首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Experiments were conducted to examine the processes leading up to the infection of Lolium temulentum by crown rust ( Puccinia coronata ), stem rust ( P. graminis ) and brown rust ( P. loliina ), and the effects of temperature on these processes and sporulation. Uredia of all three rusts were produced freely if the adaxial leaf surface was inoculated, but did not form following inoculation of the abaxial surface. Light and scanning electron microscopy revealed abnormal growth of germlings on the abaxial surface which had amorphous sheet-like epicuticular waxes and very few stomata. On the adaxial leaf surface germ tubes of all the rusts orientated at right angles to the long axis of the leaf. However, the directional growth of germ tubes was often disrupted when they contacted the surface of bulliform cells at the base of leaf grooves. For P. loliina the optimum temperatures for urediospore germination and sub-stomatal vesicle formation were 12–16°C, and 8–20°C for appressorium formation. The optimum temperatures, for the same stages of fungal development, for P. coronata and P. graminis were higher. Urediospore production of P. loliina was higher at 10°C than at 25°C, but was similar at both temperatures for P. coronata .  相似文献   

2.
The effects of temperature, relative humidity (RH), leaf wetness and leaf age on conidium germination were investigated for Spilocaea oleagina, the causal organism of olive leaf spot. Detached leaves of five ages (2, 4, 6, 8 and 10 weeks after emergence), six different temperatures (5, 10, 15, 20, 25 and 30°C), eight wetness periods (0, 6, 9, 12, 18, 24, 36 and 48 h), and three RH levels (60, 80 and 100%) were tested. Results showed that percentage germination decreased linearly in proportion to leaf age (P < 0.001), being 58% at 2 weeks and 35% at 10 weeks. A polynomial equation with linear term of leaf age was developed to describe the effect of leaf age on conidium germination. Temperature significantly (P < 0.001) affected frequencies of conidium germination on wet leaves held at 100% RH, with the effective range being 5 to 25°C. The percent germination was 16.1, 23.9, 38.8, 47.8 and 35.5% germination at 5, 10, 15, 20 and 25°C, respectively, after 24 h. Polynomial models adequately described the frequencies of conidium germination at these conditions over the wetness periods. The rate of germ tube elongation followed a similar trend, except that the optimum was 15°C, with final mean lengths of 175, 228, 248, 215 and 135 μm at 5, 10, 15, 20 and 25°C, respectively after 168 h. Polynomial models satisfactorily described the relationships between temperature and germ tube elongation. Formation of appressoria, when found, occurred 6 h after the first signs of germination. The percentage of germlings with appressoria increased with increasing temperature to a maximum of 43% at 15°C, with no appressoria formed at 25°C after 48 h of incubation. Increasing wetness duration caused increasing numbers of conidia to germinate at all temperatures tested (5–25°C). The minimum leaf wetness periods required for germination at 5, 10, 15, 20 and 25°C were 24, 12, 9, 9 and 12 h, respectively. At 20°C, a shorter wetness period (6 h) was sufficient if germinating conidia were then placed in 100% RH, but not at 80 or 60%. However, no conidia germinated without free water even after 48 h of incubation at 20°C and 100% RH. The models developed in this study should be validated under field conditions. They could be developed into a forecasting component of an integrated system for the control of olive leaf spot.  相似文献   

3.
The effects of age of ascospores (0–18 days after discharge), photon flux density (0–494 mol m–2 s–1 PAR), temperature (4–30 °C), frost (–15 °C for 30 min), relative humidity (RH; 0–100%), pH (2.5–6.5) and dryness (0 and 53% RH for up to 40 min) on the germination of the ascospores of the mycotoxin-producing fungus Gibberella zeae (anamorph Fusarium graminearum) were studied. Freshly discharged ascospores germinated within 4 h at 20 °C and 100% RH. The rate of germination and the percentage of viable ascospores decreased over time after the spores were discharged from perithecia. The time course of ascospore germination was not significantly affected by photon flux density. The period of time required to obtain 50% germinated ascospores at 100% RH was 26.90 h at 4 °C, 10.40 h at 14 °C, 3.44 h at 20 °C and 3.31 h at 30 °C. There was no significant effect of frost on the percentage of viable ascospores. A small percentage (6.6 ± 3.8%) of the ascospores germinated at 53% RH. At RH 84% and 20 °C almost 100% of the freshly discharged ascospores germinated. The time course of ascospore germination was affected by pH. The maximum rate of ascospore germination was estimated to be at pH 3.76. Ascospores lost their ability to germinate following exposure to 0% RH almost instantaneously. No germinating spores were detected after an incubation period of 1 min at 0% RH. Incubating the ascospores at 53% RH decreased the percentage of viable spores from 93 to 6% within 10 min. The data demonstrate that age of spores, relative humidity, temperature and pH, but not photon flux density, are key factors in germination of G. zeae ascospores.  相似文献   

4.
Ascochyta blight caused by Ascochyta rabiei, is the most destructive disease in many chickpea growing countries. Disease development varies with the growth stage and host resistance. Hence, disease development was studied in cvs ICCX 810800 (resistant), ICCV 90201 (moderately resistant), C 235 (moderately susceptible), ICCV 96029 and Pb 7 (susceptible) under controlled environment (ICRISAT, Patencheru) and field conditions (Dhaulakuan, Himachal Pradesh) at seedling, post-seedling, vegetative, flowering and podding stages. Under controlled environment, the incubation period and terminal disease reaction (TDR) did not vary significantly at different growth stages against virulent isolate AB 4. Cultivars ICCX 810800, ICCV 90201 and C 235 showed a significantly longer incubation period than the susceptible cv. Pb 7. Cultivar ICCX 810800 showed slow disease progress and the least TDR. Field experiments were conducted during the 2003–2004 and 2004–2005 growing seasons. During 2003–2004, TDR was higher in plants inoculated at podding and the flowering stage and the lowest disease reaction was recorded in ICCX 810800. A severe epidemic during 2004–2005 was attributed to the favourable temperature, humidity and well distributed high rainfall. TDR did not differ significantly at any of the growth stages in susceptible cvs ICCV 96029 and Pb 7. With respect to seeding date and cultivar, the highest yield was recorded in the early-sown crop (1,276.7 kg ha−1) and in ICCV 90201 (1,799.3 kg ha−1), respectively. The yields were greatly reduced in all the cultivars during 2004–2005 and the highest yield was recorded in ICCX 810800 (524.7 kg ha−1). Integrated disease management using resistant cultivars, optimum sowing period and foliar application of fungicides will improve chickpea production. The experiment under controlled environment and field conditions (during the epidemic year) showed a similar disease development.  相似文献   

5.
The effects of host plant exudates, light and temperature on germination of oospores of Peronospora viciae f.sp. pisi in vitro were investigated. Seed and root exudates did not increase percentage germination, whereas light inhibited germination. The first germ tubes appeared after 4, 7, and 14 days of incubation at 15, 10 and 5 °C, respectively. The eventual level of germination was highest and had similar values at 5 and 10 °C. At 20 °C germination was poor and at 25 °C no germination was observed. Oospores placed on membrane filters were incubated on soil. When oospores were retrieved from the membrane filters after six days and placed in water at 10 °C, they germinated within 2 days. On soil significantly less oospores germinated than in water. Germinability of oospores stored in the dark at 5 or 20 °C at 30 or 76% RH was studied over a two-year period. Germinability generally increased over time, but fluctuations were observed indicating the occurrence of secondary dormancy. Time courses of germinability were generally similar for oospores stored at several temperatures and humidities. No effect of light on time course of germinability was found when oospores were exposed to alternating light-dark periods or stored in continuous dark for 140 days. Percentage germination observed in a germination assay was correlated with percentage infection determined in a bioassay.  相似文献   

6.
Sphaeropsis pyriputrescens is the cause of Sphaeropsis rot in apples and pears. In this study, effects of temperature, wetness duration, relative humidity (RH), dryness, and interrupted wetness duration on conidial germination of the fungus were evaluated. Conidial germination and germ tube elongation occurred at temperatures from 0°C to 30°C. The optimum temperature for germination and germ tube elongation appeared to be 20°C, at which a minimum wetness period of 5 h was required. Conidia germinated at RH as low as 92% after 36 h at 20°C, but not at 88.5% RH. The effect of dry periods on germination depended on RH. Conidial germination at 85% RH was higher than that at 25% RH within a 4-h dry period, after which time no difference was observed. Less than 10% conidia germinated after a 10-day dry period at both 20°C and 28°C. Conidial germination decreased as the wetness duration prior to dryness increased. Conidia wetted for 6 h prior to dryness died within a 1-h dry period. After a 12-h dry period, no or few conidia germinated at 25% RH, whereas 3% to 10% of the conidia germinated at 85% RH and no further decrease was observed as the dry period increased. The results contribute to our understanding of conditions required for conidial germination of S. pyriputrescens and infection of fruit leading to Sphaeropsis rot.  相似文献   

7.
Inoculum density, temperature, leaf age, and wetness duration were evaluated for their effects on the development of black streak (Itersonilia perplexans) on edible burdock (Arctium lappa L.) in a controlled environment. The effect of relative humidity (RH) on ballistospores production by I. perplexans was also evaluated. Symptoms of black streak on leaves increased in a linear fashion as the inoculum density of I. perplexans increased from 102 to 106 ballistospores/ml. Rugose symptoms on young leaves were observed at densities of ≥104 ballistospores/ml. Disease severity of I. perplexans in relation to leaf age followed a degradation curve when the leaves were inoculated with ballistospores. Disease severity was high in newly emerged leaves up to 5 days old, declined as leaf age increased to 29 days, and was zero when leaf age increased from 30 to 33 days. Disease development of edible burdock plants exposed to ballistospores of I. perplexans was evaluated at various combinations of temperature (10°, 15°, 20°, 25°C) and duration of leaf wetness (12, 24, 36, 48, and 72 h). Disease was most severe when plants were in contact with the ballistospore sources at 15° or 20°C. The least amount of disease occurred at 25°C regardless of wetness duration. Ballistospores required 24–36 h of continuous leaf wetness to cause visible symptoms by infection on edible burdock. Ballistospores production in infected lesions required at least 95.5% RH.  相似文献   

8.
The effects of various storage temperatures on germination of sclerotia ofSclerotium cepivorum Berk. were investigated. Sclerotia buried in soil for 10 weeks at temperatures of 5 and 10 °C were conditioned to a fast germination. When germination was performed at 15 °C and induced byAllium extracts, 50% of these sclerotia germinated within 10 days and the total of germination was over 90%. Sclerotia buried at temperatures of 15, 20 and 25 °C were conditioned to a slow germination. About 50% of these sclerotia could be induced to germinate at 15 °C byAllium extracts. The conditioning by high or low temperatures proved to be reversible.The optimum temperature for germination of the cold (5°C) conditioned sclerotia was 10–20 °C. The optimum temperature for germination of sclerotia conditioned at 20 °C was about 10 °C. WithoutAllium extracts 90%, 80%, 50% and 40% of the sclerotia stored at 5 °C, germinated at temperatures of 10, 5, 15 and 20 °C respectively. Sclerotia stored at 20 °C did not germinate withoutAllium extracts at any temperature.Samenvatting Sclerotiën vanSclerotium cepivorum Berk. werden onder niet steriele omstandigheden bewaard bij verschillende temperaturen. Het effect van de bewaring bij verschillende temperaturen op de kieming werd onderzocht. Het bleek dat sclerotiën, die 70 dagen bewaard werden in zakjes met zand in niet steriele grond bij een temperatuur van 5 °C of 10 °C, geconditioneerd werden tot een snelle, vrijwel volledige kieming. Onder invloed van vluchtige stoffen uit gesnipperde ui en knoflook kiemden meer dan 90% van deze sclerotiën bij een temperatuur van 15 °C. Sclerotiën die bij een hogete temperatuur bewaard werden, namelijk bij 15, 20 of 25 °C, kiemden na de bewaarperiode langzaam bij 15 °C. Ongeveer 50% van deze sclerotiën konden tot kieming gebracht worden onder invloed van ui- en knoflookextract. Sclerotiën die door een koude bewaarperiode geconditioneerd waren, namelijk bij 5 of bij 10 °C, kiemden ook zonder ui-en knoflookextract; 78% en 90% van deze sclerotiën kiemden bij temperaturen van respectievelijk 5 en 10 °C. De sclerotiën die een warme bewaarperiode ondergaan hadden, namelijk bij 15, 20 of 25 °C, kiemden niet zonder ui en knoflook. De optimum temperatuur voor de kieming was 15–20 °C voor sclerotiën die bij 5 °C bewaard waren. De optimum temperatuur voor de kieming van sclerotiën die bij 20 °C bewaard waren was lager, en wel ca. 10 °C.De conditionering door een hoge of door een lage bewaartemperatuur bleek reversibel te zijn. Sclerotiën die eerst bij 5 °C bewaard werden en daarna bij 20 °C onderscheidden zich niet van sclerotiën die continu bij 20 °C bewaard werden. Sclerotiën die eerst bij 20 °C bewaard werden en vervolgens bij 5 °C, kiemden als sclerotiën die continu bij 5 °C bewaard waren.  相似文献   

9.
Components of quantitative resistance in pea ( Pisum sativum ) to Erysiphe pisi , the pathogen causing powdery mildew, were investigated. Conidium germination, infection efficiency, latent period and conidium production dynamics on cv. Quantum (quantitatively resistant) were compared with those on Pania and Bolero (susceptible). There was an additional comparison in conidium germination experiments with the resistant cv. Resal. Quantitative resistance in Quantum did not affect conidium germination, but infection efficiency of conidia on this cultivar was 34% less than on the susceptible Pania. More conidia germinated on 5-day-old leaflets than on 15-day-old leaflets but the age of the plant did not affect percentage germination or infection efficiency. The length of the latent period did not differ between cultivars. Total conidium production (AUC) per unit leaflet area on Quantum was 25% less than on Pania. The maximum conidium production per day (CMAX) per unit leaflet area on Quantum was 33% less than on Pania. The time to maximum conidium production per day (TMAX) was 10% longer on Quantum than on Pania. The cv. Bolero, reported to be susceptible, also showed some degree of quantitative resistance, but this differed from that of Quantum. Total conidium production was less on Bolero than on Quantum, but the conidia on Bolero were produced sooner, and for a shorter period, than on Quantum. The stability of these responses was tested by analysing components in three different temperature regimes and testing for interactions with temperature, and with leaflet age. Temperature affected all conidium production variables. AUC per leaflet area was nearly seven times as great and CMAX nearly 15 times greater at 23°C than at 13°C. TMAX increased by 1.5 times when temperature increased from 13°C to 18°C or 23°C. Several interactions occurred and these are described.  相似文献   

10.
Yigal Elad 《Phytoparasitica》1991,19(3):201-209
Difluoromethylornithine (DFMO) — an inhibitor of polyamine biosynthesis, and the polyamine spermidine (Spd) reduced gray mold of tomato, pepper, eggplant, bean andSenecio sp. leaves, and of rose petals by 37–88% when applied at 0.1–1.0 mM each. Higher doses did not result in better control. The disease was also reduced significantly on tomato fruits by 1.0 inM DFMO and by 0.1–1.0 mM Spd, and on cucumber fruits by 0.1–1.0 mM of both compounds, but not on grape berries. The combination of 0.2 mM DFMO with 1.0 mM Spd controlled gray mold ofSenecio sp. and tomato leaves additively better than either treatment alone, whereas this effect was not observed in leaves of lettuce and pepper. Ethylene production was reduced significantly by Spd applied to leaves of tomato and pepper, but not by DFMO. Linear growth and germination of the fungus were affected by lower concentrations of DFMO (ED50 0.12–0.97 and 1.4, respectively) as compared with Spd. Spermidine and DFMO controlled white mold(Sclerotinia sclerotiorum) as effectively as did the fungicide benomyl. Contribution from the Agricultural Research Organization. No. 3195-E, 1991 series.  相似文献   

11.
Exogenous applications of acibenzolar- S -methyl (ASM) induced resistance to rust infection in sunflower, characterized by reduced infection frequency with no effect on latency period or pustule size, and no increase in host cell necrosis. Cytological studies showed that the reduced frequency of infection was due to a reduction in germination and appressorium formation, while stoma penetration, growth of infection hyphae and haustorium formation remained unaffected. Germination and germtube growth were not hampered by the direct application of ASM on urediospores. The data suggested that ASM had an effect on the production and secretion of fungitoxic compounds to the leaf surface that hamper rust urediospore germination and appressorium formation. This hypothesis is supported by the following experimental results: (i) an increase in the amount of accumulated and excreted coumarins and other phenolic compounds in ASM-treated plants, and (ii) a reduction of germination and of appressorium formation when ayapin, scopoletin, and leaf exudates collected from ASM-treated plants were applied exogenously.  相似文献   

12.
Microbial isolates from living petals, petal residues and leaf residues of rose, and from laboratory collections, were evaluated for control ofBotrytis cinerea in rose. In leaf residues artificially infested withB. cinerea, isolates of the filamentous fungiGliocladium roseum, FR136 (unidentified) andTrichoderma inhamatum reduced sporulation of the pathogen by >90%, other filamentous fungi were 25–90% effective, and those of yeasts and bacteria were <50% effective. In artificially inoculated petal residues, no microbe reduced sporulation ofB. cinerea by >75%, but isolates ofCladosporium oxysporum and four yeasts were 51–75% effective, and three filamentous fungi, eight yeasts andBacillus subtilis isolates were 26–50% effective. Isolates ofT. inhamatum, C. oxysporum andG. roseum performed best againstB. cinerea among isolates evaluated in leaf residues naturally infested with the pathogen and indigenous microorganisms. Totals of ten isolates of filamentous fungi (includingC. oxysporum andC. cladosporioides), two of yeasts and five ofBacillus subtilis completely prevented lesion production byB. cinerea in detached petals, and a further six isolates of filamentous fungi (includingG. roseum) and six yeasts were 90–99% effective. Isolates ofC. oxysporum, C. cladosporioides andB. subtilis, the most effective microorganisms againstB. cinerea in flower buds, reduced number of lesions in the range of 42–65% compared with 59–89% for à standard fungicide (vinclozolin). It is suggested that application of leading antagonists Jo living rose leaves and flowers should optimize control of inoculum production byB. cinerea when the tissues die. Optimal biocontrol of lesion production in flower buds requires a better understanding of the microenvironment of petals.  相似文献   

13.
Bacillus licheniformis (EN74-1) was evaluated for the control of gray mold of apple caused byBotrytis mali. Dual culture, cell-free metabolite and volatile tests showed thatB. licheniformis (EN74-1) inhibited growth of the pathogen. Inhibition varied from 46.2% to 65.4% in the dual culture tests; 58.6% to 58.8% in the cell-free metabolite tests; and 28.4% to 33.8% in the volatile tests.B. licheniformis (EN74-1) appeared to be a good antagonist of gray mold on apples at 20° and 4°C. It reducedB. mali lesion diameter to 9–11 mm compared with to 32–41 mm in the control at 4°C. At 20°C the lesion diameter was reduced to 3.6–8.4 mm for the antagonistic treatment and to 25.8–38.2 mm for the control treatment after 14 days. http://www.phytoparasitica.org posting Dec. 11, 2007.  相似文献   

14.
Experiments were conducted to determine the effects of temperature, relative humidity (RH) and duration of wetness period on in vitro germination of conidia and infection of detached pear leaves by Venturia nashicola , the causal agent of pear scab. Conidia germinated only in near-saturation humidity (RH > 97%). The final percentage germination (24 h after inoculation) at 100% RH without free water was less than half that in free water. Conidia germinated over the range of temperatures tested (5–30°C); the optimum temperature for germination was ≈21°C. Changes in percentage germination of conidia over time were fitted by logistic models at each individual temperature. Polynomial models satisfactorily described the relationships between two (rate and time to 50% of maximum germination) of the three logistic model parameters and temperature. The minimum length of the wetness period for successful infection of detached pear leaves by conidia was observed at several temperatures. The shortest length of wetness period required for infection was 7 h at 22°C. Two polynomial models fitted well the relationship between the minimum wetness duration required for infection, and temperature.  相似文献   

15.
The transmission of Stagonospora nodorum from four naturally infected winter wheat seedlots was quantified in controlled environment germination chambers at 9, 13, 17, 21, and 25 °C. Seedlings were harvested when the second leaf began to emerge. Coleoptiles and first seedling leaves were examined for the presence of lesions caused by S. nodorum. First leaves were incubated on Bannon's medium for 2 weeks, after which they were examined for pycnidia of S. nodorum. Transmission to the coleoptile occurred at all temperatures, but decreased from 100% to 72% as temperature increased from 9 to 25 °C. Transmission to the first leaf was less, dropping from 37% to 2% as temperature increased from 9 to 25 °C. At least 44% of infected first leaves were symptomless at all temperatures, with 96% of infected leaves showing no symptoms at 25 °C. Transmission to seedling leaves occurred over a broad temperature range. Under the high densities at which wheat is sown, a significant number of infected seedlings per unit area may originate from relatively low initial seed infection levels and transmission efficiencies.  相似文献   

16.
An increase of 11–31% of dry mycelial mass was observed along with a slight decrease (5–10%) in aflatoxin Bi production in 5-day-old aflatoxigenicAspergillus spp. submerged cultures containing either 0.5 ml or 1.0 ml clarified neem oil (CNO) in 0.1 % Triton solution. Fungal growth and aflatoxin B1 production were also determined in potato-dextrose-agar petri plate cultures inoculated with aflatoxigenicAspergillus spp. containing an atmosphere of volatiles emitted from 0.25 ml, 0.5 ml, and 1.0 ml CNO added to the plates. After 5 days’ incubation, fungal radial growth was reduced by 7–29% and aflatoxin B1 production by 0–67%. GC/MS analysis of the head space volatiles of the CNO indicated that the reduction of fungal growth and aflatoxin B1 was probably due to low molecular weight hydrocarbons, aldehydes, alcohols, and sulfur compounds emitted at 30°C in the dry culture. These results suggest that volatiles emitted from CNO at 30° C in plate cultures were more fungistatic and consequently inhibited aflatoxin production more than neem oil added in liquid cultures.  相似文献   

17.
Abstract

Studies were conducted to determine the influence of plant growth stage, inoculum density, temperature, and relative humidity (RH) on development of rust (Puccinia pupurea) in sorghum (Sorghum bicolor). Rust development was maximum (>80% severity), when plants of a susceptible sorghum genotype (IS 18420) were inoculated at the four‐ to five‐leaf stage with an inoculum concentration of 4 × 106 urediniospores per ml and incubated at 20–25°C under high RH (>90%) for 24 h. Disease severity (percentage leaf area covered with rust pustules) scores were taken 2 weeks after inoculation. Using this technique, 29 sorghum genotypes were screened for rust resistance in a greenhouse. This technique proved effective In discerning resistant and susceptible genotypes, and IS 3979, ICSH 110, ICSH 86647 and ICSH 871035 were identified resistant (<20% rust severity) compared with a susceptible control IS 18420 (90% rust severity). This technique is simple and rapid, and can be used effectively and economically to screen, on a large scale, germplasm lines and breeding populations in the greenhouse.  相似文献   

18.
Uromyces transversalis is an autoecious microcyclic rust mainly infecting Gladiolus spp. The pathogen is considered of plant quarantine importance in Europe and the USA. In 2006, the pathogen was found for the first time in the USA in several commercial nurseries in Florida and California. The US Department of Agriculture (USDA) initiated an eradication programme that recommended the immediate removal and destruction of infected plants followed by a host-free period, use of a fungicide treatment schedule, and equipment decontamination. In support of this plan, a study was conducted to determine how long urediniospores of U. transversalis would continue to germinate at temperatures of 2.8, 15.0, 18.8 and 25.0°C under controlled relative humidities (RH) of 11, 23, 43, 75, 93 and 100%. Choice of temperature and humidity parameters were mostly based on historical multi-year climate data from areas where the disease was detected in California and Florida. Analysis of variance (ANOVA) indicated no significant effect of RH on urediniospore germination but a highly significant effect of temperature. No germinating urediniospores were detected after 79 days for any treatment, but the 15°C treatment was more likely to be the result of germination independent of any low or high temperature-induced spore quiescence. Thus, lack of germination after 79 days was probably a good indicator of the lack of viable spores after this time for the 15°C treatment.  相似文献   

19.
桃小食心虫病原菌—球孢白僵菌TST05菌株生物学特性研究   总被引:1,自引:0,他引:1  
[目的]研究从自然染病的桃小食心虫幼虫上分离的球孢白僵菌TST05菌株的生物学特性.[方法]测定不同培养基、外界不同温度和湿度对该菌株菌丝营养生长及孢子萌发的影响.[结果]该菌株在PDA、PPDA、SDAY、SMAY 4种培养基上均生长良好,菌落厚而致密,产孢量均大于3.95×107孢子/mL;菌株适应的温度和湿度范围宽,15~30℃之间,RH 30 %~100%之间孢子均可萌发、生长和产孢.随着温度接近25℃、湿度增大,孢子的萌发率、菌落的生长速率和产孢量都显著增加.15℃、RH 100%时产孢量为1.32× 107孢子/mL;25℃、RH 30%时,产孢量也能达到1.37×107孢子/mL;25℃、RH 100%时产孢量达到6.19×107孢子/mL.15℃、RH 100%孢子萌发率为52.28%;25℃、RH>80%时,孢子萌发率都能达到90%以上.[结论]TST05菌株能适应北方干旱低温条件,可开发成为防治桃小食心虫的生物制剂.  相似文献   

20.
Penicillium corymbiferum is shown to be a parasite of hyacinth bulbs. The symptoms are described. Cold storage at 9°C was most favourable for development of the disease. Although the attack during storage was higher at 80% RH than at 50% RH, storage at 9°C and 50% RH does not decrease the attack after planting.Samenvatting Er is aangetoond datPenicillium corymbiferum een parasiet van hyacintebollen is. De symptomen van deze ziekte worden beschreven.Een bewaartemperatuur van 9°C geeft een sterkere aantasting dan bewaring bij 25°C of 13°C. Hoewel na een bewaring bij 80% RV de aantasting sterker is dan na bewaring bij 50% RV, is het verschil niet groot genoeg om praktische toepassingsmogelijkheden te doen verwachten. Vooral omdat de aantasting na het planten voor beide behandelingen gelijk is.The senior author was a visiting research worker sponsored by the International Agricultural Centre (I.A.C.), Wageningen, from October 1966 till October 1967.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号