首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The progenies of four intervarietal durum wheat crosses were used to determine the effects of glutenin variants coded at Glu‐1 and Glu‐3 loci on durum wheat quality properties. The F2 lines were analyzed for high molecular weight (HMW) and low molecular weight (LMW) glutenin composition by electrophoresis. Whole grain derived F3 and F4 samples were analyzed for vitreousness, protein, and dry gluten contents, gluten index, SDS sedimentation volume, mixograph, and alveograph properties. Allelic variation at the Glu‐B1 and Glu‐B3 loci affected gluten quality significantly. Comparisons among the Glu‐B3 and Glu‐B1 loci indicated that the LMW glutenin subunits controlled by Glu‐B3 c and j made the largest positive contribution, followed by the alleles a, k, and b. HMW glutenin subunits 14+15 gave larger SDS values and higher mixing development times than subunits 7+8 and 20. The positive effects of the glutenin subunits LMW c and HMW 14+15 were additive. Flour protein content, vitreousness, and mixograph peak height values were positively correlated with each other as well as with Dglut values, whereas the SDS sedimentation highly correlated with mixing development time, alveograph strength, and extensibility but was not correlated with the other parameters. The results of quality analysis, together with the results of the genetic analysis, led to the conclusion that SDS sedimentation, mixograph mixing development time, and peak breakdown are the tests more influenced by allelic variation of prolamin. The uses of the results in durum wheat quality breeding programs are discussed.  相似文献   

2.
Molecular weight distribution of wheat proteins is primarily responsible for the viscoelastic properties of flour dough. Furthermore, the amount of SDS insoluble proteins (mainly high molecular weight glutenin) plays the major role. We have developed a simple test to determine the swelling power of glutenin (swelling index of glutenin or SIG) for predicting dough properties and end‐use quality. Flour samples (40 mg) were hydrated in distilled water and then allowed to swell in nonreducing solvents (SDS, lactic acid, or mixtures of the two) followed by low speed centrifugation. The SIG was calculated as the weight of the residue divided by the original sample weight. The SIG test was compared with the results from other small‐scale tests for 20 flour samples. SIG tests showed highly significant correlations with the gel protein and insoluble glutenin test (r ≥ 0.85, r ≥ 0.93, P < 0.001, respectively) and significant correlations with SDS and Zeleny sedimentation tests (r ≥ 0.74, r ≥ 0.72, P < 0.001, respectively). The swelling capacity of glutenin depended on swelling time and mixing intensity in nonreducing solvents. Swelling curves obtained from SIG values versus different swelling time can be divided into three distinct stages: swelling, swollen, and breakdown. These stages may reflect soluble and insoluble glutenin contents and quality among different cultivars. SIG test values for short swelling time and low mixing intensity were significantly correlated to gel protein content and SDS‐sedimentation values (r = 0.96, r = 0.90, P < 0.001, respectively). SIG test values for long swelling time and high mixing intensity were significantly correlated to insoluble glutenin content (r = 0.96, P < 0.001). The difference of swelling condition (time and mixing intensity) among these small‐scale methods is the reason for their different correlations with insoluble glutenin content. Because large numbers of samples can be analyzed in a short time with excellent reproducibility, the SIG test may be a useful screening test in a breeding program, predicting the quantity and quality of insoluble glutenin.  相似文献   

3.
Baking and 2‐g mixograph analyses were performed for 55 cultivars (19 spring and 36 winter wheat) from various quality classes from the 2002 harvest in Poland. An instrumented 2‐g direct‐drive mixograph was used to study the mixing characteristics of the wheat cultivars. A number of parameters were extracted automatically from each mixograph trace and correlated with baking volume and flour quality parameters (protein content and high molecular weight glutenin subunit [HMW‐GS] composition by SDS‐PAGE) using multiple linear regression statistical analysis. Principal component analysis of the mixograph data discriminated between four flour quality classes, and predictions of baking volume were obtained using several selected mixograph parameters, chosen using a best subsets regression routine, giving R2 values of 0.862–0.866. In particular, three new spring wheat strains (CHD 502a‐c) recently registered in Poland were highly discriminated and predicted to give high baking volume on the basis of two mixograph parameters: peak bandwidth and 10‐min bandwidth.  相似文献   

4.
A rapid shear‐based test using a GlutoPeak instrument was compared with tests commonly used by durum wheat breeders to assess the potential of this instrument to discriminate between samples. Thirty‐two durum wheat semolina samples were analyzed by mixograph, SDS sedimentation (SDSS), gluten index (GI), and GlutoPeak testing. A subset was also tested for pasta quality. GlutoPeak peak maximum time (PMT) was the best indicator of gluten strength and correlated well with the other tests except SDSS. Samples with higher levels of SDS‐unextractable glutenin (insoluble protein [IP]) had stronger dough and longer PMT, but the GlutoPeak test only correlated with pasta stickiness using a smaller set of samples. The range in mixogram profiles encountered in breeding material was related to the IP content, and the pasta made from the different types was of similar quality, differing more because of protein content rather than mixogram type. The GlutoPeak test is faster than GI and uses less sample, requires little technical skill, and is suitable for evaluating large numbers of breeder's lines. The GlutoPeak test is best suited to discriminating weak from strong dough samples and allows for testing with small samples, thus facilitating quality evaluations at early stages of a breeding program.  相似文献   

5.
The increasing demand for triticale as food, feed, and fuel has resulted in the availability of cultivars with different grain quality characteristics. Analyses of triticale composition can ensure that the most appropriate cultivars are obtained and used for the most suitable applications. Near‐infrared (NIR) spectroscopy is often used for rapid measurements during quality control and has consequently been investigated as a method for the measurement of protein, moisture, and ash contents, as well as kernel hardness (particle size index [PSI]) and sodium dodecyl sulfate (SDS) sedimentation from both whole grain and ground triticale samples. NIR spectroscopy prediction models calculated using ground samples were generally superior to whole grain models. Protein content was the most effectively modeled quality property; the best ground grain calibration had a ratio of the standard error of test set validation to the standard deviation of the reference data of the test set (RPDtest) of 4.81, standard error of prediction (SEP) of 0.52% (w/w), and r2 of 0.95. Whole grain protein calibrations were less accurate, with optimum RPDtest of 3.54, SEP of 0.67% (w/w), and r2 of 0.92. NIR spectroscopy calibrations based on direct chemical reference measurements (protein and moisture contents) were better than those based on indirect measurements (PSI, ash content, and SDS sedimentation). Calibrations based on indirect measurements would, however, still be useful to identify extreme samples.  相似文献   

6.
Three wheat cultivars, Bastian, Polkka, and Tjalve, were grown in growth chambers at 9, 12, 15, 18, and 21°C during grain filling in 1994, 1995, and 1996. The wheat samples were analyzed for protein content and sodium dodecyl sulfate (SDS) sedimentation volume. The mixing properties of sifted flours were determined by mixograph, and the flour protein composition was determined by size-exclusion fast protein liquid chromatography (SE-FPLC). The protein content, sedimentation volume, and mixogram parameters were affected by the temperature during grain filling. The protein content increased as the temperature increased. The sedimentation volumes and the mixograph data showed temperature effects that could not be explained by variation in protein content. The proportion of the polymeric flour proteins increased with increasing temperature. Positive correlations were found between the proportion of polymeric proteins and SDS sedimentation volume and, within each year, between the proportion of polymeric proteins and mixograph peak time. Negative correlations were found between the proportion of low molecular weight flour proteins (proportion of fraction IV) and sedimentation volume. The differences in these quality parameters among cultivars exceeded the effect of temperature during grain filling.  相似文献   

7.
A total of 162 doubled haploid (DH) lines were produced from a cross between Triticum aestivum L. ‘AC Karma’ and line 87E03‐S2B1 to study the genetic contribution of high molecular weight (HMW) glutenin subunits to gluten strength. HMW glutenin subunit composition of each DH line was determined by SDS‐PAGE. The population was grown in the field at one location in 1999 and at three locations in 2000. Gluten strength and dough mixing properties were measured by mixograph test and SDS‐sedimentation test. Variance components were estimated for each measurement to determine the variability contributed by HMW glutenin subunits. Results indicated significant environmental impact on tested mixograph parameters, SDS‐sedimentation volumes and grain and flour protein concentration. Significant main effects of Glu‐1D loci encoded subunits were obtained for mixograph development time, energy to peak, slope after peak, and first minute slope. Lines containing 5+10 combination of subunits had higher values for mixograph development time and energy to peak, while slope after peak and first minute slope were lower as compared with 2+12 containing lines. Low intergenomic interactions were observed for bandwidth energy (BWE), total energy (TEG), and SDS‐sedimentation test, involving B and D genomes only. A portion of the genetic variability for gluten strength was accounted for overexpression of Bx7 subunit originating from the cultivar Glenlea derived line 87E03‐S2B1. There was no significant effect of Glu‐A1 encoded subunits on any of the tested parameters. Estimated genetic variability for gluten strength contributed by Glu‐B1 and Glu‐D1 encoded HMW glutenins was 55% for mixing development time and 51% for energy to peak.  相似文献   

8.
The main by‐product of the wheat germ oil extraction process is a defatted wheat germ meal, which has a relatively high protein content, making it an attractive and promising source of vegetable proteins. Four protein fractions (albumin, globulin, prolamine, and glutelin) and protein isolate from defatted wheat germ flour (DWGF) were fractionated and then characterized by amino acid analysis, SDS‐PAGE, and differential scanning calorimetry (DSC). Albumin was the major fraction (34.5%) extracted, followed by globulin (15.6%), glutelin (10.6%), and prolamine (4.6%). Protein isolate was mainly composed of albumin and globulin. These protein fractions and protein isolate showed an excellent balance of all essential amino acids, with a relatively high level of glutamic acid, arginine, leucine, and glycine, whereas cystine was lacking. All the estimated nutritional quality parameters based on amino acids composition showed that defatted wheat germ proteins had good nutritional quality. Nonreduced and reduced SDS‐PAGE analyses showed that S‐S bonds ere deficient in the structure of wheat germ proteins. The albumin fraction consisted of 19 major polypeptide bands with Mr 14,000–84,000. The globulin fraction showed four distinct polypeptides or polypeptide group bands with Mr 55,000, 37,000–43,000, 24,000, and 12,000–20,000, which may be the components of the 8S‐type and 11S‐like proteins. The prolamine fraction showed a predominant doublet‐like band at Mr 17,000–16,000, while the glutelin fraction showed five major polypeptide bands with Mr 39,000, 20,000, 18,000, 17,000, and 14,000. Protein isolate and DWGF showed very similar SDS‐PAGE patterns. Except for prolamine and glutelin fractions without detectable calorimetric response, the globulin fraction possessed the highest thermal stability (Td = 83.80°C, ΔH =1.36 J/g ), followed by protein isolate (Td = 80.05°C, ΔH = 0.76 J/g), while the albumin fraction was lowest (Td = 69.72°C, ΔH = 0.53 J/g). The findings on defatted wheat germ proteins are important for their potential application as functional food ingredients.  相似文献   

9.
10.
The baking performance of a set of flours from 13 wheat cultivars was determined by means of two different microscale baking tests (10 g of flour each). In the micro‐rapid‐mix test the dough was mixed for a fixed time at a high speed, whereas the microbaking test used mixing to optimum dough consistency in a microfarinograph. Quality parameters such as sedimentation value, crude protein content, dough and gluten extension data, and microfarinograph data were also determined. Finally, quality‐related protein fractions (gliadins, glutenins, SDS‐soluble proteins, and glutenin macropolymer) were quantitated by extraction/HPLC methods with reversed‐phase and gel‐permeation columns. All quality parameters were correlated with the bread volumes of both baking tests. The results demonstrated that the microbaking test (adapted mixing time) was much more closely related to the quality parameters than the micro‐rapid‐mix test (fixed mixing time), which hardly showed any correlation. Among the standard quality parameters, only the crude protein content showed a medium correlation with the bread volume of the microbaking test (r = 0.71), whereas the contents of gliadins (r = 0.80), glutenins (r = 0.76), and glutenin macropolymer (r = 0.80) appeared to be suitable parameters to predict the baking performance of wheat flour. All other quality parameters were not or were only weakly correlated and unsuitable for predicting baking performance.  相似文献   

11.
Solvent retention capacity (SRC) was investigated in assessing the end use quality of hard winter wheat (HWW). The four SRC values of 116 HWW flours were determined using 5% lactic acid, 50% sucrose, 5% sodium carbonate, and distilled water. The SRC values were greatly affected by wheat and flour protein contents, and showed significant linear correlations with 1,000‐kernel weight and single kernel weight, size, and hardness. The 5% lactic acid SRC value showed the highest correlation (r = 0.83, P < 0.0001) with straight‐dough bread volume, followed by 50% sucrose, and least by distilled water. We found that the 5% lactic acid SRC value differentiated the quality of protein relating to loaf volume. When we selected a set of flours that had a narrow range of protein content of 12–13% (n = 37) from the 116 flours, flour protein content was not significantly correlated with loaf volume. The 5% lactic acid SRC value, however, showed a significant correlation (r = 0.84, P < 0.0001) with loaf volume. The 5% lactic acid SRC value was significantly correlated with SDS‐sedimentation volume (r = 0.83, P < 0.0001). The SDS‐sedimentation test showed a similar capability to 5% lactic acid SRC, correlating significantly with loaf volume for flours with similar protein content (r = 0.72, P < 0.0001). Prediction models for loaf volume were derived from a series of wheat and flour quality parameters. The inclusion of 5% lactic acid SRC values in the prediction model improved R2 = 0.778 and root mean square error (RMSE) of 57.2 from R2 = 0.609 and RMSE = 75.6, respectively, from the prediction model developed with the single kernel characterization system (SKCS) and near‐infrared reflectance (NIR) spectroscopy data. The prediction models were tested with three validation sets with different protein ranges and confirmed that the 5% lactic acid SRC test is valuable in predicting the loaf volume of bread from a HWW flour, especially for flours with similar protein contents.  相似文献   

12.
Gluten strength is the main factor determining the rheological and processing properties of wheat. Rapid, small‐scale tests that can indirectly predict gluten strength are extremely important for wheat‐breeding selection, particularly when using pedigree methodology. The efficiency and reliability of three small‐scale tests (SDS sedimentation volume [SDSS], swelling index of glutenin [SIG], and lactic acid retention capacity [LARC]) across three environments (E1, no stress; E2, drought stress; and E3, heat stress) were evaluated by using 15 common wheat and nine durum wheat cultivars. In the case of common wheat, SIG highlighted its advantage for predicting gluten strength, even under stress environments, compared with LARC and SDSS, whereas SDSS showed the best relationship with bread loaf volume. For durum wheat, SIG showed the best predicting value in E1 and E3; however, under drought stress, SDSS, SIG, and LARC all lost their good ability for predicting gluten strength in durum wheat, which needs further investigation. Also, the comparison between two mixograph parameters (mixograph peak time and mixograph peak integral) for predicting gluten strength and the suitability of testing SIG and LARC with whole meal (or semolina) instead of refined flour were also investigated.  相似文献   

13.
A low level of O-glycosidically linked D-mannose was detected on the 1Dx2 high Mr glutenin subunit of Chinese Spring wheat. Detection of the O-glycosidic linkage was accomplished by subjecting the purified 1Dx2 protein to β-elimination and reduction conditions that resulted in the specific cleavage of O-glycosidically linked carbohydrates from the protein backbone and the reduction of the linkage (reducing end) sugars to alditols. Subsequently, acid-catalyzed methanolysis was used to cleave glycosidic linkages on released carbohydrate as well as carbohydrate remaining on the protein. The repeat units were derivatized with trimethylsilyl and analyzed by gas chromatography and mass spectroscopy (GC-MS). The 1Dx2 high Mr glutenin subunit of Chinese Spring wheat consisted of 1.2% carbohydrate containing D-mannose and D-glucose units. O-Glycosidically linked D-mannose residues represented 0.13% of the total mass of the 1Dx2 high Mr glutenin subunit. This represented <1 O-glycosidically linked D-mannose residue per protein molecule and provided some initial evidence that there may be various glycoforms of this subunit present in the preparation.  相似文献   

14.
Protein characteristics of wheat flours from various wheat classes, and of commercial flours for making noodles, were evaluated to determine the effects of protein content and quality on processing and textural properties of white salted noodles, as well as to identify protein quality required for making white salted noodles. SDS sedimentation volume based on constant protein weight, mixograph mixing time, and proportions of salt‐ and alcohol‐soluble protein of three commercial flours for making noodles were more similar to those of hard wheat than to soft wheat flours. SDS sedimentation volume of commercial flours for making noodles based on constant protein weight ranged from 38.5 to 40.0 mL and was higher than those of most soft wheat flours. Mixograph mixing time and proportion of salt‐soluble protein of hard and commercial flours for making noodles were >145 sec and mostly <13.8%, respectively, while those of club and soft wheat flours were < 95 sec and >15.0%. Both protein content and protein quality, as determined by SDS sedimentation volume based on constant protein weight, mixograph mixing time, proportion of salt‐soluble protein, and score of HMW‐GS compositions correlated with optimum water absorption of noodle dough and hardness of cooked white salted noodles.  相似文献   

15.
The contribution of the diploid wheat species Aegilops tauschii (Coss.) Schmall to the technological properties of bread wheat (Triticum aestivum L.) was previously studied by the investigation of synthetic hexaploids derived from tetraploid durum wheat (T. turgidum L.) and three diploid Ae. tauschii lines. The results indicated that bread volume, gluten index, SDS‐sedimentation volume, and maximum resistance of gluten were significantly influenced by the Ae. tauschii lines. To determine the relationship between technological properties and qualitative and quantitative compositions of gluten proteins, the flours of parental and synthetic lines were extracted using a modified Osborne fractionation. Gliadin and glutenin fractions were then characterized by reversed‐phase (RP) HPLC on C8 silica gel. The HPLC patterns revealed typical differences between synthetic and parental lines. The gliadin patterns of three synthetic lines and the glutenin patterns of two synthetic lines were more similar to that of the diploid Ae. tauschii parents involved in the hybrids. In the glutenin pattern of one synthetic line, characteristics from both Ae. tauschii and the durum wheat parents were observed. The amount of total gliadin and gliadin types of the synthetic lines was mostly intermediate between those of the durum and Ae. tauschii parents. The amounts of total glutenin and glutenin types (HMW and LMW subunits) of the synthetic lines were generally higher than those of the parental lines, and the ratio of gliadins to glutenins was significantly decreased. High positive correlations were found between the amount of total glutenins, HMW, and LMW subunits and bread volume, maximum resistance and extension area of gluten, and SDS‐sedimentation volume. The ratio of gliadins to glutenin subunits had a strong negative influence on these properties. The protein content of the flours and the amount of total gluten proteins were not correlated with any of the technological properties. Results on the relationship between biochemical characteristics and the breadmaking properties indicated that wheat prebreeding would benefit from studies on protein types and quantification in the choice of parents. In addition, the potential of the diploid Ae. tauschii for improvement of breadmaking quality should be further exploited.  相似文献   

16.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

17.
The accuracy of using near‐infrared spectroscopy (NIRS) for predicting 186 grain, milling, flour, dough, and breadmaking quality parameters of 100 hard red winter (HRW) and 98 hard red spring (HRS) wheat and flour samples was evaluated. NIRS shows the potential for predicting protein content, moisture content, and flour color b* values with accuracies suitable for process control (R2 > 0.97). Many other parameters were predicted with accuracies suitable for rough screening including test weight, average single kernel diameter and moisture content, SDS sedimentation volume, color a* values, total gluten content, mixograph, farinograph, and alveograph parameters, loaf volume, specific loaf volume, baking water absorption and mix time, gliadin and glutenin content, flour particle size, and the percentage of dark hard and vitreous kernels. Similar results were seen when analyzing data from either HRW or HRS wheat, and when predicting quality using spectra from either grain or flour. However, many attributes were correlated to protein content and this relationship influenced classification accuracies. When the influence of protein content was removed from the analyses, the only factors that could be predicted by NIRS with R2 > 0.70 were moisture content, test weight, flour color, free lipids, flour particle size, and the percentage of dark hard and vitreous kernels. Thus, NIRS can be used to predict many grain quality and functionality traits, but mainly because of the high correlations of these traits to protein content.  相似文献   

18.
Various whole‐kernel, milling, flour, dough, and breadmaking quality parameters were compared between hard red winter (HRW) and hard red spring (HRS) wheat. From the 50 quality parameters evaluated, values of only nine quality characteristics were found to be similar for both classes. These were test weight, grain moisture content, kernel size, polyphenol oxidase content, average gluten index, insoluble polymeric protein (%), free nonpolar lipids, loaf volume potential, and mixograph tolerance. Some of the quality characteristics that had significantly higher levels in HRS than in HRW wheat samples included grain protein content, grain hardness, most milling and flour quality measurements, most dough physicochemical properties, and most baking characteristics. When HRW and HRS wheat samples were grouped to be within the same wheat protein content range (11.4–15.8%), the average value of many grain and breadmaking quality characteristics were similar for both wheat classes but significant differences still existed. Values that were higher for HRW wheat flour were color b*, free polar lipids content, falling number, and farinograph tolerance. Values that were higher for HRS wheat flour were geometric mean diameter, quantity of insoluble polymeric proteins and gliadins, mixograph mix time, alveograph configuration ratio, dough weight, crumb grain score, and SDS sedimentation volume. This research showed that the grain and flour quality of HRS wheat generally exceeds that of HRW wheat whether or not samples are grouped to include a similar protein content range.  相似文献   

19.
Ten glutenin fractions were separated by sequential extraction of wheat gluten protein with dilute hydrochloric acid from defatted glutenin‐rich wheat gluten of the Canadian hard red spring wheat (HRSW) cultivar Glenlea. The molecular weight distribution (MWD) of 10 different soluble glutenin fractions was examined by multistacking SDS‐PAGE under nonreduced conditions. Also, the subunit composition of the different glutenin fractions was determined by SDS‐PAGE under reduced conditions. The MWD of the fractions (especially HMW glutenins) varied from fraction to fraction. From early to later fractions, the MWD shifted from low to high. The early extracted fractions contained more LMW glutenin subunits (LMW‐GS) and less HMW glutenin subunits (HMW‐GS). The later extracted fractions and the residue fraction contained much more HMW‐GS (2*, 5, and 7 subunits) than the early extracted fractions. The trend in the amounts of 2*, 5, and 7 subunits in each fraction from low to high matched the extraction solvent sequence containing from lower to higher levels of HCl. The influence of glutenin protein fractions from the extra‐strong mixing cultivar, Glenlea, on the breadmaking quality of the weak HRSW, McVey, was assessed by enriching (by 1%) the McVey base flour with isolated glutenin protein fractions from Glenlea. The mixograph peak development times and loaf volumes of enriched flour were measured in an optimized baking test. The results indicated that the higher content in Glenlea glutenin of HMW‐GS with higher molecular weight, such as 2*, 5, and 7, seem to be the critical factor responsible for the strong mixing properties of Glenlea. Our results confirmed that subunit 7 occurred in the highest quantity of all the HMW‐GS. Therefore, it seems that the greater the content of larger molecular weight glutenin subunits, the larger the glutenin polymers and the stronger the flour.  相似文献   

20.
Soft white and club wheat (Triticum aestivum L.) market subclasses have specific end-use characteristics. Among the most important of these characteristics are weak dough mixing and handling properties as a result of weak gluten. The SDS sedimentation test has gained wide acceptance as a useful, small-scale test in bread wheat breeding programs to predict gluten strength and baking quality. To optimize its use for soft white or club wheat breeding, variations of the SDS sedimentation test were performed on grain from winter wheats grown at eight locations in the U.S. Pacific Northwest, and the effects of lines, environment, and their interactions on SDS sedimentation volumes were determined. Using different sample weights and substituting whole meal for flour did not affect the ability of the SDS sedimentation test to differentiate among lines. Changes in protein concentration and sample weight caused proportional changes in SDS sedimentation volumes; however, the response was not consistent among all lines. Line had a greater effect on the SDS sedimentation volumes than any other source of variation. If differential effects of protein to SDS sedimentation among lines are taken into account, the SDS sedimentation test should be an effective small-scale test for end-use quality assessment in soft white and club wheat breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号