首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AIM: To investigate the effect of IQGAP1 gene expression knock-down on invasion, migration and immunosuppression of glioma cells and its mechanism. METHODS: Human glioma U251 cells were randomly divided into blank group, negative control group and si-IQGAP1 group. AG490, an inhibitor of STAT3 signaling pathway, was used to treat the cells for 48 h. The cell viability was measured by MTT assay. The protein levels of IQGAP1, vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1), STAT3 and p-STAT3 were determined by Western blot. The cell invasion and migration abilities were detected by Transwell assays. RESULTS: The protein expression of IQGAP1 in si-IQGAP1-1 group and si-IQGAP1-2 group was significantly lower than that in blank group (P<0.05). Compared with blank group, the viability, the invasion ability and the migration ability of the cells in si-IQGAP1 group and AG490 group were significantly decreased, while the protein levels of VEGF, TGF-β1 and p-STAT3 were significantly decreased (P<0.05). Compared with AG490 group, the cell viability, invasion ability and migration ability in AG490+si-IQGAP1 group were significantly decreased, and the protein levels of VEGF and TGF-β1 were significantly decreased (P<0.05). CONCLUSION: Silencing of IQGAP1 gene expression reduces the invasion and migration abilities of glioma cells and decreases the protein expression of cellular immunosuppression molecules VEGF and TGF-β1, which is related to down-regulation of STAT3 signaling pathway.  相似文献   

2.
AIM To investigate the effects of procaine (PCA) and CXC chemokine receptor 7 (CXCR7) on the viability, migration and invasion of bladder cancer cells and its potential mechanism. METHODS Human bladder cancer RT4 cells were treated with PCA at different concentrations, and were divided into PBS group (without PCA treatment), PCA group (treated with 4 mmol/L PCA), siRNA negative control (si-Con) group (transfected with si-Con), CX?CR7 siRNA (si-CXCR7) group (transfected with si-CXCR7), PCA+pcDNA group (treated with 4 mmol/L PCA and transfected with pcDNA) and PCA+pcDNA-CXCR7 group (treated with 4 mmol/L PCA and transfected with pcDNA-CX?CR7). The siRNA and pcDNA were transfected into the RT4 cells by liposome method. The mRNA expression of CX?CR7 in the RT4 cells was detected by RT-qPCR. The cell viability was measured by CCK-8 assay. The invasion and migration abilities of the cells were detected by Transwell assays. The protein levels of CXCR7, AKT, STAT3, p-AKT and p-STAT3 were determined by Western blot . RESULTS Compared with PBS group, the viability, migration ability and invasion ability of the RT4 cells treated with PCA at different concentrations were significantly decreased (P<0.05), and the expression of CXCR7 at mRNA and protein levels in PCA group was also significantly decreased (P<0.05). Compared with si-Con group, the expression of CXCR7 at mRNA and protein levels in si-CXCR7 group was significantly decreased, and the viability, migration ability and invasion ability of the cells were also significantly decreased (P<0.05). Compared with PCA+pcDNA group, the expression of CXCR7 at mRNA and protein levels in PCA+pcDNA-CXCR7 group was significantly increased, and the viability, migration ability and invasion ability of the cells were also significantly increased (P<0.05). Compared with PBS group, the protein levels of p-AKT and p-STAT3 in PCA group were significantly decreased(P<0.05). Compared with PCA+pcDNA group, the protein levels of p-AKT and p-STAT3 in PCA+pcDNA-CX?CR7 group were significantly increased (P<0.05). No significant difference in the protein levels of AKT and STAT3 among the groups was observed. CONCLUSION Treatment with PCA inhibits the viability, migration and invasion of bladder cancer cells by inhibiting the expression of CXCR7. Over-expression of CXCR7 reverses this effect of PCA. Its mechanism may be related to AKT/STAT3 signaling pathway.  相似文献   

3.
AIM: To investigate the effects of propofol on invasion and migration of gastric cancer cell line SGC-7901. METHODS: Cultured gastric cancer cell line SGC-7901 was randomly divided into 4 groups, and then diffe-rent concentrations (1, 3, 5 and 7 mg/L) of propofol were added and incubated for 24 h. The cell viability was measured by MTT assay. The invasion and migration abilities of the SGC-7901 cells were detected by Transwell assay and wound-healing assay. The expression of cysteine-rich angiogenic inducer 61 (CYR61), CD44v6 and matrix metalloproteinase-7 (MMP-7) in the SGC-7901 cells were examined by immunocytochemistry and Western blot.RESULTS: Propofol at 5 mg/L does not affect the viability of SGC-7901 cells, whereas significantly suppresses the invasion and migration abilities, and down-regulates the expression of CD44v6 and MMP-7 (P<0.05). CONCLUSION: The decreased invasion and migration abilities of SGC-7901 cells were partly due to the inhibition of CD44v6 and MMP-7 expression.  相似文献   

4.
AIM: To investigate the effect of hirsutine on hypoxia-induced migration and invasion abilities of human breast cancer MCF-7 cells and its possible mechanism. METHODS: CCK-8 assay was employed to detect the cytotoxic effect of hirsutine on the MCF-7 cells. Cell migration was observed by wound healing assay, and cell invasion ability was measured by Transwell invasion assay. Western blot was used to analyze the protein levels of hypoxia-inducible factor-1α (HIF-1α), Snail, E-cadherin and matrix metalloproteinase-9 (MMP-9). The mRNA levels of HIF-1α was detected by RT-PCR. RESULTS: Hirsutine remarkably reduced the cell viability from 32 μmol/L (P<0.05), and the IC50 value was 62.82 μmol/L. In hypoxia state, MCF-7 cells showed more powerful capabilities of migration and invasion (P<0.05), higher protein levels of HIF-1α, Snail and MMP-9 (P<0.05), lower protein level of E-cadherin (P<0.05), and higher mRNA level of HIF-1α (P<0.05). These hypoxia-induced effects were all inhibited by hirsutine at 16 μmol/L (P<0.05), apart from the mRNA level of HIF-1α. CONCLUSION: Hirsutine inhibits hypoxia-induced migration and invasion in human breast cancer MCF-7 cells most likely via down-regulation of the protein levels of HIF-1α, Snail and MMP-9, and up-regulation of the protein level of E-cadherin.  相似文献   

5.
6.
AIM: To investigate the effect of linarin (LIN) on the migration and invasion abilities of human breast cancer MDA-MB-231 cells and its underlying mechanism. METHODS: MCF-7, MDA-MB-231 and MCF-10A cells were cultured in vitro and treated with LIN at 5, 10, 20, 40, 80 and 160 μmol/L for 24 h, and the cell proliferation was measured by CCK-8 assay and colony formation assay. The protein levels of Snail, E-cadherin, matrix metalloproteinase-9 (MMP-9), IκBα, p-IKKα/β and p-p65 were determined by Western blot. RESULTS: LIN remarkably reduced the viability of MDA-MB-231 cells in a dose-dependent manner (P<0.05), and the IC50 was 55.89 μmol/L for 24 h. LIN decreased the colony formation rate of MDA-MB-231 cells at the concentration of 20 μmol/L (P<0.05). After exposed to LIN at 5 μmol/L and 10 μmol/L for 24 h, the migration and invasion abilities of the MDA-MB-231 cells were significantly reduced (P<0.05), the protein expression levels of E-cadherin and IκBα were up-regulated (P<0.05), the protein expression levels of Snail and MMP-9 were down-regulated (P<0.05), and the phosphorylation levels of IKKα/β and p65 were decreased (P<0.05) in comparison with the control group. Meanwhile, IKK-16 (IKKα/β inhibitor) and PDTC (NF-κB inhibitor) also down-regulated the protein expression levels of Snail and MMP-9 (P<0.05), and up-regulated the protein expression level of E-cadherin (P<0.05). CONCLUSION: LIN down-regulates the protein expression levels of Snail and MMP-9, and up-regulates the protein expression level of E-cadherin most likely through inhibiting IKK/NF-κB signaling pathway, and ultimately lead to decreases in the migration and invasion abilities of MDA-MB-231 cells.  相似文献   

7.
8.
AIM: To investigate the effect of silencing of serum amyloid A (SAA) on the viability, apoptosis, migration and mitogen-activated protein kinase (MAPK) signaling pathway in osteosarcoma U2OS cells. METHODS: Small interfering RNA (siRNA) targeting SAA was transfected into U2OS cells to silence the expression of SAA gene. The U2OS cells were divided into blank control group, negative control group, and experimental group. The cells in negative control group and experimental group were transfected into negative control siRNA and SAA-siRNA, respectively. The cells in blank control group were without any treatment. The viability of the cells was measured by MTT assay and the apoptotic rate was analyzed by flow cytometry with Annexin V-FITC/PI double staining. The migration and invasion abilities of the cells were detected by Transwell chamber assay. The protein levels of SAA, phosphorylated p38 MAPK (p-p38 MAPK) and phosphorylated c-Jun N-terminal kinase (p-JNK) in the cells were determined by Western blot. RESULTS: The protein expression of SAA in SAA-siRNA group was significantly lower than that in blank control group (P<0.05). Compared with blank control group, the cell viability in SAA-siRNA group was significantly decreased (P<0.05), the apoptotic rate was significantly increased (P<0.05), and the invasion and migration abilities were significantly decreased (P<0.05). The protein levels of p-p38 MAPK and p-JNK in SAA-siRNA group were significantly lower than those in blank control group (P<0.05), and no significant difference of total JNK and p38 protein levels was observed. CONCLUSION: Silencing of SAA expression inhibits the viability of osteosarcoma cells, induces apoptosis and decreases the migration of osteosarcoma cells, which may be related to the activation of MAPK signaling pathway.  相似文献   

9.
AIM: To investigate the effect of microRNA-24-3p (miR-24-3p) on the viability and apoptosis of esophageal cancer cells. METHODS: The expression of miR-24-3p and KLF6 mRNA in the esophageal cancer cells TE11, Eca109 and EC9706 were detected by RT-qPCR. The protein expression of KLF6 was determined by Western blot. EC9706 cells were transfected with anti-miR-24-3p and KLF6 siRNA. The cell viability was measured by MTT assay, the apoptotic rate was analyzed by flow cytometry, and the proliferation, apoptosis and IL-6/STAT3 signaling pathways related proteins were determined by Western blot. The level of IL-6 was measured by ELISA. The dual luciferase reporter gene assay was used to verify the relationship between miR-24-3p and KLF6. RESULTS: The levels of miR-24-3p were up-regulated in the esophageal cancer cells TE11, Eca109 and EC9706 (P < 0.05), and the expression of KLF6 at mRNA and protein levels was down-regulated (P < 0.05). Knock-down of miR-24-3p expression inhibited the cell viability, induced apoptosis, and inhibited the protein levels of CDK4, cyclin D1, CDC25A, p-STAT3, Bcl-2 and IL-6, and promoted the protein expression of caspase-3 and Bax in EC9706 cells. CONCLUSION: miR-24-3p targets KLF6 gene to affect the viability and apoptosis of esophageal cancer cells by regulating IL-6/STAT3 signaling pathway.  相似文献   

10.
LI Li  WANG Chun  LU Hong-da 《园艺学报》2016,32(6):998-1003
AIM: To observe the effects of brucine on the viability and apoptosis of colon cancer SW480 cells.METHODS: The SW480 cells were divided into control group, 1 μmol/L brucine treatment group, 100 μg/L IL-6 treatment group and IL-6+brucine treatment group. The cell viability was detected by CCK-8 assay. The apoptotic rate was measured by flow cytometry using fluorescein-labeled Annexin V/PI. The changes of apoptosis-related proteins were determined by Western blot. The protein level of p-STAT3 was also detected by immunofluorescence staining. RESULTS: Brucine inhibited SW480 cell growth, and the viability inhibition rate of the SW480 cells treated with brucine alone was more efficient than using brucine combined with IL-6 (P < 0.05). The apoptotic SW480 cells increased significantly after 1 μmol/L brucine treatment as compared with brucine treatment alone (P < 0.05). The apoptotic SW480 cells were significantly reduced in brucine and IL-6 combination treatment group (P < 0.05). Brucine inhibited the protein level of p-STAT3 significantly. The protein level of p-STAT3 was significantly increased in 100 μg/L IL-6 treatment group. Compared with 1 μmol/L brucine treatment alone, the expression of Bcl-2 was increased and the protein levels of p-STAT3, Bax and cleaved PARP were reduced in brucine and IL-6 combination treatment group (P < 0.05).CONCLUSION: Brucine may inhibit the activation of STAT3 phosphorylation in IL-6/STAT3 pathway to exert an antitumor effect on SW480 cells in vitro.  相似文献   

11.
FU Liang  PAN Rui  CHEN Zhao 《园艺学报》2019,35(4):606-613
AIM:To investigate the role of HMGA2 in the epithelial-mesenchymal transition (EMT) in gastric cancer cells. METHODS:The expression of HMGA2 in human gastric cancer cell lines with different degrees of differen-tiation (MKN45, MKN28 and SGC7901) and immortalized human gastric epithelial cell line GES-1 was determined by Western blot and RT-qPCR. pcDNA3.0-HMGA2 plasmid was transfected into the MKN28 cells by liposome method. Transfection of si-HMGA2 interference fragments into MKN45 cells was also performed. The transfection efficiency was evaluated by Western blot and RT-qPCR. The effects of HMGA2 over-expression in the MKN28 cells and knock-down in the MKN45 cells on the cell viability were measured by CCK-8 assay. The effects of HMGA2 over-expression in the MKN28 cells on the cell migration and invasion abilities were detected by wound healing and Transwell invasion assays. The effects of HMGA2 over-expression in the MKN28 cells and knock-down in the MKN45 cells on the expression of EMT-related markers E-cadherin, N-cadherin, vimentin at mRNA and protein levels were determined by RT-qPCR and Western blot. The changes of Wnt/β-catenin signaling pathway-related molecules in the MKN28 cells with HMGA2 over-expression were also determined by RT-qPCR. RESULTS:The expression levels of HMGA2 were quite different in different differentiation levels of gastric cancer cells (P<0.05). The increased expression level of HMGA2 in MKN28 cells inhibited the cell viability (P<0.05), while the decreased expression level of HMGA2 in MKN45 cells promoted the cell viability (P<0.05). The increased expression level of HMGA2 in MKN28 cells promoted cell migration and invasion (P<0.05), changed the expression of EMT-related markers (P<0.05), while the decreased expression level of HMGA2 in the MKN45 cells changed the expression of EMT-related markers (P<0.05). The increased expression level of HMGA2 in the MKN28 cells significantly increased the mRNA levels of β-catenin in the Wnt/β-catenin pathway and the downstream molecules c-Myc and cyclin D1 (P<0.05). CONCLUSION:HMGA2 is closely related to the migration and invasion abilities of gastric cancer cells. Moreover, it promotes the EMT process of gastric cancer cells by activating Wnt/β-catenin pathway.  相似文献   

12.
AIM:To investigate the effect of NOB1 gene expression knock-down by transfection of small interfering RNA (siRNA) on the viability, drug sensitivity, apoptosis, cell cycle distribution, and invasion and migration abilities of human colon cancer SW480 cells. METHODS:NOB1 siRNA was transfected into SW480 cells using Lipofectamine 3000. The mRNA and protein levels of NOB1 in the SW480 cells were determined by real-time PCR and Western blot. The cell viability and sensitivity to different chemotherapeutic drugs (cisplatin, 5-fluorouracil, oxaliplatin and capecitabine) were detected by MTT assay after knock-down of NOB1 gene expression in the SW480 cells. The apoptosis and cell cycle distribution of SW480 cells were analyzed by flow cytometry. The invasion and migration abilities of SW480 cells were detected by Transwell assay. RESULTS:After transfection with NOB1 siRNA, the mRNA and protein levels of NOB1 in the SW480 cells were significantly decreased (P<0.05). Compared with control group and control siRNA group, the viability of SW480 cells in NOB1 siRNA group was significantly decreased at 24~72 h. The half maximal inhibitory concentrations of the chemotherapy drugs cisplatin, 5-fluorouracil, oxaliplatin and capecitabine were significantly decreased. The apoptotic rate was significantly increased and the cell cycle were blocked. The cell invasion and migration abilities were significantly reduced (P<0.05). CONCLUSION:Knock-down of NOB1 gene expression inhibits the viability and invasion and migration abilities of colon cancer SW480 cells, and promotes drug sensitivity and apoptosis. NOB1 may be a new target for diagnosis and treatment of colon cancer.  相似文献   

13.
AIM: To investigate the effect of differentiated embryonic chondrocyte gene 1 (DEC1) expression silencing on viability, invasion and migration of human breast cancer MDA-MB-231 cells and its possible mechanism under hypoxia. METHODS: The expression of DEC1 was detected by RT-qPCR and Western blot in breast cancer MDA-MB-231 cells under normoxia and hypoxia. MDA-MB-231 cells were transfected with the siRNA targeting DEC1 and the protein levels of DEC1, Smad3 and phosphorylated Smad3 (p-Smad3) were examined under hypoxia. Subsequently, the changes in the viability, invasion and migration abilities of MDA-MB-231 cells were analyzed by CCK-8 assay, Transwell experiment and Scratch test, respectively. RESULTS: The expression of DEC1 in MDA-MB-231 cells under hypoxia was higher than that in the MDA-MB-231 cells under normoxia condition at both mRNA and protein levels (P<0.05). The viability, invasion and migration abilities of MDA-MB-231 cells in siRNA-DEC1 group were decreased significantly as compared with control group (P<0.01). Besides, the protein level of p-Smad3 in the MDA-MB-231 cells in siRNA-DEC1 group was lower than that in negative control group under hypoxia condition (P<0.05). CONCLUSION: Down-regulated DEC1 expression significantly decreases the viability, invasion and migration abilities of breast cancer MDA-MB-231 cells by blocking the TGF-β/Smad3 signaling pathway under hypoxia condition.  相似文献   

14.
AIM: To investigate the effects of chronic hypoxia on the aggressiveness of MCF-7, a human breast cancer cell line, and the underlying mechanisms.METHODS: MCF-7 cells were cultured under hypoxia (1% O2, 5% CO2 and 94% N2) or control (95% O2 and 5% CO2) condition. The viability, proliferation, and invasion and migration abilities of the MCF-7 cells were determined by MTT assay, CCK-8 assay, cell counting, and cell invasion and migration assays. Anchorage-independent growth and the alteration of cellular polarization of the MCF-7 cells were tested by soft agar colony formation assay and Matrigel-3D culture assay, respectively. The effects of chronic hypoxia on the growth and metastasis of MCF-7 cells in vivo were investigated by xenograft in nude mice. The morphological changes of the MCF-7 cells were observed under an inverted microscope. Hypoxia-induced alterations in the levels of hypoxia inducible factor-1 (HIF-1) and phosphorylated glycogen synthase kinase-3β (p-GSK-3β) as well as epithelial-mesenchymal transition (EMT) molecules, such as E-cadherin, N-cadherin, vimentin, matrix metalloproteinase (MMP)-3 and MMP-9, were determined by Western blot.RESULTS: Chronic hypoxia significantly increased the viability, proliferation, and invasion and migration abilities of MCF-7 cells in vitro, enhanced the anchorage-independent growth, facilitated cellular polarization alteration in Matrigel-3D culture, and promoted cancer metastasis in vivo. Hypoxia up-regulated HIF-1, activated GSK-3β, down-regulated E-cadherin and increased the protein levels of N-cadherin, vimentin, MMP-3 and MMP-9. CONCLUSION: Chronic hypoxia enhances the aggressiveness of breast cancer cells probably through EMT.  相似文献   

15.
16.
AIM:To investigate the effect of high-mobility group box-1 (HMGB1) expression knockdown on the invasion ability of breast cancer cells induced by tumor necrosis factor-α (TNF-α). METHODS:HMGB1 siRNA was used to transfect into the breast cancer MDA-MB-231 cells. The expression of HMGB1 at mRNA and protein levels was determined by RT-qPCR and Western blot. After the MDA-MB-231 cells with HMGB1 expression knockdown were treated with TNF-α, the apoptosis rate was analyzed by flow cytometry, the cell invasion ability was measured by Transwell assay, and the cell migration ability was detected by cell scratch test. The protein expression of E-cadherin, MMP-2, N-cadherin, MMP-9 and Bax was determined by Western blot. RESULTS:The expression of HMGB1 at mRNA and protein levels in the MDA-MB-231 cells transfected with HMGB1 siRNA was significantly lower than that in the non-transfected cells (P<0.05). The apoptosis rate in the cells was increased after TNF-α treatment, and the cell invasion and migration abilities were also increased. The protein level of E-cadherin in the cells was decreased, the protein level of N-cadherin was increased, and the protein levels of MMP-2, MMP-9 and Bax were also increased (P<0.05). After the MDA-MB-231 cells with HMGB1 expression knockdown were induced by TNF-α, the apoptotic rate was increased, the invasion and migration abilities were decreased, the protein levels of E-cadherin and Bax were increased, and the protein levels of N-cadherin, MMP-2 and MMP-9 were decreased, as compared with the cells only induced by TNF-α without knockdown of HMGB1 expression (P<0.05). CONCLUSION:Knockdown of HMGB1 expression enhances the apoptosis of breast cancer cells induced by TNF-α, and inhibited the cell invasion, migration and epithelial-mesenchymal transition induced by TNF-α. The mechanism may be related with the changes of protein expression of MMP-2, MMP-9 and Bax.  相似文献   

17.
18.
AIM: To explore the effect of new artificially synthesized androgen receptor (AR) antagonist HC-1119 on the biological function of triple-negative breast cancer (TNBC) BT549 cells and the molecular mechanism. METHODS: The AR expression was assessed in different human breast cancer cell lines MDA-MB-231, T47D, MCF-7, SKBR3 and BT549 by Western blot. The TNBC BT549 cells with AR positive expression were treated with HC-1119. The cell viability was measured by CCK-8 assay. The apoptosis rate and cell cycle distribution were analyzed by flow cytometry. The migration and invasion abilities were detected by Transwell assay in vitro. The protein expression of E-cadherin, vimentin and P21 was determined by Western blot. RESULTS: AR was positively expressed in BT549 cells. HC-1119 inhibited the cell viability in a time-and dose-dependent manner (P<0.05), increased the percentage of apoptotic cells and the percentage of S-phase cells significantly, repressed the migration and invasion abilities (P<0.05), and decreased P21 expression at protein level (P<0.01). No influence on the expression of E-cadherin and vimentin in the BT549 cells was observed. CONCLUSION: AR antagonist HC-1119 decreases the viability, migration ability and invasion ability, enhances the apoptosis, and arrests the cell cycle distribution of TNBC BT549 cells. HC-1119 represses the viability of BT549 cells by down-regulating P21 expression, while the process of epithelial-mesenchymal transition is not involved in the inhibition of cell migration.  相似文献   

19.
AIM:To investigate the effect of sinomenine on the viability, migration and invasion of human ovarian cancer SKOV3 cells and its possible mechanism. METHODS:The SKOV3 cells were treated with sinomenine at different concentrations for 12 h, 24 h and 48 h. CCK-8 assay was employed to detect the effects of sinomenine on the viability of the SKOV3 cells. Flow cytometry was used to analyze the cell cycle distribution. The cell migration and invasion abilities were measured by Transwell assay. Western blot was used to determine the protein levels of cyclin A, cyclin D1, E-cadherin and matrix metalloproteinase-9 (MMP-9). RESULTS:Sinomenine remarkably inhibited the viability of SKOV3 cells and IOSE80 cells in a time-dependent and dose-dependent manner (P<0.05), and the IC50 values of 48 h were 2.12 mmol/L and 17.35 mmol/L, respectively. In a dose-dependent manner, sinomenine induced G0/G1 and S phase arrest in SKOV3 cells (P<0.05), suppressed the migration and invasion abilities of SKOV3 cells (P<0.05), down-regulated the protein levels of cyclin A, cyclin D1 and MMP-9 (P<0.05), and up-regulated the protein level of E-cadherin (P<0.05). CONCLUSION:Sinomenine inhibits the viability, migration and invasion of human ovarian cancer SKOV3 cells most likely via down-regulation of the protein levels of cyclin A, cyclin D1 and MMP-9, and up-regulation of the protein level of E-cadherin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号