首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Summary Near-isogenic tall (no dwarfing gene), semidwarf (Rht1 or Rht2) and dwarf (Rht1 + Rht2 or Rht3) spring wheat lines were evaluated for yield and yield components under irrigated and rainfed conditions. Under irrigated conditions, the dwarf and the semidwarf lines exhibited a significant yield advantage over the tall lines. Under rainfed conditions, the semidwarf lines outyielded the tall as well as the dwarf lines. Percent yield reduction in response to drought stress was highest with the dwarfs and lowest with the tall lines. Dry matter production of the tall lines and that of the semidwarf lines did not differ significantly and both produced significantly more dry matter than the dwarf lines under irrigated as well as rainfed conditions. Plant height and kernel weight decreased with increasing degree of dwarfness while number of kernels per spikelet, harvest index and days to heading increased under both moisture regimes. The dwarfing genes did not have any significant influence on number of tillers/m2 and spikelets per spike in either moisture regime.  相似文献   

2.
Semi‐dwarf wheat is an important prerequisite for releasing a successful commercial cultivar in high‐yielding environments. In Northern Europe, this aim is achieved by using one of the dwarfing genes Rht‐B1 (formerly known as Rht‐1) or Rht‐D1 (Rht‐2). Both genes, however, result in a higher susceptibility to Fusarium head blight (FHB). We analysed the possibility to use the two non‐adapted FHB resistance quantitative trait loci Fhb1 and Fhb5 (syn. QFhs.ifa‐5A) to counterbalance the negative effect of the dwarfing allele Rht‐D1b in a winter wheat population of 585 doubled‐haploid (DH) lines segregating for the three loci. All lines were inoculated with Fusarium culmorum at four locations and analysed for FHB severity, plant height, and heading date. The DH population showed a significant (< 0.001) genotypic variation for FHB severity ranging from 3.6% to 65.9% with a very high entry‐mean heritability of 0.95. The dwarfing allele Rht‐D1b reduced plant height by 24 cm, but nearly doubled the FHB susceptibility (24.74% vs. 12.74%). The resistance alleles of Fhb1 and Fhb5 reduced FHB susceptibility by 6.5 and 11.3 percentage points, respectively. Taken all three loci together, Fhb5 alone was already able to reduce FHB susceptibility to the same extent as Rht‐D1b increased it. This opens new avenues for selecting semi‐dwarf wheat by marker‐assisted introgression of Fhb5 without the enhancement of FHB susceptibility.  相似文献   

3.
Factorial pot experiments were conducted to compare the responses of GA‐sensitive and GA‐insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near‐isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40 °C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+eb(tm)) described declining grain set with increasing t, and t5 was that fitted to give a 5 % reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7 ± 0.47 °C (S.E.M., 26 d.f.). Drought at anthesis reduced t5 by <2 °C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5 = 33.9 °C) but booting was particularly heat susceptible without water (t5 = 26.5 °C). In one background (cv. Mercia), for NILs varying at the Rht‐D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht‐D1a, tall, 32.7 ± 0.72; Rht‐D1b, semi‐dwarf, 29.5 ± 0.85; Rht‐D1c, severe dwarf, 24.2 ± 0.72). This trend was not evident for the Rht‐B1 locus or for Rht‐D1b in an alternative background (Maris Widgeon). The GA‐sensitive severe dwarf Rht12 was more heat tolerant (t5 = 29.4 ± 0.72) than the similarly statured GA‐insensitive Rht‐D1c. The GA‐sensitive, semidwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht‐D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semidwarfing with GA‐insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison with effects of semidwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.  相似文献   

4.
The effect of major dwarfing genes on yield potential in spring wheats   总被引:1,自引:0,他引:1  
Summary A composite convergent cross of 16 spring wheat parents produced a set of unselected progeny lines among which the major dwarfing genes, Rht1, Rht2 and Rht3, were distributed against a common random genetic background. Random subsets of these lines were grown under irrigation and optimal conditions in 4 experiments with replicated bordered plots in southern New South Wales in order to measure the dwarfing gene effect on yield potential. The dwarfing gene composition of each line was determined by test crossing and seedling responsiveness to gibberellic acid.Lodging was negligible in the two experiments in 1982. While present in the two in 1983, it was not strongly associated with yield. Grain yield levels were appropriately high (mean 5.9 t/ha). In all but 1 experiment the Rht1+Rht2 dwarf genotypes gave highest yields while the Rht3 group yielded on average 3% lower, Rht2 9% lower, Rht1 11% lower, and the non-dwarf or tall group yielded 24% lower. These yield differences were positively associated with harvest index, kernels per m2 and kernels per spike, but negatively associated with mature plant height. Even within major dwarfing gene classes, grain yield was significantly and negatively associated with height.  相似文献   

5.
Water deficiency is a major constraint to wheat productivity in drought prone regions. The wheat DELLA‐encoding height‐reducing genes (Rht) are associated with significant increase in grain yield. However, the knowledge of their benefit in dry environments is insufficient. The objective of the study was to examine the effect of induced drought on leaf water content, level of oxidative stress, cell membrane stability, accumulation of osmoprotectants and activity of some antioxidant enzymes in wheat near‐isogenic lines carrying the alleles Rht‐B1b (semidwarfing) and RhtB1c (dwarfing) in comparison with the tall control Rht‐B1a. Six‐day‐long water deprivation was imposed at seedling stage. Plants carrying Rht‐B1c and, to a lesser extent, those carrying Rht‐B1b performed better under stress compared with Rht‐B1a in terms of more sustained membrane integrity, enhanced osmoregulation and better antioxidant defence. These differential responses could reflect pleiotropic effects of the Rht‐B1 gene associated with the accumulation of the mutant gene product, that is, altered DELLA proteins, or might be related to allelic variations at neighbouring loci carrying candidate genes for proteins with a major role in plant water regulations and stress adaptation. These findings might be of importance to breeders when introducing Rht‐B1 alleles into wheat cultivars designed to be grown in drought liable regions.  相似文献   

6.
Fusarium head blight (FHB), leaf rust and stem rust are among the most destructive wheat diseases. High‐yielding, native disease resistance sources are available in North America. The objective of this study was to map loci associated with FHB traits, leaf rust, stem rust and plant height in a “Vienna”/”25R47” population. DArT markers were used to generate a genetic map, and quantitative trait loci (QTL) analysis was performed by evaluating 113 doubled haploid lines across three environments in Ontario, Canada. FHB resistance QTL were identified on chromosomes 4D, 4B, 2D and 7A, while a QTL for leaf and stem rust resistance was identified on chromosome 1B. The dwarfing alleles of both Rht‐B1 and Rht‐D1 were associated with increased FHB index and DON content.  相似文献   

7.
Under field conditions in Germany over three growing seasons the pleiotropic effects on yield and its components of four sets of near isogenic lines carrying the GA insensitive dwarfing alleles Rht1, Rht2, Rht3, Rht1+2, Rht2+3 or rht (tall) in four different genetical backgrounds were examined together with 24 single chromosome recombinant lines segregating for the GA sensitive dwarfing gene Rht8 and the gene for day-length insensitivity Ppd1 in a ‘Cappelle-Desprez’ background. For the GA insensitive semi-dwarfs it was shown that in all three years a higher number of grains per ear was accompanied by a lower grain weight. Depending on the climatic conditions in a particular year, the increase in grain number was sufficient to compensate for the reduction in grain size and resulted in higher yields. For the Ppd1 allele yield advantages were found for wheats grown under environmental conditions of middle Europe.  相似文献   

8.
T. Morikawa    M. Sumiya    S. Kuriyama 《Plant Breeding》2007,126(1):30-35
New sources of dwarfing genes were identified from accessions of Avena fatua in Japan and Korea. The dwarfing genes were transferred from backcrossed and self‐pollinated relatives to the cultivated oat ‘Kanota’. In the cultivated form, the dominant dwarfing gene Dw8 showed a relatively lower transmission rate than recessive, semi‐dominant and nondwarfing genes and was characterized by a distinct link with wild gene cluster. This was also supported by the high transmission rate of wild specific SSR alleles. Four dwarf inbred lines (L153, L169a, L169b and L812) were identified as involving a single recessive dwarfing gene(s). The recessive dwarfing genes that showed normal and stable transmission rates in BC1F3 were first reported in hexaploid oats. The L169 segregated two different recessive dwarf lines in BC1, which were selected as semi‐ (L169a) and extreme‐ (L169b) dwarf lines. The L169a was a good genotype with a high grain yield. L288 is a semi‐dwarf line conditioned by a semi‐dominant dwarfing gene, with a unilateral panicle, large florets and good grain quality due to strong resistance to lodging. L342 had a short peduncle, making the panicle compact, and its phenotype was similar to the dwarfness controlled by Dw7, but the dwarfing genes were different.  相似文献   

9.
K. N. Rai  A. S. Rao 《Euphytica》1991,52(1):25-31
Summary A d2 dwarfing gene in pearl millet [Pennisetum glaucum (L.) R. Br.] is currently being extensively used for the development of hybrid parents. Its effect on grain yield and yield components is poorly understood. Twelve pairs of tall and dwarf near-isogenic lines developed in the diverse genetic background of three composites were evaluated for grain yield and yield components for 2 years at two locations in southern India. The d2 gene or the genes linked to it, on an average, reduced plant height by 42%, grain yield by 14%, and head girth by 8% but increased head length and number of tillers per plant by about 5–6%. Large variations were observed among pairs (genetic background) for the difference between tall and dwarf near-isogenic lines for all of the above yield components resulting in no significant difference in five pairs and 17–35% less yield in dwarfs as compared to their tall counterparts in six pairs. Days to 50% flowering and seed weight were least affected by the d2 gene with the average difference between tall and dwarf groups of near-isogenic lines being of the order of 1–2%. These results indicate that the advantageous effects of d2 dwarfing gene can be effectively exploited by manipulating the genetic background. The difference between the average grain yields of tall and dwarf groups of near-isogenic lines showed considerable variation across environments with the dwarfs yielding as much as tall group in one environment and up to 30% less than the tall group in the other, thus, indicating that the d2 gene effect may be substantially modified by the environments.Submitted as JA No. 979 by the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

10.
Summary Wheat varieties tend to be chromosomally unstable producing on average 2–3% of plants with abnormal chromosome numbers. A number of semi dwarf wheat varieties, carrying the gibberellic acid insensitive dwarfing genes Rht1 or Rht2, have been seen to produce distinct tall off types due to reduction in dosage of the chromosome carrying the dwarfing gene. The UK variety Brigand, carrying Rht2 on chromosome 4D, produced very distinct tall off types when this chromosome was reduced in dosage. The frequency of tall off types was sufficiently high to cause the variety to fail United Kingdom statutory uniformity tests. An attempt to prevent the loss of chromosome 4D was made by constructing translocation chromosomes involving the short arm of chromosome 4D, which carries Rht2, and the long arm of chromosome 4S l from Aegilops sharonensis, which carries a gene(s) conferring preferential transmission. The work in this paper describes the field evaluation of two lines carrying 4DS.4DL-4S l L translocations, and demonstrates their success in preventing spontaneously occurring monosomy of chromosome 4D in semi-dwarf wheats.  相似文献   

11.
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85 and 96 cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.  相似文献   

12.
Near isogenic lines (NILs) varying for genes for reduced height (Rht) and photoperiod insensitivity (Ppd-D1a) in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c + Ppd-D1a, Rht-D1c, Rht12) were compared at one field site but within contrasting (‘organic’ vs. ‘conventional’) rotational and agronomic contexts, in each of 3 years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b Rht-D1b, Rht-D1b + Rht-B1c) in both Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c Ppd-D1a)]. Assessments included laboratory tests of germination and coleoptile length, and various field measurements of crop growth between emergence and pre jointing [plant population, tillering, leaf length, ground cover (GC), interception of photosynthetically active radiation (PAR), crop dry matter (DM) and nitrogen accumulation (N), far red: red reflectance ratio (FR:R), crop height, and weed dry matter]. All of the dwarfing alleles except Rht12 in the Mercia background and Rht8c in the DHs were associated with reduced coleoptile length. Most of the dwarfing alleles (depending on background) reduced seed viability. Severe dwarfing alleles (Rht-B1c, Rht-D1c and Rht12) were routinely associated with fewer plant numbers and reduced early crop growth (GC, PAR, DM, N, FR:R), and in 1 year, increased weed DM. In the Mercia background and the DHs the semi-dwarfing allele Rht-D1b was also sometimes associated with reductions in early crop growth; no such negative effects were associated with the marker for Rht8c. When significant interactions between cropping system and genotype did occur it was because differences between lines were more exaggerated in the organic system than in the conventional system. Ppd-D1a was associated positively with plant numbers surviving the winter and early crop growth (GC, FR:R, DM, N, PAR, height), and was the most significant locus in a QTL analysis. We conclude that, within these environmental and system contexts, genes moderating development are likely to be more important in influencing early resource capture than using Rht8c as an alternative semi-dwarfing gene to Rht-D1b.  相似文献   

13.
In wheat, semidwarfism resulting from reduced height (Rht)‐B1b and Rht‐D1b was integral to the ‘green revolution’. The principal donors of these alleles are ‘Norin 10’, ‘Seu Seun 27’ and ‘Suwon 92’ that, according to historical records, inherited semidwarfism from the Japanese landrace ‘Daruma’. The objective of this study was to examine the origins of Rht‐B1b and Rht‐D1b by growing multiple seed bank sources of cultivars comprising the historical pedigrees of the principal donor lines and scoring Rht‐1 genotype and plant height. This revealed that ‘Norin 10’ and ‘Suwon 92’ sources contained Rht‐B1b and Rht‐D1b, but the ‘Seu Seun 27’ source did not contain a semidwarf allele. Neither Rht‐B1b nor Rht‐D1b could be definitively traced back to ‘Daruma’, and both ‘Daruma’ sources contained only Rht‐B1b. However, ‘Daruma’ remains the most likely donor of Rht‐B1b and Rht‐D1b. We suggest that the disparity between historical pedigrees and Rht‐1 genotypes occurs because the genetic make‐up of seed bank sources differs from that of the cultivars actually used in the pedigrees. Some evidence also suggests that an alternative Rht‐D1b donor may exist.  相似文献   

14.
小麦新品种系宛原50-2矮秆基因的染色体定位   总被引:3,自引:0,他引:3  
贾继增  丁寿康 《作物学报》1994,20(3):297-301
宛原50-2是一个株高比常用矮矮,农艺性状较好的新品系。通过21个单体系F1、F2的株高和F2的赤霉酸反应及测交分析,发现该品系携带有4对或4对以上的矮秆基因。其中Rht IS位于染色体4B**上;Rht8和Rht9分别位于染色体2D和7B上;一对可能通过诱变产生的对赤霉酸不敏感的矮秆基因,暂命名为Rht(Wan),位于染色体4D上。  相似文献   

15.
The impact of the Rht dwarfing genes on P utilization efficiency (PUTE = grain dry matter per kg P in above-ground biomass), total P uptake (Pt) and related traits was studied in the varietal backgrounds of two tall wheat cultivars, Maringa and Nainari 60. Four sets of near-isogenic lines carrying different combinations of the alleles Rht-B1b, Rht-D1b and Rht-B1c for gibberellin-insensitive dwarfism in the hexaploid wheat (Triticum aestivum L.) were compared with tall controls in two field trials under conditions of adequate nutrient supply and irrigation in Northwest Mexico. The yield-increasing effect of the dwarfing genes Rht-D1b and Rht-B1b led to improved PUTE in Maringa and total P uptake in both cultivars. Also, the double dwarf line of Maringa had larger grain yields and P uptake compared to the tall control. The Rht-B1c genotypes showed low PUTE, thick roots and high P concentration in vegetative biomass indicating a surplus of assimilates and P, which could not be translocated into the grains. A similar problem could be observed in Nainari 60 with Rht-B1b and Rht-D1b, which produced the largest grain dry matter with the lowest P concentrations in grains although they showed high P accumulation in straw. Most of the net P uptake occurred before anthesis. P absorption after anthesis was more critical for the dwarf genotypes. For double dwarfs and Rht-B1c, respectively, only 3% and 21% of the total accumulated P at maturity was absorbed at post-anthesis. The grain P of the dwarf lines came more from P accumulated at pre-anthesis and translocated from the vegetative biomass into the grain. The pre-anthesis P accumulation was positively correlated with spikes per m2 (r = 0.91), whereas post-anthesis P accumulation correlated better with grains per spike(r = 0.72), and thousand kernel weight (r = 0.51). P uptake efficiency played a secondary role under these non-P-limiting conditions, and differences in root length density were only slightly affected by Rht-genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
利用矮秆基因RhtB1-b、RhtD1-b和Rht8特异分子标记对郑麦583和2015-2016年度参加河南省区域试验、河南省品种比较试验、国家黄淮南片区域试验及国家黄淮麦区品种比较试验的共630份小麦材料的基因型进行检测。结果表明,供试材料中检测到549份材料含有RhtB1-b基因;592份材料含有RhtD1-b基因;513份材料含有Rht8基因;422份材料同时含有3个矮秆基因,169份材料仅含有2个矮秆基因,说明3个主要的矮秆基因在河南小麦育种过程中被聚合使用。此外,分析发现,矮秆基因Rht8与株高和每公顷穗数,以及千粒重具有显著相关性。郑麦583等小麦品种聚合了这3个矮秆基因,具有优良的丰产性,通过选择和利用矮秆基因对于培育具有丰产性优点的小麦品种具有一定价值。  相似文献   

17.
The impact of the genotype‐specific leaf morphological and anatomical characteristics on the ability of wheat plants to preserve leaf water balance and cell membranes stability under drought stress was investigated. Seedlings of six modern semi‐dwarf (carriers of Rht, Reduced height genes) and six old tall bread wheat varieties were subjected to soil drought by withholding watering for 6 days. Morpho‐anatomical traits (leaf area, perimeter, thickness, stomata and trichome density) of daily watered (control) plants were characterized by light microscopy, scanning and image analyses. The leaf water status in both control and stressed plants was determined by measuring the relative water content (RWC). The leaf cell membranes stability in stressed plants was estimated by conductometric determination of the membranes injury index. On average, the modern semi‐dwarf varieties had less leaf area and leaf perimeter, and less dissection index, a parameter characterizing the leaf shape. Under drought stress, the modern genotypes maintained better water balance evidenced by significantly higher leaf RWC and better‐preserved the cell membranes stability supported by significantly lower Injury index. The correlations between morpho‐anatomical traits in control plants and drought tolerance‐related traits showed that the higher the leaf dissection index (i.e. more oblong leaves), the greater the water loss and the leaf membrane damages after desiccation were. The effect of shape of the evaporating surface on the water loss was modelled using wet filter paper. Similar to plant leaves, the evaporation and, respectively, water loss from paper pieces of more oblong shape (i.e. higher dissection index) was more intensive. The elucidation of the impact of the leaf shape on transpiration might contribute to better understanding of the mechanisms used by plants to maintain water reserves during drought stress and could be a basis for developing of simple and fast screening methods aiding the selection of drought tolerant genotypes.  相似文献   

18.
Liu B.  H 《Plant Breeding》1987,98(3):266-267
The genes Ms2 for male sterility and Rht10 for dominant dwarfing located on the short arm of chromosome 4D in common wheat arc closely linked. Male sterile, dwarf F1 plants from the cross of male sterile‘Chinese Spring’× dwarf‘Ai-bian’were backcrossed with the variety‘Chinese Spring, From this offspring a spontaneous chromosome translocation was isolated resulting in a recombinant male sterile and dwarf genotype.  相似文献   

19.
利用以春小麦品种AprilBearded为背景的含有不同矮秆基因Rht1、Rht2、Rht3、Rht1+Rht2和Rht2+Rht3的5个近等基因系,研究了不同矮秆基因对小麦生长发育的作用。结果表明:Rht1半矮秆基因显著缩短了小麦植株生长发育进程,促进了地上部干物质积累,加大了旗叶面积和倒二叶面积,提高了单株成穗率,减少了无效分蘖;Rht2半矮秆基因显著增大了倒二叶面积,提高了单株成穗率和穗长,减少了无效分蘖;Rht3矮秆基因显著加大了旗叶面积,但对地上部干物质的积累、单株成穗和穗长均有显著的负向作用;Rht1+Rht2基因结合没有突出的优势存在:Rht2和Rht3基因结合对有利于提高小麦产量性状的作用均为负向最大;上述3种矮秆基因及其不同的结合形式均有显著的使茎秆矮化的作用。因此认为Rht1半矮秆基因在小麦育种中利用价值较大,Rht3矮秆基因利用价值则较小。  相似文献   

20.
Summary Two wheat cultivars, Spica and Lerma 52, which consistently produce high levels of -amylase during the later stages of grain development (late maturity -amylase), were crossed with a set of four near-isogenic lines carrying the tall (rht) allele or one of the dwarfing genes Rht1, Rht2 or Rht3 (GA-insensitive alleles). The F1 and F2 populations were developed and analysed for grain -amylase and plant height. The Rht3 gene exhibited the strongest influence on plant height and strongly inhibited new -amylase synthesis during the later part of grain ripening. By comparison, Rht1 and Rht2 had a less pronounced effect but still significantly reduced the expression of late maturity -amylase. These observations suggest that gibberellic acid is involved either directly or indirectly in this phenomenon. The implications of the effect of dwarfing genes on expression of late maturity -amylase are discussed in relation to cultivar improvement and to the identification and control of high -amylase germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号