首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to evaluate the application of carbon isotope discrimination (CID) as a selection criterion for improving water use efficiency (WUE) and productivity of barley (Hordeum vulgare L.) under field and drought‐stress conditions in a greenhouse. A total of 54 genotypes were screened for variability in CID under field conditions, while 23 genotypes were evaluated under water‐deficit conditions in the greenhouse. A survey of leaf CID of 54 genotypes at two field locations showed more than 2.14‰ difference between extreme genotypes. Significant (P0.05) genotypic variation was found in WUE and CID that had a negative strong correlation. There was a negative correlation between leaf CID and aerial biomass in the greenhouse and among six‐row genotypes in the field. Correlations between leaf CID across field locations and across irrigation regimes in the greenhouse were significant (experiment 1, r = 0.79 and 0.94 for six‐ and two‐row genotypes), suggesting stability of the CID trait across different environments. Overall, these results indicate the potential of leaf CID as a reliable method for selecting for high WUE and productivity in barley breeding programmes in the Canadian prairies. Further work is currently underway to determine heritability/genetics of leaf CID and application of molecular marker‐assisted selection for the traits in barley breeding programmes.  相似文献   

2.
探讨品种间差异改良作物水分利用效率   总被引:2,自引:0,他引:2  
提高水分利用效率是缓解水资源危机实现作物可持续生产的重要策略。本文对叶片尺度的瞬时WUE和单株尺度WUE的品种间差异,瞬时WUE到田间尺度WUE的尺度转换,以及瞬时WUE与产量之间的关系进行了讨论。瞬时WUE具有较大的遗传变异性,在亏水条件下品种间差异更显著。在禾谷类作物上,气孔导度与瞬时WUE密切相关。单株尺度WUE在亏水条件下品种间差异显著,足水条件下差异相对较小。气孔导度是影响单株尺度WUE的重要性状,品种之间气孔对水分亏缺的敏感性差异较大。瞬时WUE向田间尺度WUE的尺度转换不仅受到冠层阻力和边界层阻力的制约,还受土壤蒸发与作物蒸腾比率以及同化物分配模式的影响。瞬时WUE与产量的关系决定于环境的水分条件,在作物生长发育主要依靠土壤中储存水分的干旱条件下,瞬时WUE高对获得高产有利。相反,在水分条件较适宜的地区,高瞬时WUE性状不利于高产。  相似文献   

3.
Temporal and seasonal water deficit is one of the major factors limiting crop yield on the Canadian prairie. Selection for low carbon isotope discrimination (Δ13C) or high water‐use efficiency (WUE) can lead to improved yield in some environments. To understand better the physiology and WUE of barley under drought conditions on the Canadian prairie, 12 barley (Hordeum vulgare L.) genotypes with contrasting levels of leaf Δ13C were investigated for performance stability across locations and years in Alberta, Canada. Four of those genotypes (‘CDC Cowboy’, ‘Niobe’, ‘170011’ and ‘Kasota’) were also grown in the greenhouse under well‐watered and water‐deficit conditions to examine genotypic variations in leaf Δ13C, WUE, gas exchange parameters and specific leaf area (SLA). The water‐deficit treatment was imposed at the jointing stage for 10 days followed by re‐watering to pre‐deficit level. Genotypic ranking in leaf Δ13C was highly consistent, with ‘170011’, ‘CDC Cowboy’ and ‘W89001002003’ being the lowest and ‘Kasota’‘160049’ and ‘H93174006’ being the highest leaf Δ13C. Under field and greenhouse (well‐watered) conditions, leaf Δ13C was significantly correlated with stomatal conductance (gs). Water deficit significantly increased WUE, with ‘CDC Cowboy’– a low leaf Δ13C genotype with significantly higher WUE and lower percentage decline in assimilation rate (A) and gs than the other three genotypes (‘Niobe’, ‘170011’ and ‘Kasota’). We conclude that leaf Δ13C is a stable trait in the genotypes evaluated. Low leaf Δ13C of ‘CDC Cowboy’ was achieved by maintaining a high A and a low gs, with comparable biomass and grain yield to genotypes showing a high gs under field conditions; hence, selection for a low leaf Δ13C genotype such as ‘CDC Cowboy’ maybe important for maintaining productivity and yield stability under water‐limited conditions on the Canadian prairie.  相似文献   

4.
Potatoes (Solanum tuberosum L.) are drought‐sensitive and more efficient water use, while maintaining high yields is required. Here, water‐use efficiency (WUE) of a mapping population comprising 144 clones from a cross between 90‐HAF‐01 (Solanum tuberosum1) and 90‐HAG‐15 (S. tuberosum2 × S. sparsipilum) was measured on well‐watered plants under controlled‐environment conditions combining three levels of each of the factors: [CO2], temperature, light, and relative humidity in growth chambers. The clones were grouped according to their photosynthetic WUE (pWUE) and whole‐plant WUE (wpWUE) during experiments in 2010. Two offspring groups according to pWUE and wpWUE were identified on the basis of experiments conducted in 2010, which in experiments in 2011 again showed significant differences in pWUE (46 %, P < 0.001) and wpWUE (34 %, P < 0.001). The high‐WUE group had a higher net photosynthesis rate (34 %) and dry matter accumulation (55 %, P < 0.001) rather than leaf‐level transpiration rate (?4 %, no significant difference) or whole‐plant water use (16 %). The pWUE correlated negatively to the ratio between leaf‐internal and leaf‐external [CO2] (R2 = ?0.86 in 2010 and R2 = ?0.83 in 2011, P < 0.001). The leaf chlorophyll content was lower in the high‐WUE group indicating that the higher net photosynthesis rate was not due to higher leaf‐N status. Less negative value of carbon isotope discrimination (δ13C) in the high‐WUE group was only found in 2011. A modified Ball‐Berry model was fitted to measured stomatal conductance (gs) under the systematically varied environmental conditions to identify parameter differences between the two groups, which could explain their contrasting WUE. Compared to the low‐WUE group, the high‐WUE group showed consistently lower values of the parameter m, which is inversely related to WUE. Differences related specifically to the dependence of gs on humidity and net photosynthesis rate were only found in 2010. The lower ratio between leaf‐internal and leaf‐external [CO2] and higher WUE of the high‐WUE group was consistent over a wide range of air vapour pressure deficits from 0.5 to 3.5 kPa. The mapping population was normally distributed with respect to WUE suggesting a multigenic nature of this trait. The WUE groups identified can be further employed for quantitative trait loci (QTL) analysis by use of gene expression studies or genome resequencing. The differences in population WUE indicate a genetic potential for improvement of this trait.  相似文献   

5.
Summary Five genotypes of Vicia faba L. with contrasting frequencies were grown in a controlled environment in soil moisture regimes of 100%, 78% and 61% of field capacity. Growth, water use and leaf conductance characteristics were measured. Stomata were more frequent on abaxial than adaxial surfaces, the abaxial/adaxial ratio ranging from 1.12 to 1.34. There were significant (P<0.001) correlations between calculated stomatal conductance, based on measurements of stomatal frequency and length, and leaf conductance measured with a diffusion porometer, in the two higher soil moisture treatments. In the 100% regime only, abaxial stomata opened wider than adaxial. Ranking of the genotypes for leaf conductance and plant transpiration was similar in all three regimes with large leaved types having the lowest conductance and greatest water use efficiency. Growing plants with reduced soil moisture availability improved water use efficiency, the ranking for which was also similar in all treatments. Relative growth rate and net assimilation rate were greatest with full watering, less in the 78% and least in the 61% regime. Leaf area ratio was less affected by available soil moisture and only in some genotypes.  相似文献   

6.
Improved water use efficiency (WUE, the ratio of dry matter produced to water used) can potentially result in yield improvement in water-limited environments. Genetic variation in WUE can be exploited by carbon isotope discrimination (Δ) in C3 species. In order to improve WUE and its associated traits, it is necessary to understand the genetic systems controlling the expression of these traits. A full diallel analysis carried out on five inbred lines selected from a previous field experiment revealed that Δ, WUE and specific leaf weight (SLW, the ratio of leaf dry weight to leaf area) had high narrow-sense heritability (Hn, the ratio of additive variance to phenotypic variance) and were controlled largely by additive gene effects indicating that these traits can be improved by selection in early generations. In contrast, maternal effects had a large influence on phenotypic expressions of total dry matter yield, total water use, chlorophyll content and leaf area suggesting the important role of selection of female parent for improvement of these traits. The parental line R49 was found to be the best general combiner for all of the traits. Genetic variation in SLW was strongly associated with Δ (R 2 =0.49, P < 0.01). This implies that SLW could be used as an inexpensive alternative measure for Δ to assess genotypes during the early phases of breeding programmes.  相似文献   

7.
Improvements in drought tolerance of crop plants require research focused on physiological processes. In 2002 and 2003 pot experiments with sugar beet were conducted in a greenhouse. Two (2002) or three (2003) different genotypes were subjected to three watering regimes (100, 50 and 20% of water holding capacity). Gas exchange, chlorophyll fluorescence and water-use efficiency (WUE) as parameters of possible relevance for drought stress tolerance in sugar beet were investigated. It was studied whether 13C discrimination (Δ) is suitable as an indirect measure for WUE of sugar beet.DM yield, photosynthesis rate, transpiration rate and stomatal conductance decreased with increasing severity of drought stress. In contrast, internal CO2 partial pressure remained relatively stable and effective quantum yield of photosynthesis was reduced only under severe drought, which points at non-stomatal inhibition of photosynthesis. Different sugar beet genotypes showed significant differences in DM yield, but interactions between genotype and water supply did not occur, indicating that genotypic differences in drought tolerance did not exist. In accordance with that, drought-sensitivity of gas exchange and chlorophyll fluorescence was the same in different genotypes. Δ was higher in the leaves than in the taproot. Reductions in Δ in drought-stressed plants corresponded to about 24% higher WUE. Differentiating between plant organs, only leaf Δ was negatively correlated with WUEL whereas taproot Δ and WUET were unrelated. Δ was therefore proven to be a sensitive indicator for water availability during the growing period. However, similar as other parameters relevant for drought stress tolerance it requires investigations in broader genetic material of sugar beet to detect genotypic differences.  相似文献   

8.
Potassium (K) fertilization is important to maintain adequate concentrations of plant available K in agricultural soils to achieve best yields and improve crop stress tolerance and water‐use efficiency (WUE). Water‐use efficiency (WUE) can be expressed on various spatiotemporal scales, and it is known that responses of WUE to external stress are not uniform across scales. Multiscale evaluations of the impact of varying K fertilization on the WUE of C3 crops under field conditions are missing so far. In the present field study, we evaluated effects of K fertilization on WUE of sugar beet (Beta vulgaris L.) on short‐termed leaf‐ (WUELeaf) and canopy‐scales (WUECanopy) and as the agronomic ratio of white sugar yield (WSY) to in‐season water use (i.e. WUEWSY). In K‐fertilized plots, WUEWSY was enhanced by 15.9%. This effect is attributed to increased beet yield and WSY, as no differences in total in‐season water use between fertilized and unfertilized plots were observed. Potassium (K) fertilization significantly enhanced the leaf area index, resulting in a more efficient depletion of soil moisture by roots in K‐fertilized plots. As a consequence, WUELeaf was increased due to stomatal adjustment. Potassium (K) improved WUECanopy only by tendency. It is concluded that K fertilization improves the WUE of field‐grown sugar beet across scales, but processes that regulate WUE are highly scale dependent.  相似文献   

9.
关于玉米光合作用与叶片水分利用效率关系的研究   总被引:30,自引:1,他引:30  
王美云  李少昆 《作物学报》1997,23(3):345-352
研究分析了玉米17个自交系和11个杂交种单叶光合速率,蒸腾速率和叶片水分利用效率。结果表明,玉米自交系或杂交种间单叶PH、TR和WUE存在着显著差异。WUE与PH呈极正相关关系,且较WUE与TR的关系更密切。玉米单叶的WUE、PH、TR值会随着叶位、生育时期、光辐射强度、种植密度不同而不同,也会由于源库比改变、植株个体 间差异而变化。WUE和PH之产是回归直线的斜率随生率的推延而增大,但几乎不受源  相似文献   

10.
Summary Significant genetic variation in CO2 assimilation rate (A), stomatal conductance (g), and A: g ratio, which are indicators of intrinsic differences in productivity and water use efficiency (WUE), has been demonstrated in grain sorghum [Sorghum bicolor (L.) Moench] hybrids. The primary objective was to determine the possible parental influence on the components of the A: g relationship in sorghum hybrids across a range of water supplies. Thirty F1 hybrids resulting from a 6 × 6 diallel crossing pattern constituted the genetic material. Field experiments were conducted using four water supply treatments established through differential irrigation. Carbon assimilation rate (A), g, and leaf water potential (w) of individual leaves were monitored every 15 to 20 days. Genetic analyses revealed that general- and specific-combining ability effects were evident for A. However, reciprocal and maternal effects were more important in governing the A-g and A-w relationships. Since the maternal effects were the major determinants in causing reciprocal differences, A can be improved by selecting specific female parents to exploit cytoplasmic factors or physiological characteristics of this parent. Substantial genetic variation in the A-g relationship resulting from significant genetic control of A offers the opportunity to impose selection for high A and stability of A, which might directly contribute to whole plant WUE and productivity in grain sorghum.Abbreviations A carbon assimilation rate - g stomatal conductance to water vapor - GCA General Combining Ability - SCA Specific Combining Ability - WUE Water Use Efficiency  相似文献   

11.
The cup plant (Silphium perfoliatum L.) is discussed as an alternative energy crop for biogas production in Germany due to its ecological benefits over continuously grown maize. Moreover, a certain drought tolerance is assumed because of its intensive root growth and the dew water collection by the leaf cups, formed by fused leaf pairs. Therefore, the aim of this study was to estimate evapotranspiration (ET ), water‐use efficiency (WUE ) and the relevance of the leaf cups for the cup plant's water balance in a 2‐year field experiment. Parallel investigations were conducted for the two reference crops maize (high WUE ) and lucerne‐grass (deep and intensive rooting) under rainfed and irrigated conditions. Root system performance was assessed by measuring water depletion at various soil depths. Transpiration‐use efficiency (TUE ) was estimated using a model approach. Averaged over the 2 years, drought‐related above‐ground dry matter reduction was higher for the cup plant (33 %) than for the maize (18 %) and lucerne‐grass (14 %). The WUE of the cup plant (33 kg ha?1 mm?1) was significantly lower than for maize (50 kg ha?1 mm?1). The cup plant had a lower water uptake capacity than lucerne‐grass. Cup plant dry matter yields as high as those of maize will only be attainable at sites that are well supplied with water, be it through a large soil water reserve, groundwater connection, high rainfall or supplemental irrigation.  相似文献   

12.
Genotypic variations in leaf gas exchange and grain yield were analysed in 10 highland‐adapted quinoa cultivars grown in the field under drought conditions. Trials took place in an arid mountain region of the Northwest of Argentina (Encalilla, Amaicha del Valle, 22°31′S, 65°59′W). Significant changes in leaf gas exchange and grain yield among cultivars were observed. Our data demonstrate that leaf stomatal conductance to water vapour (gs) is a major determinant of net CO2 assimilation (An) because quinoa cultivars with inherently higher gs were capable of keeping higher photosynthesis rate. Aboveground dry mass and grain yield significantly varied among cultivars. Significant variations also occurred in chlorophyll, N and P content, photosynthetic nitrogen‐use efficiency (PNUE), specific leaf area (SLA), intrinsic water‐use efficiency (iWUE) and carboxylation capacity (An/Ci). Many cultivars gave promissory grain yields with values higher than 2000 kg ha?1, reaching for Sayaña cultivar 3855 kg ha?1. Overall, these data indicate that cultivars, which showed higher photosynthesis and conductances, were also generally more productive. Carbon isotope discrimination (Δ) was positively correlated with the grain yield and negatively with iWUE, but δ15N did not show significant correlations. This study provides a reliable measure of specific responses of quinoa cultivars to drought and it may be valuable in breeding programmes.  相似文献   

13.
Chlorosis level is a useful parameter to assess imidazolinone resistance in sunflower (Helianthus annuus L.). The aim of this study was to quantify chlorosis through two different methods in sunflower plantlets treated with imazapyr. The genotypes used in this study were two inbred lines reported to be different in their resistance to imidazolinones. Chlorosis was evaluated by spectrophotometrical quantification of photosynthetic leaf pigments and by a bioinformatics-based color analysis. A protocol for pigment extraction was presented which improved pigment stability. Chlorophyll amount decreased significantly when both genotypes were treated with 10 μM of imazapyr. Leaf color was characterized using Tomato Analyzer® color test software. A significant positive correlation between color reduction and chlorophyll concentration was found. It suggests that leaf color measurement could be an accurate method to estimate chlorosis and infer chlorophyll levels in sunflower plants. These results highlight a strong relationship between imidazolinone-induced chlorosis and variations in leaf color and in chlorophyll concentration. Both methods are quantitative, rapid, simple, and reproducible. Thus, they could be useful tools for phenotyping and screening large number of plants when breeding for imidazolinone resistance in this species.  相似文献   

14.
汪霄  陈防 《棉花学报》2015,27(1):16-21
以钾高效和钾低效基因型棉花(HEG和LEG)为试验材料,研究了最优水肥(W1K1),干旱胁迫(W2K1),低钾胁迫(W1K2),干旱、低钾胁迫(W2K2)对其光合作用及水分、钾素利用率的影响。结果表明:干旱显著降低花铃期2种基因型棉花叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr),导致蕾铃脱落,钾素利用率(KUE)降低,造成棉花减产。施钾促进叶片Pn及水分利用率(WUE)的提高,但基因型间存在差异,LEG叶片WUE与施钾量成正比,HEG相反。低钾胁迫下HEG的Pn、Tr下降,但Pn下降幅度小于Tr,WUE增大。较高的WUE有利于提高棉花Pn,降低蕾铃脱落率,促进钾素的高效吸收和运输。  相似文献   

15.
Chemical regulation using plant growth regulators has proved to be potentially beneficial in water‐saving agriculture. This experiment was conducted with winter wheat (Triticum aestivum L. cv. ‘Jingdong 6’) to study the effect of chemical regulation on alleviation of water deficit stress during the grain filling stage. Uniconazole, a plant growth regulator, was foliar sprayed at 85 % (adequate irrigation) and 60 % (deficit irrigation) field capacity. Results showed that the distribution of 3H‐H2O in roots and flag leaf, characteristics of vascular bundle in primary roots and internode below spike, roots activity, transpiration rate and stomatal conductance of flag leaf were negatively affected by deficit irrigation after flowering. Foliar spraying at the early jointing stage with 13.5 gha?1 uniconazole was able to relieve and compensate for the harmful effects of deficit irrigation. Both the area of vascular bundle in primary roots and internode below the ear were increased by uniconazole, while root viability and their ability to absorb and transport water were increased. In the flag leaf, stomatal conductance was reduced to maintain the transpiration rate and water use efficiency (WUE) measured for a single wheat plant was higher. Uniconazole increased WUE by 25.0 % under adequate and 22 % under deficit irrigations. Under adequate irrigations, the 14C‐assimilates export rate from flag leaf in 12 h (E12h) was increased by 65 % and 36 % in early and late filling stages, while under deficit irrigations, the E12h of uniconazole‐treated plants exceeded that of control plants by 5 % and 34 % respectively. Physiological damages caused by water deficiency during the grain filling stage of wheat was alleviated by foliar spraying with uniconazole.  相似文献   

16.
Seven genotypes of French bean (Phaseolus vulgaris L.) were evaluated under semi-controlled conditions at the Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh to analyze genotypic variability in leaf water status under water stress. The plants were grown under two moisture regimes, viz. 80% field capacity (FC) and 50% FC throughout the growing season. The genotypes showed significant variation in water relation traits. Genotypes BB24 and BB43 maintained higher relative water content (RWC), but lower turgid weight/dry weight ratio (TW/DW) and water uptake capacity (WUC). When drought susceptibility index (DSI) among the genotypes was considered, BB24 was found the most tolerant to drought and BB04 was the most susceptible one. A close positive relationship between leaf TW/DW and DSI under drought was recorded (R 2 = 0.627). Leaf TW/DW was decreased considerably due to water stress by 10% in genotype BB24 followed by BB43 (13%), and both BARI bushbean-2 and BB04 (19%). Stomatal aperture and whole plant transpiration rate were found minimal in the BB24 and BB43 compared to that of BB04 and BARI bushbean-2. Considering these water relation traits, genotypes BB24 and BB43 may be considered as relatively tolerant to tissue dehydration. The study also revealed that the TW/DW, WUC, stomatal aperture, and whole plant transpiration rate was negatively and significantly associated with yield; however, the RWC was positively correlated with yield under water stress conditions.  相似文献   

17.
Ten cowpea (Vigna unguiculata L. “Walp.”) genotypes were grown in a growth chamber under well-watered conditions up to early flowering and were then either subjected to water deficit or were continually well-watered. Water deficit was induced by withholding irrigation until the soil water potential was −75 kPa, which was then maintained for 10 days. Variation in water use efficiency (WUE), leaf area, specific leaf area (SLA), leaf area ratio (LAR) and leaf gas exchange (i.e. assimilation, transpiration, stomata conductance and internal CO2 concentration) in response to water deficit were investigated. Water deficit treatment reduced mean water use by 21%. This caused between 11 and more than 40% reduction of biomass across the genotypes. Reductions in biomass were due to decline in leaf gas exchange and leaf area during water deficit. Water deficit improved the WUE of two genotypes (IFH 27-8 and Lobia) by approximately 20%, but caused moderate to huge reductions in most genotypes. High relative water content (RWC) of leaves was maintained in some of the genotypes by stomata closure and a reduction of leaf area. Drought avoidance by maintaining high leaf water content was negatively associated with leaf area as well as SLA. High assimilation rate under water deficit was associated with high RWC. Decline in assimilation rate were due mainly to stomata closure, however, some evidence of non-stomatal regulation were also found. WUE and instantaneous water use efficiency (IWUE, a molar ratio of assimilation to transpiration) were not directly associated, but IWUE and leaf internal CO2 concentration (ci) were negatively related while ci was also moderately related with SLA. Overall, significant genotypic variations in leaf gas exchange parameters were found, which can give some indications of superiority when comparing cowpea genotypes for agronomic fitness under drought. The lack of relationship between WUE and IWUE was due to the instantaneous measurement of leaf gas exchange, which can be corrected by calculations to reflect the entire season.  相似文献   

18.
小麦叶片水分利用效率及相关生理性状的关系研究   总被引:39,自引:4,他引:35  
张娟  张正斌  谢惠民  董宝娣  胡梦芸  徐萍 《作物学报》2005,31(12):1593-1599
利用19个抗旱性不同的小麦品种,对干旱状态下叶片水分利用效率和光合速率、蒸腾速率等12个指标之间的关系进行了研究。结果表明,叶片水分利用效率与叶片光合速率、蒸腾速率、气孔导度、胞间二氧化碳浓度、水势和叶片离体失水速率之间的关系密切,说明这些生理性状是瞬间和短时期叶片水分利用效率的直接影响因素;而与叶片抗氧化酶活性、蜡质含量、叶片湿度和相对含水量相关性不大。因此认为,应该有针对性地研究与水分利用效率关系密切的生理性状,为小麦抗旱节水遗传育种研究提供理论依据。  相似文献   

19.
Water use by semi-leafless peas (Pisum sativum L.) is usually less than that of conventional peas because of their reduced surface leaf area, suggesting that semi-leafless peas would be less sensitive to drought because drought develops later. This work aimed to study the reproductive response of peas cv. Solara (semi-leafless) and cv. Frilene (conventional) subjected to similar controlled soil drought during the critical period occurring between flowering and initial seed filling. Plants were subjected to drought by watering with a fraction of water used in the evapotranspiration of control plants. Soil, pod and seed water contents, leaf water status parameters, dry matter (DM) partitioning, seed yield, yield components and water use efficiency (WUE) were measured. Although soil water content decreased in a similar way in both cultivars, leaf Ψw and RWC only decreased significantly in Solara. Well-watered Frilene plants produced higher shoot and pod DM, but lower seed DM. Well-watered Solara plants produced lower pod DM and higher seed DM than Frilene. Under drought, Frilene increased partitioning of total plant DM to vegetative organs, particularly roots, and decreased DM allocation to pods and seeds increasing flower abortion. By contrast, droughted Solara interrupted vegetative growth and increased leaf senescence but maintained similar partitioning of total plant DM to pods and seeds as in well-watered conditions. For both cultivars there was a close relationship between the percentage of total DM partitioned into seeds and WUEy (water use efficiency on seed yield basis). Results demonstrate that when plants suffered the same level of drought in the soil, the reproductive response of the two cultivars was linked to differences in their WUE.  相似文献   

20.
A field trial conducted on the melon cultivar Huanghemi irrigated with saline water was carried out in Minqin County in the 2‐year period, 2007 and 2008. In three irrigation treatments, different saline water concentrations were applied, that is 0.8 g l?1 (Control C), 2 g l?1 (Treatment S1) and 5 g l?1 (Treatment S2), reproducing the natural groundwater concentration in the county. The electrical conductivity of the saline water was as follows: 1.00, 2.66 and 7.03 dS m?1, respectively. The aims of the study were (i) to monitor water consumption and water potential, (ii) assess, during the whole crop cycle, some growth parameters and their relations for estimating the morpho‐functional plant response irrigated with saline water and (iii) determine the ion concentration in different plant tissues to evaluate which mechanism the plant activates in the presence of high salt concentrations. Under salinity stress, the plants sustained the concentration of Ca, Mg and K, but at a level not sufficient to limit the Na adsorption. Therefore, the melon yield decreased and it was determined by a displacement of the ratio K/Na and by a lower (total potential MPa). Consequently with increasing salinity, a significant reduction was observed in: water consumption (ET c, mm), leaf area duration (LAD, m2 d), on shoot dry weight aboveground (W , g plant?1), on specific leaf area (SLA, cm2 g?1) and on leaf area ratio (LAR, cm2 g?1). In treatment S2, in addition to these changes which mainly affected the plant morphology with effects on the biomass produced, a moderate reduction was also observed in net assimilation rate (NAR, g m?2 d?1), water use efficiency (WUE), a significant reduction in the energy conversion efficiency (ECE, %) and, in short, in a reduction in the relative growth rate (RGR, g g?1 d?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号