首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
An organic material composed of neutral free radicals based on the spirobiphenalenyl system exhibits a room temperature conductivity of 0.3 siemens per centimeter and a high-symmetry crystal structure. It displays the temperature-independent Pauli paramagnetism characteristic of a metal with a magnetic susceptibility that implies a density of states at the Fermi level of 15.5 states per electron volt per mole. Extended Hückel calculations indicate that the solid is a three-dimensional organic metal with a band width of approximately 0.5 electron volts. However, the compound shows activated conductivity (activation energy, 0.054 electron volts) and an optical energy gap of 0.34 electron volts. We argue that these apparently contradictory properties are best resolved in terms of the resonating valence-bond ground state originally suggested by Pauling, but with the modifications introduced by Anderson.  相似文献   

2.
3.
Electrons and protons accelerated and trapped in a Saturnian magnetic field have been found by the University of Chicago experiments on Pioneer 11 within 20 Saturn radii (Rs) of the planet. In the innermost regions, strong absorption effects due to satellites and ring material were observed, and from approximately 4 Rs inwards to the outer edge of the A ring at 2.30 Rs (where the radiation is absorbed), the intensity distributions of protons (>/= 0.5 million electron volts) and electrons (2 to 20 million electron volts) were axially symmetric, consistent with a centered dipole aligned with the planetary rotation axis. The maximum fluxes observed for protons (> 35 million electron volts and for electrons < 3.4 million electron volts) were 3 x 10(4) and 3 x 10(6) per square centimeter per second, respectively. Absorption of radiation by Mimas provides a means of estimating the radial diffusion coefficient for charged particle transport. However, the rapid flux increases observed between absorption features raise new questions concerning the physics of charged particle transport and acceleration. An absorption feature near 2.5 Rs has led to the discovery of a previously unknown satellite with a diameter of approximately 200 kilometers, semimajor axis of 2.51 Rs, and eccentricity of 0.013. Radiation absorption features that suggest a nonuniform distribution of matter around Saturn have also been found from 2.34 to 2.36 Rs, near the position of the F ring discovered by the Pioneer imaging experiment. Beneath the A, B, and C rings we continued to observe a low flux of high-energy electrons. We conclude that the inner Saturn magnetosphere, because of its near-axial symmetry and the many discrete radiation absorption regions, offers a unique opportunity to study the acceleration and transport of charged particles in a planetary magnetic field.  相似文献   

4.
The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.  相似文献   

5.
The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii) There are large fluxes of electrons of approximately 1.5 million electron volts and smaller fluxes of electrons of approximately 10 million electron volts and of protons greater, similar 54 million electron volts inside the orbits of Enceladus and Mimas; all were sharply peaked perpendicular to the local magnetic field. (viii) In general, observed satellite absorption signatures were not located at positions predicted on the basis of dipole magnetic field models.  相似文献   

6.
During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.  相似文献   

7.
Fluxes of high energy electrons and protons are found to be highly concentrated near the magnetic equatorial plane from distances of ~ 30 to ~ 100 Jovian radii (R(J)). The 10-hour period of planetary rotation is observed as an intensity variation, which indicates that the equatorial zone of high particle fluxes is inclined with respect to the rotation axis of the planet. At radial distances [unknown] 20 R(J) the synchrotron-radiation-producing electrons with energies greater, similar 3 million electron volts rise steeply to a maximum intensity of ~ 5 x 10(8) electrons per square centimeter per second near the periapsis at 2.8 R(J). The flux of protons with energies greater, similar 30 million electron volts reaches a maximum intensity of ~ 4 x 10(6) protons per square centimeter per second at ~ 3.5 R(J) with the intensity decreasing inside this radial distance. Only for radial distances [unknown] 20 R(J) does the radiation behave in a manner which is similar to that at the earth. Burst of electrons with energies up to 30 million electron volts, each lasting about 2 days, were observed in interplanetary space beginning approximately 1 month before encounter. This radiation appears to have escaped from the Jovian bow shock or magnetosphere.  相似文献   

8.
The low-energy charged particle instrument on Voyager was designed to measure the hot plasma (electron and ion energies greater, similar 15 and greater, similar 30 kiloelectron volts, respectively) component of the Jovian magnetosphere. Protons, heavier ions, and electrons at these energies were detected nearly a third of an astronomical unit before encounter with the planet. The hot plasma near the magnetosphere boundary is predominantly composed of protons, oxygen, and sulfur in comparable proportions and a nonthermal power-law tail; its temperature is about 3 x 10(8) K, density about 5 x 10(-3) per cubic centimeter, and energy density comparable to that of the magnetic field. The plasma appears to be corotating throughout the magnetosphere; no hot plasma outflow, as suggested by planetary wind theories, is observed. The main constituents of the energetic particle population ( greater, similar200 kiloelectron volts per nucleon) are protons, helium, oxygen, sulfur, and some sodium observed throughout the outer magnetosphere; it is probable that the sulfur, sodium, and possibly oxygen originate at 1o. Fluxes in the outbound trajectory appear to be enhancedfrom approximately 90 degrees to approximately 130 degrees longitude (System III). Consistent low-energy particle flux periodicities were not observed on the inbound trajectory; both 5-and 10-hour periodicities were observed on the outbound trajectory. Partial absorption of > 10 million electron volts electrons is observed in the vicinity of the Io flux tube.  相似文献   

9.
A glass filter from Surveyor 3 has a surface density of approximately 1 x 10(6) tracks per square centimeter from heavy solar flare particles. The variation with depth is best fitted with a solar particle spectrum dN/dE = 2.42 x 10(6) E(-2) [in particles per square centimeter per year per steradian per (million electron volts per nucleon)], where E is the energy and N is the number of particles, from 2 million electron volts per nucleon to approximately 7 million electron volts per nucleon and dN/dE = 1.17 x 10(7) E(-3) at higher energies. Not much difference is observed between 0.5 and 5 micrometers, an indication that there is a lack of track-registering particles below 0.5 million electron volts per nucleon. The Surveyor data are compatible with track results in lunar rocks, provided an erosion rate of approximately 10(-7) centimeter per year is assumed for the latter. The results also suggest a small-scale erosion process in lunar rocks.  相似文献   

10.
We report a transport study of nonequilibrium quasi-particles in a high-transition-temperature cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at a photon energy of 1.5 electron volts) was used to introduce a spatially periodic density of quasi-particles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasi-particle diffusion coefficient and the inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurements of quasi-particle dynamics not only in cuprate superconductors but in other electronic systems as well.  相似文献   

11.
The University of Chicago instrumnents on board the Mariner 10 spacecraft bound for Mercury have measured energy spectra and fluxes of electrons from 0.18 to 30 million electron volts and protons from 0.5 to 68 million electron volts along the plasma wake and in the bow shock regions associated with Venus. Unusually quiet solar conditions and improved instrumentation made it possible to search for much lower fluxes of protons and electrons in similar energy regions as compared to earlier Mariner missions to Venus-that is, lower by a factor of 10(2) for protons and 10(3) for electrons. We found no evidence for electrons or protons either in the form of increases of intensity or energy spectral changes in the vicinity of the planet, nor any evidence of bursts of radiation in or near the observed bow shock where bursts of electrons might have been expected in analogy with the bow shock at the earth. The importance of these null results for determining the necessary and sufficient conditions for particle acceleration is discussed with respect to magnetometer evidence that Venus does not have a magnetosphere.  相似文献   

12.
Observations of energetic electrons ( greater, similar 0.07 million electron volts) show that the outer magnetosphere of Jupiter consists of a thin disklike, quasitrapping region extending from about 20 to 100 planetary radii (R(J)). This magnetodisk is confined to the vicinity of the magnetic equatorial plane and appears to be an approximate figure of revolution about the magnetic axis of the planet. Hard trapping is observed within a radial distance of about 20 R(J). The omnidirectional intensity J(0) of electrons with energy greater, similar 21 million electron volts within the region 3 r 20 R(J) is given by the following provisional expression in terms of radial distance r and magnetic latitude theta: J(0) = 2.1 x 10(8) exp[-(r/a) - (theta/b)(2)]. In this expression J(0) is particles per square centimeter per second; a = 1.52 R(J) for 3 相似文献   

13.
Helical spin order in magnetic materials has been investigated only in reciprocal space. We visualized the helical spin order and dynamics in a metal silicide in real space by means of Lorentz electron microscopy. The real space of the helical spin order proves to be much richer than that expected from the averaged structure; it exhibits a variety of magnetic defects similar to atomic dislocations in the crystal lattice. The application of magnetic fields allows us to directly observe the deformation processes of the helical spin order accompanied by nucleation, movement, and annihilation of the magnetic defects.  相似文献   

14.
The low-energy charged particle instrument on Voyager 1 measured low-energy electrons and ions (energies >/= 26 and >/= 40 kiloelectron volts, respectively) in Saturn's magnetosphere. The first-order ion anisotropies on the dayside are generally in the corotation direction with the amplitude decreasing with decreasing distance to the planet. The ion pitch-angle distributions generally peak at 90 degrees , whereas the electron distributions tend to have field-aligned bidirectional maxima outside the L shell of Rhea. A large decrease in particle fluxes is seen near the L shell of Titan, while selective particle absorption (least affecting the lowest energy ions) is observed at the L shells of Rhea, Dione, and Tethys. The phase space density of ions with values of the first invariant in the range approximately 300 to 1000 million electron volts per gauss is consistent with a source in the outer magnetosphere. The ion population at higher energies (>/= 200 kiloelectron volts per nucleon) consists primarily of protons, molecular hydrogen, and helium. Spectra of all ion species exhibit an energy cutoff at energies >/= 2 million electron volts. The proton-to-helium ratio at equal energy per nucleon is larger (up to approximately 5 x 10(3)) than seen in other magnetospheres and is consistent with a local (nonsolar wind) proton source. In contrast to the magnetospheres of Jupiter and Earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. Electron pitch-angle distributions are generally bidirectional andfield-aligned, indicating closed field lines at high latitudes. Ions in this region are generally moving toward Saturn, while in the magnetosheath they exhibit strong antisunward streaming which is inconsistent with purely convective flows. Fluxes of magnetospheric ions downstream from the bow shock are present over distances >/= 200 Saturn radii from the planet. Novel features identified in the Saturnian magnetosphere include a mantle of low-energy particles extending inward from the dayside magnetopause to approximately 17 Saturn radii, at least two intensity dropouts occurring approximately 11 hours apart in the nighttime magnetosphere, and a pervasive population of energetic molecular hydrogen.  相似文献   

15.
On the basis of the absence of energetic electrons (E(e) 45 kiloelectron volts) and protons (E(p) 320 kiloelectron volts) associated with Venus to within a radial distance of 10,150 kilometers from the center of the planet and using a physical similitude argument and the observational and theoretical knowledge of the magnetosphere of Earth, we conclude that the intrinsic magnetic dipole moment of Venus is almost certainly less than 0.01 and probably less than 0.001 of that of Earth. Corresponding upper limits on the magnetic field at the equatorial surface of Venus are about 350 and 35 x 10(-5) gauss, respectively.  相似文献   

16.
Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100?) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.  相似文献   

17.
A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface has a strong influence on the material's properties, as is the case with ultrathin films. We demonstrated that the magnetocrystalline anisotropy of ordered iron-platinum (FePt) and iron-palladium (FePd) intermetallic compounds can be reversibly modified by an applied electric field when immersed in an electrolyte. A voltage change of -0.6 volts on 2-nanometer-thick films altered the coercivity by -4.5 and +1% in FePt and FePd, respectively. The modification of the magnetic parameters was attributed to a change in the number of unpaired d electrons in response to the applied electric field. Our device structure is general and should be applicable for characterization of other thin-film magnetic systems.  相似文献   

18.
Voyager 1 (V1) began measuring precursor energetic ions and electrons from the heliospheric termination shock (TS) in July 2002. During the ensuing 2.5 years, average particle intensities rose as V1 penetrated deeper into the energetic particle foreshock of the TS. Throughout 2004, V1 observed even larger, fluctuating intensities of ions from 40 kiloelectron volts (keV) to >/=50 megaelectron volts per nucleon and of electrons from >26 keV to >/=350 keV. On day 350 of 2004 (2004/350), V1 observed an intensity spike of ions and electrons that was followed by a sustained factor of 10 increase at the lowest energies and lesser increases at higher energies, larger than any intensities since V1 was at 15 astronomical units in 1982. The estimated solar wind radial flow speed was positive (outward) at approximately +100 kilometers per second (km s(-1)) from 2004/352 until 2005/018, when the radial flows became predominantly negative (sunward) and fluctuated between approximately -50 and 0 km s(-1) until about 2005/110; they then became more positive, with recent values (2005/179) of approximately +50 km s(-1). The energetic proton spectrum averaged over the postshock period is apparently dominated by strongly heated interstellar pickup ions. We interpret these observations as evidence that V1 was crossed by the TS on 2004/351 (during a tracking gap) at 94.0 astronomical units, evidently as the shock was moving radially inward in response to decreasing solar wind ram pressure, and that V1 has remained in the heliosheath until at least mid-2005.  相似文献   

19.
Park HG  Kim SH  Kwon SH  Ju YG  Yang JK  Baek JH  Kim SB  Lee YH 《Science (New York, N.Y.)》2004,305(5689):1444-1447
We report the experimental demonstration of an electrically driven, single-mode, low threshold current (approximately 260 microA) photonic band gap laser operating at room temperature. The electrical current pulse is injected through a sub-micrometer-sized semiconductor wire at the center of the mode with minimal degradation of the quality factor. The actual mode of interest operates in a nondegenerate monopole mode, as evidenced through the comparison of the measurement with the computation based on the actual fabricated structural parameters. As a small step toward a thresholdless laser or a single photon source, this wavelength-size photonic crystal laser may be of interest to photonic crystals, cavity quantum electrodynamics, and quantum information communities.  相似文献   

20.
The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号