after understory clearing in upland cork oak (Quercus suber) forests, and to assess how these are affected by treatment frequency. Across the chronosequence there was a shift between plant communities with contrasting composition, structure and functional organization. Understory cover increased quickly after disturbance and a community dominated by pioneer seeder and dry-fruited shrubs (Cistus ladanifer, C. populifolius, Genista triacanthos, and Lavandula stoechas) developed during about 15 years, but this was slowly replaced by a community dominated by resprouters and fleshy-fruited species (Arbutus unedo, Erica arborea) >40 years after disturbance. During the first 15 years there were rapid increases in woody species richness, vertical structural diversity, cover by Q. suber juveniles and saplings, and shrub cover at <1.5 m strata, which levelled off or slightly declined thereafter. In contrast, tree species richness, tree density and density of arboreal A. unedo and E. arborea, vertical structural evenness, and cover at >1.5 m strata increased slowly for >50 years. Treatment frequency showed strongly negative relationships with species richness, structural diversity and evenness, and horizontal and vertical understory cover, particularly that of slowly recovering species. These findings suggest that fuel reduction programs involving widespread and recurrent understory clearing may lead to the elimination at the landscape scale of stands with complex multi-layered understory occupied by large resprouters and fleshy-fruited species, which take a long time to recover after disturbance. Fuel management programs thus need to balance the dual goals of fire hazard reduction and biodiversity conservation, recognizing the value of stands untreated for >50 years to retain ecological heterogeneity in Mediterranean forest landscapes.  相似文献   

9.
Boreal species that are dependent on old forests, such as many cavity-using birds and mammals, are at high risk from conventional harvest practices. These species may benefit from ecologically sustainable forest management practices that increase heterogeneity within stands and across landscapes. Structural retention within cutblocks and spatial aggregation of cutblocks into large (1000s ha) harvest units are two such management practices being implemented by forestry companies in the boreal plains of Alberta and Saskatchewan. However, little is known about the implications of these practices for old forest species. The goal of our study was to determine if the cavity-using assemblage associated with old upland forest in this region is retained within aggregated harvests with structural retention. We used a cavity web approach to describe and contrast interactions among cavity excavators (woodpeckers, chickadees, and nuthatches) and the secondary (i.e. non-excavating) species reusing their cavities. We described the cavity web for two intact landscapes of old upland forest and for two aggregated harvest landscapes. We identified four key excavators of intact forest: yellow-bellied sapsucker (Sphyrapicus varius), hairy woodpecker (Picoides villosus), northern flicker (Colaptes auratus), and pileated woodpecker (Dryocopus pileatus). These woodpeckers should be considered key excavators primarily of mature and old aspen forest, which dominated the study landscapes. Each woodpecker filled a unique role in the cavity web and all are important for conservation of two mammal and three bird species that used their cavities. In the short term (i.e. within four years post-harvest), the key cavity excavators and many secondary cavity-using species associated with intact forest were retained in the harvested landscapes. One secondary species (American kestrel (Falco sparverius)) was unique in the harvest cavity web. Compared to the intact cavity web, the harvest web had lower abundance of sapsuckers, greater abundance of flickers, and high reuse of flicker cavities by kestrels. These differences were associated with the shift from intact forest to a landscape characterized by patches of old forest surrounded by early-successional habitat. Abundances of hairy and pileated woodpeckers were too low to detect differences between intact and harvested landscapes. The key excavators primarily used trembling aspen (Populus tremuloides) for cavity trees and thus aspen should be targeted for retention in harvested landscapes. A more detailed examination of the habitat requirements of the key excavators is needed to develop best practices for tree and patch retention and ensure conservation of the cavity-using assemblage in aggregated harvests.  相似文献   

10.
We compared the initial effects of four forest regeneration treatments (single-tree selection, group selection, shelterwood, and clearcut), and unharvested controls (mature, second-growth forest) on relative abundance of small mammals and small-mammal habitat throughout the Ouachita Mountains of western Arkansas and eastern Oklahoma. We compared small-mammal capture rates in 20 forest stands (4 replicates of 5 treatments) for 2 years prior to harvest treatments, and 1.5, 3.5, and 5.5 years after treatment. We also examined relationships among small mammals, treatments, and habitat conditions. Before harvest, all stands where characterized by high basal areas (BA), little understory vegetation, and low small-mammal capture rates. Compared with pre-harvest numbers, the number of individuals captured increased nearly five-fold in treated stands 1.5 years after harvest. After harvest, capture rates for all taxa combined were significantly greater in harvested stands (regardless of treatment) than in unharvested controls. Fulvous harvest mice (Reithrodontomys fulvescens) capture rates were greatest in clearcuts. Fulvous harvest mice, cotton rats (Sigmondon hispidus), and pine voles (Microtus pinetorum) were associated with abundant herbaceous vegetation in the understory and low BA. Eastern woodrats (Neotoma floridana), golden mice (Ochrotomys nuttalli), and Peromyscus spp. were associated with moderate to dense woody vegetation in the understory and intermediate BA levels. No taxon of terrestrial small mammal was captured exclusively in unharvested stands; most taxa we captured appear to be either disturbance-adapted or tolerant to disturbances from timber harvest.  相似文献   

11.
The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part of salvage logging operations will minimize these structural impacts and may allow for greater ecosystem recovery following these disturbance combinations.  相似文献   

12.
The interest in harvesting logging residues in the form of stumps has recently increased markedly in the Nordic countries of Europe due to the steadily growing market for bio-fuel from forestry. Yet, stumps are currently harvested without a solid knowledge of their importance for forest organisms. To assess the relative importance of thinned, clear-cut, and burned clear-cut stands for the diversity of bryophytes on stumps we investigated bryophyte species composition and richness on 755 spruce stumps in 27 forest stands in southern-boreal Finland. Stumps were sampled within both wet and dry sites. For comparison we also surveyed bryophytes on 669 ground plots in the same stands to assess if patterns were consistent regardless of substrate type.Stand type (i.e. thinned, clear-cut, or burned clear-cut) was the main predictor of both species richness and composition on stumps. Stumps in thinned stands were more species rich than in clear-cuts, and the lowest richness was found on stumps in burned clear-cuts. Differences in species composition were explained by higher frequency of occurrence of species in thinned than in clear-cut stands. Thus, stumps in clear-cut stands tended to host a subset of species from the thinned stands, but there was also a pattern of turnover where different species were present in thinned and clear-cut stands, respectively. The results were similar for bryophytes on ground indicating that canopy cover strongly affected the diversity of bryophytes regardless of substrate.We conclude that stump harvest in open, clear-cut stands will probably have minor effects on bryophyte diversity on dead wood in the managed forest landscape. Conservation efforts in thinned stands (e.g. retention and creation of dead wood) may be important for promoting the diversity of bryophytes in managed forests.  相似文献   

13.
Selective logging is the most widely employed method of commercial timber production in Asia, and its impact on forest structure, composition, and regeneration dynamics is considerable. However, the successional processes in forest communities after logging in semiarid mountains are poorly understood. To provide more information on these processes, we used data from tree rings, direct and indirect age determinations, and field measurements of stand structure to reconstruct the historical disturbance regime, stand development patterns, and successional processes in a natural Picea crassifolia forest community in the Qilian Mountains of northwestern China. The results showed that the density of P. crassifolia forest increased significantly after logging. The densities of second growth forests 30 and 70 years after logging disturbance had increased to 2874% and 294% of primary forest's density, respectively. Logging disturbance did not alter tree species composition of logged stands. However, the diversity of understory species changed significantly among the successional phases. Logging disturbance decreased the spatial heterogeneity of second growth forest. The spatial distributions of recruitment were affected by the location of the remaining trees. There was less recruitment near the remaining trees than near forest that had been cut. In addition, logging disturbance also induced a growth release for the trees on the sites sampled. Our results imply that the succession and regeneration of P. crassifolia forest may be improved if the remaining trees could be retained relative uniform distribution pattern, thinning or selective logging could be performed to height density, exotic shrubs could be removed or the shrubs cover could be reduced during the earlier successional stages.  相似文献   

14.
Disturbance patterns are strongly coupled with forest composition and structure, and patterns change through time in response to shifts in climate, anthropogenic impacts and other factors. Knowledge of the natural disturbance patterns for establishing baseline conditions for a forest type or ecosystem facilitates change detection for other elements of the biophysical system important to management and conservation. Dendrochronological reconstructions from old-growth forest remnants throughout northeastern North America document average decadal rates of disturbance of 5%–<10% over the last 150–300 years. Relatively frequent, low severity disturbance characterized by small gaps representing canopy openings made by 1–3 trees prevail in these forests dominated by varying mixtures of late-successional tree species. Few studies, though, have explicitly characterized differences related to composition or topographic setting in old-growth landscapes. We addressed this by comparing the temporal and spatial disturbance patterns reconstructed from tree rings at two spatial resolutions (0.5 ha and 200 m2). Sites were selected to assess the influence of topography (slope) and cover type in stands where red spruce (Picea rubens Sarg) and balsam fir (Abies balsamea L. Mill) were key components. Low rates of disturbance (average <10% per decade) and small gap sizes (≤30 m2) prevailed in all stands during the decades from 1850–1980. Episodic pulses of disturbance, of nearly moderate intensity in some stands, opened ca. 20–30% of the canopy area and were associated with wind events and/or insect outbreaks that differentially affected stands. We found no significant difference in the average temporal rates of disturbance related to cover type or topography in 0.5-ha plots. However, the influence of these factors was evident in comparisons of gap areas estimated for 200-m2 plot sections. At this resolution, the largest canopy openings (≥100 m2) occurred most frequently in slope sites, enabling pulses of canopy accession for Betula alleghaniensis (Britton). Whereas the smallest canopy openings (≤30 m2) dominated softwood stands, favoring red spruce, balsam fir and other shade-tolerant species throughout the forest. The variable effects of common disturbance agents, regardless of topographic position and/or cover types, points to the important role of biological legacies determining stand structure and composition on subsequent disturbance events and long-term patterns.  相似文献   

15.
Green-tree retention systems are an important management component of variable retention harvests in temperate zone coniferous forests. Residual live trees (“legacy trees”) provide mature forest habitat, increase structural diversity, and provide continuity in the regenerating stand. This study was designed to test the hypotheses that, at up to 8 years after harvest, abundance and species diversity of communities of (i) understory plants and (ii) forest-floor small mammals, and (iii) relative habitat use by mule deer (Odocoileus hemionus), will decline with decreasing levels of tree retention. Communities of plants and forest floor small mammals were sampled in replicated clearcut, single seed-tree, group seed-tree, patch cut, and uncut forest sites in mixed Douglas-fir (Pseudotsuga menziesii)—lodgepole pine (Pinus contorta) forest in southern British Columbia, Canada from 2000 to 2003 (5–8 years post-harvest). Habitat use by mule deer was measured during summer and winter periods each year from 1999 to 2003 in these same sites.  相似文献   

16.
Fires can mediate switches between alternative vegetation types which may be more flammable and thus reinforce fire spread. We tested if there is a positive feedback between the expansion of the tussock grass Ampelodesmos mauritanica (hereafter Ampelodesmos) and fire hazard in Mediterranean Basin communities and its relation to tree cover decline. The effect of fire on Ampelodesmos population structure was analysed by surveying stands burned at different fire frequencies. The effect of vegetation dominated by Ampelodesmos on fire behaviour compared to other species coexisting in the community was predicted by the Rothermel fire propagation model BEHAVE. There was a negative correlation between pine cover and percentage of Ampelodesmos plants. Ampelodesmos mortality after fire is very low. Recently burned stands had a higher proportion of reproductive plants and higher seedling density than unburned stands. The high temperatures reached during fire may kill seeds, the higher seedling recruitment results from fast resprouting and higher seed production of burned plants compared to unburned plants 1 year after fire. Simulations with the BEHAVE fire model predict that Ampelodesmos increases fire intensity and spread because of its high accumulation of fuel load and standing dead material. The results suggest that there is a positive relationship between Ampelodesmos abundance and fire regime which increases the invasive potential of this grass and the fire risk of the community where it dominates.  相似文献   

17.
In Maine and other heavily forested states, existing land cover maps quickly become dated due to forest harvesting and land use conversion; therefore, these maps may not adequately reflect landscape properties and patterns relevant to current resource management and ecosystem studies. By updating an older land cover product (the 1993 Maine GAP map) using Landsat imagery and established forest change detection techniques, we demonstrate a practical and accurate means of providing contemporary, spatially explicit forest cover data needed to quantify landscape change. For a 1.8 million hectares study area in northern Maine, we quantify the accuracy of forest harvest classes and compare mapped harvest and regeneration area between the 2004 GAP update product and the 2004 Maine Landcover Dataset (MeLCD), a map recently developed in coordination with the 2001 National Land-Cover Database (NLCD). For the period 1995–2004, the overall harvest/non-harvest accuracy of the GAP update map is 87.5%, compared to 62.1% for the MeLCD. Producer and user accuracy for harvest detection is 92.4% and 89.7%, respectively for the GAP update, and 48.8% and 92.5% for the MeLCD. Mapped harvest area differs considerably, reflecting a systematic under-representation of recent harvest activity on the part of the MeLCD. By integrating older land cover data, the GAP update retains the forest disturbance legacies of the late 1970s through the early 1990s while simultaneously depicting 2004 forest composition for harvested and regenerating stands. In contrast, the MeLCD (and 2001 NLCD) over-represents the area and connectivity of older forest (undisturbed since the late 1970s), and provides no forest composition information for mapped forest regeneration. Systematic misclassification of forest age classes and harvest history has serious implications for studies focused on wildlife habitat modeling, forest inventory, and biomass or carbon stock estimation. We recommend the integration of older land cover data and time-series forest change detection for retention of harvest or disturbance classes when creating new forest and land cover maps.  相似文献   

18.
In boreal black-spruce forests of Eastern Canada, a cohort model of ecosystem management has been proposed whereby a combination of both partial and more intensive cutting are used to emulate old-growth stands and the re-establishment of stands following severe wildfire. As with other approaches to coarse filter conservation, partial cutting is hypothesized to maintain and potentially recreate plant and animal assemblages consistent with a range of natural variability. In this study, we used ground-dwelling spiders (Araneae) to evaluate whether partial cutting and a cohort model of ecosystem management are sufficient to preserve biodiversity found in mature and over-mature boreal black spruce stands prone to paludification. We compared the spider fauna (11,628 individuals representing 136 species) in replicated partial cuts, clear cuts and uncut control stands with a chronosequence of mature and over-mature naturally regenerated stands (94-288 years since the last fire) [25 stands in total] in the same region of the northern Clay belt in Québec (Canada). In stands that were old-growth prior to cutting, harvesting had strong repercussions on spider assemblages that were not attenuated by less intensive, partial cutting. The most obvious changes in spider assemblages were related to increased recruitment of species that were nearly absent in uncut stands. Several cosmopolitan species that were widely distributed among stands prior to harvest increased in cut stands. Spider assemblages collected following either cutting methods were not consistent with assemblages found within the chronosequence and thus fell outside the observed range of natural variability. However we did not observe a similar recruitment effect for spider species in younger stands with relatively higher levels of retention. We demonstrate that the interaction between stand age prior to cutting, the degree of paludification as well as remnant basal area are important considerations when evaluating the efficacy of partial cutting to maintain forest spider assemblages and biodiversity at large in black-spruce stands. “We also suggest that retention levels in partial cuts will have to be substantially increased to maintain spider communities within their range of natural variation in managed forested landscapes.” However partial cutting with higher levels of retention, particularly in younger stands, may be useful in coarse filter management particularly for establishing or accelerating spider assemblages towards those found in old-growth stands.  相似文献   

19.
We studied the effects of partial cutting on understory vegetation communities within 19 mixed maple forests in an agriculture-dominated landscape in southwestern Ontario. Woodlots that had been recently harvested were grouped according to provincial silviculture guidelines (standard and heavy cuts) and compared to woodlots that had been uncut for at least 24 years (reference stands). We found significant differences in richness, diversity, and quality of understory vegetation in response to harvest indices. More intensive harvesting resulted in increased richness and diversity, but mostly through the addition of habitat generalists and weedy species. However, partial harvest does not appear to drive vegetation community composition, as ordination methods found no clear community differences between the treatments. Use of the single-tree selection system based on basal area and harvest intensity targets will have an effect on the understory plants, but other factors including past management, disturbance history, and site level microclimate features will also play an important role in shaping vegetation communities. We caution against the removal of large volumes of trees ≥38 cm in diameter, and large reductions in canopy cover, as this can reduce the presence of “conservative” (forest dependent specialist) species, despite a general increase in species richness and diversity. Furthermore, we recommend additional research to investigate the potential for incremental degradation to occur on sites with a long-term history of harvesting, as we found that richness of exotics increased on sites with a history of forest management.  相似文献   

20.
We assessed the composition of understory vascular plant communities in relation to the mosaic of canopy patch types, and their associated structure and environment, within unmanaged, mature boreal mixedwood forests in western Canada. Within a 30 km2 area, we sampled patches of four different canopy types: conifer-dominated, broadleaf-dominated, mixed conifer-broadleaf, and canopy gaps (total n = 98). There were significant differences in understory composition among the four patch types (based on multi-response permutation procedure (MRPP)) and these were mainly due to differences in relative abundances of understory species. The understory communities of conifer patches were characterized by low abundances of shade intolerant species while shade-tolerant and evergreen species were indicators (based on an indicator species analysis (ISA)). Understory communities under gap and broadleaf patches were characterized by higher abundances of grasses and shade intolerant species. Gap, broadleaf, and mixed patches had higher abundances of certain shrub species than did conifer patches. The patch types also differed in terms of their environmental conditions. Conifer patches had drier, cooler soils and the lowest understory light. Broadleaf patches had the warmest soils while understory light during the leaf-off period was similar to that of canopy gaps. Gap patches had the lowest litter cover and PO4 availability and the highest light. Seven environmental variables (soil moisture, soil temperature, total light during the leaf-off period, cover of coarse and fine downed woody material, and availability of NH4+ and Ca2+) were significantly related to understory species composition (in a constrained ordination by means of a distance-based redundancy analysis (db-RDA); 16.5% of variation in understory community data explained). Even within a single patch type, there was substantial environmental variation that was related to understory species composition. Our study suggests that the mosaic of canopy patches within mixedwood forests supports coexistence of both early and late successional understory plant species in mixedwood stands. Maintaining the mixture of canopy patch types within mixedwood stands will be important for conserving the natural patterns of understory plant composition in boreal mixedwood forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号